デフォルト表紙
市場調査レポート
商品コード
1737180

WtE(Waste-to-Energy)技術の世界市場:市場規模(製品別・用途別・地域別)、将来予測

Global Waste-To-Energy Technologies Market Size By Product (Biochemical Reactions, Thermal Technologies), By Application (Heating Plant, Power Plant), By Geographic Scope And Forecast


出版日
ページ情報
英文 202 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.76円
WtE(Waste-to-Energy)技術の世界市場:市場規模(製品別・用途別・地域別)、将来予測
出版日: 2025年05月09日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

WtE(Waste-to-Energy)技術の市場規模と予測

WtE(Waste-to-Energy)技術の市場規模は、ここ数年大幅な成長率で急成長しており、市場推計・予測期間、すなわち2026年から2032年にかけて大きく成長すると予測されます。

廃棄物発生量の増加と、持続可能な都市生活への需要を満たすための廃棄物管理への関心の高まり、そして非化石燃料エネルギー源への注目の高まりが、WtE(Waste-to-Energy)技術市場の成長を促す要因となっています。「世界のWtE(Waste-to-Energy)技術市場」レポートは、市場の全体的な評価を提供します。主要セグメント、動向、市場促進要因、抑制要因、競合情勢、市場で重要な役割を果たしている要因などを包括的に分析しています。

世界のWtE(Waste-to-Energy)技術市場の定義

WtE(Waste-to-Energy)技術は、廃棄物残渣から化学物質を電気、熱、蒸気などの使用可能なエネルギーに変換するエネルギー回収プロセスです。熱転換技術は現在、WtE(Waste-to-Energy)技術の市場リーダーです。さらに、WtE(Waste-to-Energy)技術には、嫌気性消化や埋立ガス回収などの非熱プロセスや、ガス化や大量焼却などの熱プロセスがあり、バイオマスを利用してセルロースや有機廃棄物からエタノールを生産することができます。発酵プロセスは、ワイン醸造と同じ手順で、廃棄物中の糖を二酸化炭素とアルコールに変換します。

世界のWtE(Waste-to-Energy)技術市場概要

市場成長を促す一次情報は、廃棄物発生量の増加と、持続可能な都市生活の需要を満たすための廃棄物管理への関心の高まり、そして非化石燃料エネルギー源への注目の高まりです。エネルギー需要の増加に伴うエンドユーザー部門のエネルギー生成と適切な廃棄物管理を奨励する好ましい規制政策が、予測期間中の市場成長促進に不可欠な役割を果たすと予想されます。従来のエネルギー源はすぐに枯渇してしまうため、政府はWtE(Waste-to-Energy)技術などの代替エネルギー源の商業化に注力しています。

また、化石燃料からの炭素排出を削減するための環境政策の実施は、業界の成長を加速させると予想されます。廃棄物発電所は、リサイクルのための金属回収、化石燃料発電からの二酸化炭素の相殺、埋立地からのメタンの回避など、いくつかの要因によって多くの有害な排出を削減します。さらに、限られたスペースと埋立地価格の上昇が、信頼できる廃棄物管理ソリューションとしてWtE(Waste-to-Energy)技術の成長をさらに促進すると予想されます。

目次

第1章 世界のWtE(Waste-to-Energy)技術市場:イントロダクション

  • 市場概要
  • 分析範囲
  • 前提条件

第2章 エグゼクティブサマリー

第3章 VERIFIED MARKET RESEARCHの分析手法

  • データマイニング
  • バリデーション
  • 一次資料
  • データソース一覧

第4章 世界のWtE(Waste-to-Energy)技術市場の展望

  • 概要
  • 市場力学
    • 促進要因
    • 抑制要因
    • 機会
  • ポーターのファイブフォースモデル
  • バリューチェーン分析

第5章 世界のWtE(Waste-to-Energy)技術市場:製品別

  • 概要
  • 生化学反応
  • 熱技術

第6章 世界のWtE(Waste-to-Energy)技術市場:用途別

  • 概要
  • 暖房プラント
  • 発電プラント
  • その他

第7章 世界のWtE(Waste-to-Energy)技術市場:地域別

  • 概要
  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • その他欧州
  • アジア太平洋
    • 中国
    • 日本
    • インド
    • その他アジア太平洋
  • 世界のその他の地域
    • ラテンアメリカ
    • 中東・アフリカ

第8章 世界のWtE(Waste-to-Energy)技術市場の競合情勢

  • 概要
  • 各社の市場ランキング
  • 主な開発戦略

第9章 企業プロファイル

  • Osaka City Hall
  • Covanta
  • Grandblue
  • Suez
  • Shenzhen Energy
  • Wheelabrator
  • City Of Kobe
  • Tianjin Teda
  • China Everbright
  • Aeb Amsterdam

第10章 付録

  • 関連調査
目次
Product Code: 55077

Waste-To-Energy Technologies Market Size And Forecast

Waste-To-Energy Technologies Market size is growing at a faster pace with substantial growth rates over the last few years, and it is estimated that the market will grow significantly in the forecasted period, i.e. 2026 to 2032.

