デフォルト表紙
市場調査レポート
商品コード
1737130

会計向け人工知能の世界市場規模:コンポーネント別、展開形態別、組織規模別、用途別、地域範囲別、予測

Global Artificial Intelligence for Accounting Market Size By Component, By Deployment Mode, By Organization Size, By Application, By Geographic Scope And Forecast


出版日
ページ情報
英文 202 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.08円
会計向け人工知能の世界市場規模:コンポーネント別、展開形態別、組織規模別、用途別、地域範囲別、予測
出版日: 2025年05月09日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

会計用人工知能の市場規模と予測

会計向け人工知能市場規模は、2024年に30億1,506万米ドルと評価され、2026年から2032年にかけて46.98%のCAGRで成長し、2032年には451億762万米ドルに達すると予測されます。

会計向け人工知能(AI)は、従来の会計手法を変えるために自動化、強化、データ主導の洞察を提供する、ゲームを変える技術として知られるようになりました。財務管理の分野では、AIは反復的な作業を自動化し、意思決定プロセスを改善し、予測分析を可能にすることで、パラダイムシフトを促進します。高度なアルゴリズムと機械学習アプローチにより、会計専門家は膨大なデータセットから適切な洞察を引き出し、パターンを発見し、比類ない精度と効率でエラーを特定することができます。

AIはまた、請求書処理、経費分類、残高管理などの典型的な会計業務の自動化にも役立ちます。AIアルゴリズムと組み合わせたロボティックプロセスオートメーション(RPA)は、反復的なルールベースのプロセスを自動化することで、経理担当者は財務分析、戦略立案、顧客アドバイザリーサービスなど、より価値の高い活動に集中できるようになります。退屈な手続きを自動化することで、AIを活用した会計ソリューションは生産性を高め、営業経費を節約し、エラーを減らし、効率性と正確性を向上させる。

会計における人工知能の今後の活用は、財務プロセスに革命をもたらし、効率を高め、企業に新たな洞察を提供する大きな可能性を秘めています。会計プロフェッショナルは、AIを活用した自動化、予測分析、不正検知、データ分析、バーチャルアシスタントを取り入れることで、意思決定能力、業務効率、顧客価値を高めることができます。AI技術が進歩し成熟するにつれて、会計・財務の未来を変える上でより大きな役割を果たすようになると予測されています。

会計向け人工知能の市場力学

世界の会計向け人工知能市場を形成している主な市場力学は以下の通り:

主な市場促進要因:

人工知能の今後の利用:会計は、財務プロセスに革命を起こし、効率を高め、企業に新たな洞察を提供する大きな可能性を秘めています。会計専門家は、AIを活用した自動化、予測分析、不正検出、データ分析、バーチャルアシスタントを取り入れることで、意思決定能力、業務効率、顧客価値を高めることができます。AI技術が進歩し成熟するにつれ、会計・財務の未来を変える上でより大きな役割を果たすと予測されています。

規制コンプライアンス:これにはGAAP、IFRS、税務規制が含まれ、企業は正確かつタイムリーな財務開示を行う必要があります。AIテクノロジーは、コンプライアンスチェックを自動化し、データの正確性を保証し、コンプライアンス違反の罰則の対象となり得る潜在的なエラーや差異を特定することで、規制遵守を促進する上で重要な役割を果たしています。

複雑化する財務データ:従来の会計プロセスは、データ量の急激な増大と複雑化により、大きな問題に直面しています。企業が世界に事業を拡大し、複雑な取引を行い、有用な洞察を引き出し、規制コンプライアンスを維持するために財務データを多様化しています。AIを活用したアナリティクスソリューションは、幅広いデータソース、フォーマット、構造を扱うために必要な拡張性、柔軟性、注意力を提供し、会計専門家が財務パフォーマンスやリスク管理に影響を与える可能性のある隠れたパターン、傾向、不正を発見できるようにします。

主な課題

データの品質とアクセシビリティ:AIを会計に活用する際の主な障害の1つは、データの品質とアクセシビリティを保証することです。AIシステムは、訓練、学習、予測を行うために、データ入力に大きく依存しています。しかし、会計データは多様なフォーマット、ソース、完全性のレベルで存在することが多く、データの完全性と信頼性に懸念が生じる。構造化されていないデータセットや不完全なデータセットは、データスクレイピングや自動データ抽出のような受動的なデータ収集方法を用いて入手し、取り扱うことが難しい場合があります。さらに、データプライバシーと規制コンプライアンスを維持することは、強力な情報管理構造とセキュリティ対策を必要とする新たな複雑なレイヤーを追加します。

倫理と規制の遵守:AIを会計に応用する際のもう一つの重要な障害は、倫理的配慮、特にプライバシー、偏見、規制遵守です。受動的なデータ収集戦略では、過去のデータセットに見つかった欠陥が意図せず伝播し、AIを活用した意思決定プロセスにおいて不公平または差別的な結果をもたらす可能性があります。さらに、機密性の高い金融データを使用することで、データのプライバシーやセキュリティに関する懸念が生じ、GDPR、CCPA、サーベンスオクスリー法などの厳しい規制の枠組みを遵守する必要があります。

人間とAIのコラボレーションとスキルギャップ:AIを会計処理にうまく取り入れるには、人間の専門家とAIシステムの効果的なコラボレーションが不可欠です。しかし、そのためには、スキルギャップ、変更管理、労働者の準備などの問題を克服する必要があります。離職、管理能力の喪失、AIツールや手法への不慣れといった懸念はすべて、AI主導のテクノロジーを取り入れることへの積極的な抵抗につながる可能性があります。これらの問題に対処するためには、会計専門家のスキルアップを図り、常に学習し適応する文化を発展させ、AI統合のための協調的な考え方を生み出すための積極的な行動が求められます。

主な動向

ルーチンタスクの自動化:会計の自動化は、一般的な手続きを合理化することで業務効率を向上させることを目的としています。人工知能を搭載したソフトウェアソリューションは、データ入力、取引分類、調停、財務報告などの業務を変革しています。これらのシステムは、機械学習アルゴリズムと自然言語処理(NLP)を使用して、大量の財務データを評価し、必要な情報を抽出し、反復作業を卓越したスピードと精度で実行します。

高度なデータ分析:会計におけるAIはデータ分析に革命をもたらし、企業は財務データから重要な洞察を得ることができます。AIを活用したアナリティクスソリューションは、アルゴリズムを使用して、膨大なデータセットのパターン、動向、差異を発見し、財務パフォーマンス、リスク要因、ビジネスダイナミクスに関するより良い洞察を提供します。これらのテクノロジーは、予測モデリング、異常の特定、センチメントの分析、動向の予測などの高度な分析を行うことができ、会計士や財務専門家に、より確信に満ちた正確なデータ主導の判断を下す能力を与えます。

サイバーセキュリティ対策の強化:財務データや取引のデジタル化が進むにつれ、会計事務所や組織はサイバーセキュリティを優先する必要があります。AIは、潜在的なサイバー攻撃や弱点を積極的に認識し、削減することで、サイバーセキュリティの向上に重要な役割を果たしています。AI対応のサイバーセキュリティソリューションは、機械学習アルゴリズムを使用してネットワークトラフィックを分析し、疑わしい活動を検知し、セキュリティ侵害にリアルタイムで対応します。これらのテクノロジーは、サイバー攻撃を示すパターンを検出し、今後のリスクを予測し、開発中のサイバー脅威に対抗するために防御を自動的に更新することができます。

目次

第1章 世界の会計向け人工知能市場の導入

  • 市場概要
  • 調査範囲
  • 前提条件

第2章 エグゼクティブサマリー

  • データマイニング
  • 2次調査
  • 1次調査
  • 専門家のアドバイス
  • 品質チェック
  • 最終レビュー
  • データの三角測量
  • ボトムアップアプローチ
  • トップダウンアプローチ
  • 調査の流れ
  • データソース