The growing amount of waste generation and increasing concern for waste management to meet the demand for sustainable urban living, and the rising focus on non-fossil fuel sources of energy are the factors driving the market growth of the Waste-To-Energy Technologies Market. The Global Waste-To-Energy Technologies Market report provides a holistic evaluation of the market. The report offers a comprehensive analysis of key segments, trends, drivers, restraints, competitive landscape, and factors that are playing a substantial role in the market.

Global Waste-To-Energy Technologies Market Definition

Waste-to-energy technology is an energy recovery process that converts chemicals from waste residues into usable energy such as electricity, heat, and steam. Heat conversion technology is currently the market leader in waste-to-energy technology. In addition, waste-to-energy technologies include non-thermal processes such as anaerobic digestion and landfill gas recovery and heat such as gasification and mass incineration that can produce ethanol from cellulose or organic waste by taking biomass. The fermentation process uses the same procedure in winemaking to convert sugar in waste into carbon dioxide and alcohol.

Global Waste-To-Energy Technologies Market Overview

The primary factors driving the market growth are the growing amount of waste generation and increasing concern for waste management to meet the demand for sustainable urban living, and the rising focus on non-fossil fuel sources of energy. Preferred regulatory policies that encourage end-user sector energy generation and proper waste management associated with increasing energy demand are expected to play an essential role in driving the market growth during the forecast period. The government focuses on commercializing alternative energy sources such as Waste-to-Energy (WTE) technology because traditional energy sources are quickly exhausted.

In addition, the implementation of environmental policies to reduce carbon emissions from fossil fuels is expected to accelerate the industry's growth. Waste power plants reduce many harmful emissions due to several factors, including the recovery of metals for recycling, the offsetting of carbon dioxide from fossil fuel power generation, and the avoidance of methane from landfills. In addition, limited space and rising landfill prices are expected to further drive the growth of waste-to-energy technology as a reliable waste management solution.

Global Waste-To-Energy Technologies Market: Segmentation Analysis

The Global Waste-To-Energy Technologies Market is Segmented on the basis of Product, Application, And Geography.

Waste-To-Energy Technologies Market, By Product

  • Biochemical Reactions
  • Thermal Technologies

Based on Product, the market is segmented into Biochemical Reactions and Thermal Technologies. The Thermal Technologies segment holds a large number of shares in the market because the ease of operation is the growth factor of heat conversion technology. Thermal waste treatment serves as an environmentally friendly solution for modern cities by allowing the gas emitted from the waste to be incinerated entirely, which is the factor that boosts the market growth of the Waste-To-Energy Technologies Market.

Waste-To-Energy Technologies Market, By Application

  • Heating Plant
  • Power Plant
  • Others

Based on Application, the market is segmented into Heating Plant, Power Plant, and Others.

Waste-To-Energy Technologies Market, By Geography

  • North America
  • Europe
  • Asia Pacific
  • Rest of the world
  • On the basis of Geography, The Global Waste-To-Energy Technologies Market is classified into North America, Europe, Asia Pacific, and the Rest of the world. The Asia-Pacific region holds a large number of shares in the market because of the increasing government initiatives in adopting more good MSW management practices, providing incentives for waste-to-energy projects in the form of capital subsidies and feed-in tariffs, and providing financial support for research and development projects on a cost-sharing basis in the region, which boosts the market growth of the Waste-To-Energy Technologies Market.

Key Players

The "Global Waste-To-Energy Technologies Market" study report will provide valuable insight with an emphasis on the global market. The major players in the market are Osaka City Hall, Covanta, Grandblue, Suez, Shenzhen Energy, Wheelabrator, City Of Kobe, Tianjin Teda, China Everbright, Aeb Amsterdam.

Our market analysis also entails a section solely dedicated to such major players wherein our analysts provide an insight into the financial statements of all the major players, along with its product benchmarking and SWOT analysis. The competitive landscape section also includes key development strategies, market share, and market ranking analysis of the above-mentioned players globally.