第3章 VERIFIED MARKET RESEARCHの調査手法

  • 概要
  • 絶対的収益機会
  • 市場の魅力
  • 将来の市場機会

第4章 会計向け人工知能の世界市場展望

  • 概要
  • 市場力学
    • 促進要因
    • 抑制要因
    • 機会
  • ポーターのファイブフォースモデル
  • バリューチェーン分析

第5章 会計向け人工知能市場:コンポーネント別

  • ソリューション
  • サービス

第6章 会計向け人工知能の世界市場:用途別

  • 概要
  • 自動簿記
  • 請求書の分類と承認
  • 不正とリスク管理
  • その他

第7章 会計向け人工知能の世界市場:展開形態別

  • 概要
  • オンクラウド
  • オンプレミス

第8章 会計向け人工知能の世界市場:組織規模別

  • 概要
  • 中小企業
  • 大企業

第9章 会計向け人工知能の世界市場:地域別

  • 概要
  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州
  • アジア太平洋
    • 中国
    • 日本
    • インド
    • その他アジア太平洋
  • ラテンアメリカ
    • ブラジル
    • アルゼンチン
    • その他のラテンアメリカ
  • 中東・アフリカ
    • アラブ首長国連邦
    • サウジアラビア
    • 南アフリカ
    • その他中東とアフリカ

第10章 世界の会計向け人工知能市場の競合情勢

  • 概要
  • 各社の市場ランキング
  • 主な開発戦略
  • 企業の地域別フットプリント
  • 企業の業界フットプリント
  • ACEマトリックス

第11章 企業プロファイル

  • Xero Limited
  • Intuit Inc.
  • Sage Group
  • SAP SE
  • Epicor Software Corporation
  • OSP
  • UiPath
  • Kore.AI
  • Appzen
  • Yaypay

第12章 主な発展

  • 製品上市/開発
  • 合併と買収
  • 事業拡大
  • パートナーシップと提携

第13章 付録

  • 関連調査
目次
Product Code: 52149

Artificial Intelligence For Accounting Market Size And Forecast

Artificial Intelligence for Accounting Market size was valued at USD 3015.06 Million in 2024 and is projected to reach USD 45107.62 Million by 2032, growing at a CAGR of 46.98% from 2026 to 2032.

Artificial intelligence (AI) for accounting has become known as a game-changing technology, automating, enhancing, and providing data-driven insights to alter traditional accounting methods. In the field of financial management, AI promotes a paradigm shift by automating repetitive jobs, improving decision-making processes, and enabling predictive analytics. Advanced algorithms and machine learning approaches enable accounting professionals to extract relevant insights from enormous data sets, discover patterns, and identify errors with unmatched precision and efficiency.

AI also helps to automate typical accounting operations including invoice processing, expense classification, and balance. Robotic process automation (RPA) paired with AI algorithms automates repetitive rule-based processes allowing accountants to focus on higher-value activities like financial analysis, strategic planning, and client advisory services. By automating boring procedures, AI-powered accounting solutions boost productivity, save operating expenses, and reduce errors, resulting in increased efficiency and accuracy.

The future use of artificial intelligence in accounting has tremendous potential for revolutionizing financial processes, increasing efficiency, and providing new insights to firms. Accounting professionals can increase their decision-making abilities, operational efficiency, and client value by embracing AI-powered automation, predictive analytics, fraud detection, data analytics, and virtual assistants. As AI technologies advance and mature, they are projected to play a larger role in changing the future of accounting and finance.

Artificial Intelligence For Accounting Market Dynamics

The key market dynamics that are shaping the global artificial intelligence for accounting market include:

Key Market Drivers:

The Future Use of Artificial Intelligence: The accounting has tremendous potential for revolutionizing financial processes, increasing efficiency, and providing new insights to firms. Accounting professionals can increase their decision-making abilities, operational efficiency, and client value by embracing AI-powered automation, predictive analytics, fraud detection, data analytics, and virtual assistants. As AI technologies advance and mature they are projected to play a larger role in changing the future of accounting and finance.

Regulatory Compliance: It includes GAAP, IFRS, and tax regulations, requiring businesses to provide accurate and timely financial disclosures. AI technologies play an important role in facilitating regulatory compliance by automating compliance checks, assuring data accuracy, and identifying potential errors or differences that could result in noncompliance penalties.

Increasing Financial Data Complexity: Traditional accounting processes face substantial problems due to exponential growth in data volume and complexity. As firms expand globally diversify operations, conduct complicated transactions, and diversify financial data to extract useful insights and maintain regulatory compliance. AI-powered analytics solutions provide the scalability, flexibility, and alertness required to handle a wide range of data sources, formats, and structures, allowing accounting professionals to find hidden patterns, trends, and irregularities that may impact financial performance or risk management.

Key Challenges:

Data Quality and Accessibility: One of the key obstacles in using AI for accounting is guaranteeing data quality and accessibility. AI systems rely largely on data inputs to train, learn, and predict. However, accounting data frequently exists in diverse formats, sources, and levels of completeness raising concerns about data integrity and trustworthiness. Unstructured or incomplete data sets can be challenging to obtain and handle using passive data collecting methods such as data scraping and automated data extraction. In addition, maintaining data privacy and regulatory compliance adds a new layer of complexity needing strong information management structures and security measures.

Ethical and Regulatory Compliance: Another key obstacle to the application of AI in accounting is ethical considerations specifically privacy, bias, and regulatory compliance. Passive data-gathering strategies may unintentionally propagate flaws found in past data sets resulting in unfair or discriminatory outcomes in AI-powered decision-making processes. In addition, the usage of sensitive financial data creates concerns about data privacy, and security requiring compliance with stringent regulatory frameworks such as GDPR, CCPA, and the Sarbanes-Oxley Act.

Human-AI Collaboration and Skills Gap: The successful incorporation of AI into accounting procedures is dependent on effective collaboration between human experts and AI systems. However, this entails overcoming problems like as skill gaps, change management, and worker preparation. Concerns about job displacement, loss of control, or unfamiliarity with AI tools and methodology can all contribute to inactive resistance to embracing AI-driven technology. Addressing these problems demands proactive actions to upskill accounting experts develop a culture of constant learning and adaptability, and create a collaborative mindset for AI integration.

Key Trends:

Automation of Routine Tasks: Accounting automation aims to improve operational efficiency by streamlining common procedures. Artificial intelligence-powered software solutions are transforming operations including data entry, transaction categorization, conciliation, and financial reporting. These systems use machine learning algorithms and natural language processing (NLP) to evaluate large volumes of financial data, extract essential information, and perform repetitive operations with exceptional speed and accuracy.

Advanced Data Analytics: AI in accounting has revolutionized data analytics allowing firms to gain important insights from financial data. AI-powered analytics solutions use algorithms to find patterns, trends, and differences in enormous data sets providing better insight into financial performance, risk factors, and business dynamics. These technologies may do advanced analyses such as predictive modeling, abnormality identification, analysis of sentiment, and forecasting of trends giving accountants and financial professionals the ability to make more confident and precise data-driven judgments

Enhanced Cybersecurity Measures: As financial data and transactions become more digital, accounting firms and organizations must prioritize cybersecurity. AI is playing an important role in improving cybersecurity by proactively recognizing and reducing potential cyber-attacks and weaknesses. AI-enabled cybersecurity solutions use machine learning algorithms to analyze network traffic, detect suspicious activity, and respond to security breaches in real-time. These technologies can detect patterns indicative of cyber-attacks, predict upcoming risks, and automatically update defenses to combat developing cyber threats.

Global Artificial Intelligence for Accounting Market Regional Analysis

Here is a more detailed regional analysis of the global artificial intelligence for accounting market:

North America:

AI technology integration helps firms perform a variety of services including fraud detection, bankruptcy prediction, and cash flow forecasting. As a result, accountants may assist consumers in proactively responding to financial issues by adjusting their spending before the situation worsens. Furthermore, it broadens the scope of predictive consulting beyond traditional financial planning and allows for the integration of other critical business areas.

In addition, the majority of market vendors are in the United States giving the region a competitive edge in innovation. The US government encourages the adoption of novel technologies such as artificial intelligence, machine learning, and natural language processing which provides several chances for market participants to enhance their market share in the sector. The US Department of Labor classified accountant and auditor employment as among the most newly created and it expects the industry to grow at a 10% annual rate from 2016 to 2026. The preference of accountants for AI increases the market's growth.

North America is a major market for AI and machine learning technologies with the United States playing a key role in driving regional demand. Due to its leadership in AI and machine learning technologies, the country is expected to dominate the global market over the projection period.