Key Developments

  • Partnerships, Collaborations and Agreements
  • In February 2022, Covanta, a global leader in sustainable waste and energy solutions, announced that it has extended its public-private collaboration with the Lee County Solid Waste Resource Recovery Facility until 2032.
  • In November 2018, Covanta, a Morristown, New Jersey-based provider of sustainable waste and energy solutions, announced an extension of its agreement with the Town of Huntington, New York, to operate the Huntington Resource Recovery Facility. The five-year deal extends Huntington and Covanta's relationship through December 1, 2024.
  • In January 2018, Chonburi Clean Energy (CCE), a joint venture firm formed by Suez, WHA Utilities and Power, and Glow Energy (an Engie subsidiary), started construction on an industrial waste-to-energy (WtE) power plant in the Hemaraj Chonburi Industrial Estate in Chonburi, Thailand.
  • Mergers and Acquisitions
  • In February 2019, MIP and Wheelabrator Technologies Inc. ("Wheelabrator") announced today that MIP, operating through one of its managed funds, has completed the acquisition of Wheelabrator from funds managed by Energy Capital Partners ("ECP"). MIP is part of Macquarie Group's Macquarie Infrastructure and Real Assets ("MIRA") subsidiary.

TABLE OF CONTENTS

1 INTRODUCTION OF GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET

  • 1.1 Overview of the Market
  • 1.2 Scope of Report
  • 1.3 Assumptions

2 EXECUTIVE SUMMARY

3 RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

  • 3.1 Data Mining
  • 3.2 Validation
  • 3.3 Primary Interviews
  • 3.4 List of Data Sources

4 GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET OUTLOOK

  • 4.1 Overview
  • 4.2 Market Dynamics
    • 4.2.1 Drivers
    • 4.2.2 Restraints
    • 4.2.3 Opportunities
  • 4.3 Porters Five Force Model
  • 4.4 Value Chain Analysis

5 GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET, BY PRODUCT

  • 5.1 Overview
  • 5.2 Biochemical Reactions
  • 5.3 Thermal Technologies

6 GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET, BY APPLICATION

  • 6.1 Overview
  • 6.2 Heating Plant
  • 6.3 Power Plant
  • 6.4 Others

7 GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET, BY GEOGRAPHY

  • 7.1 Overview
  • 7.2 North America
    • 7.2.1 U.S.
    • 7.2.2 Canada
    • 7.2.3 Mexico
  • 7.3 Europe
    • 7.3.1 Germany
    • 7.3.2 U.K.
    • 7.3.3 France
    • 7.3.4 Rest of Europe
  • 7.4 Asia Pacific
    • 7.4.1 China
    • 7.4.2 Japan
    • 7.4.3 India
    • 7.4.4 Rest of Asia Pacific
  • 7.5 Rest of the World
    • 7.5.1 Latin America
    • 7.5.2 Middle East and Africa

8 GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET COMPETITIVE LANDSCAPE

  • 8.1 Overview
  • 8.2 Company Market Ranking
  • 8.3 Key Development Strategies

9 COMPANY PROFILES

  • 9.1 Osaka City Hall
    • 9.1.1 Overview
    • 9.1.2 Financial Performance
    • 9.1.3 Product Outlook
    • 9.1.4 Key Developments
  • 9.2 Covanta
    • 9.2.1 Overview
    • 9.2.2 Financial Performance
    • 9.2.3 Product Outlook
    • 9.2.4 Key Developments
  • 9.3 Grandblue
    • 9.3.1 Overview
    • 9.3.2 Financial Performance
    • 9.3.3 Product Outlook
    • 9.3.4 Key Developments
  • 9.4 Suez
    • 9.4.1 Overview
    • 9.4.2 Financial Performance
    • 9.4.3 Product Outlook
    • 9.4.4 Key Developments
  • 9.5 Shenzhen Energy
    • 9.5.1 Overview
    • 9.5.2 Financial Performance
    • 9.5.3 Product Outlook
    • 9.5.4 Key Developments
  • 9.6 Wheelabrator
    • 9.6.1 Overview
    • 9.6.2 Financial Performance
    • 9.6.3 Product Outlook
    • 9.6.4 Key Developments
  • 9.7 City Of Kobe
    • 9.7.1 Overview
    • 9.7.2 Financial Performance
    • 9.7.3 Product Outlook
    • 9.7.4 Key Developments
  • 9.8 Tianjin Teda
    • 9.8.1 Overview
    • 9.8.2 Financial Performance
    • 9.8.3 Product Outlook
    • 9.8.4 Key Developments
  • 9.9 China Everbright
    • 9.9.1 Overview
    • 9.9.2 Financial Performance
    • 9.9.3 Product Outlook
    • 9.9.4 Key Developments
  • 9.10 Aeb Amsterdam
    • 9.10.1 Overview
    • 9.10.2 Financial Performance
    • 9.10.3 Product Outlook
    • 9.10.4 Key Developments

10 Appendix

  • 10.1 Related Research