Asia Pacific:

In Asia, the market for artificial intelligence in accounting is rapidly expanding. This is due to the growing desire for automation and cost-effectiveness in the accounting industry. Businesses are using AI-based solutions to improve their accounting operations and decrease manual labor costs. The number of startups and venture capital investments in the AI accounting field is also on the rise in Asia.

This is due to the abundance of skilled talent and a big client base. In addition, the region is home to some of the world's most prominent technological businesses which are significantly investing in AI-based solutions. The Asian region is also seeing an increase in the number of AI-based accounting solutions being created.

Global Artificial Intelligence for Accounting Market: Segmentation Analysis

The Global Artificial Intelligence for Accounting Market is segmented based on Component, Deployment Mode, Organization Size, Application, and Geography.

Artificial Intelligence for Accounting Market, By Component

  • Solutions
  • Services

Based on the Components, the market is divided into Solutions and Services. The services segment is projected to hold the largest share of the market throughout the projected period. The advantage can be due to the growing demand for specialized knowledge and support services for adopting, managing, and optimizing AI systems in accounting. As businesses value the importance of specialized advice and continuous assistance, the services segment is likely to develop slowly, enhancing its market position.

Artificial Intelligence for Accounting Market, By Deployment Mode

  • On-Cloud
  • On-Premises

Based on Deployment Mode, the market is divided into On-Cloud and On-Premises. The On-Premises segment holds the largest worldwide market share and is expected to increase significantly during the forecast period. However, the On-Cloud sector is predicted to develop at the fastest CAGR over the forecast period. Cloud-based AI solutions facilitate real-time collaboration and decision-making by providing remote access to accounting data and AI-powered tools from any location with an internet connection.

Artificial Intelligence for Accounting Market, By Organization Size

  • Small and Medium Enterprise
  • Large Enterprise

Based on Organization Size, the market is segmented into Small and Medium Enterprises and Large Enterprises. The large enterprise segment has the largest worldwide market share and is expected to expand at a considerable CAGR over the forecast period. However, the small and medium enterprise segment is predicted to increase at the fastest CAGR over the forecast period.

Artificial Intelligence for Accounting Market, By Application

  • Automated Bookkeeping
  • Invoice Classification and Approvals
  • Fraud and Risk Management
  • Reporting

Based on Application, the market is segmented into Automated Bookkeeping, Invoice Classification and Approvals, Fraud and Risk Management, and Reporting. The automated bookkeeping segment accounted for the biggest market share and is expected to increase at a considerable CAGR. AI-powered automated accounting reduces the likelihood of human error in manual data entry and processing resulting in more accurate financial records.

Artificial Intelligence For Accounting Market, By Geography

  • North America
  • Europe
  • Asia Pacific
  • Rest of the World

Based on Geography, the global Artificial Intelligence for the accounting market is classified into North America, Europe, Asia Pacific, and the Rest of the world. North America accounts for the largest market share in artificial intelligence for the accounting market. AI technology integration helps companies perform a variety of services including fraud detection, bankruptcy prediction, and cash flow forecasting. Therefore, accountants may assist consumers in proactively responding to financial issues by adjusting their spending before the situation worsens. Furthermore, it expands the scope of predicting counseling beyond traditional financial planning and allows for the integration of other critical business areas.

Key Players

  • The Global Artificial Intelligence For Accounting study report will provide valuable insight with an emphasis on the global market. The major players in the market are Xero Limited, Intuit, Inc., Sage Group, SAP SE, Epicor Software Corporation.

Our market analysis also entails a section solely dedicated to such major players wherein our analysts provide an insight into the financial statements of all the major players, along with product benchmarking and SWOT analysis. The competitive landscape section also includes key development strategies, market share, and market ranking analysis of the above-mentioned players globally.

  • Artificial Intelligence for Accounting Market Recent Developments
  • Artificial Intelligence for Accounting Market Recent Developments
  • In April 2023, Intuit, Inc. introduced Email Content Generator (beta), which employed GPT AI technology to allow customers to create marketing email messages based on industry, marketing intent, and brand voice. Mailchimp's latest release of AI-powered capabilities including Email Content Generator, is the next stage in the company's ambition to transform email marketing for small and medium-sized organizations.
  • In April 2023, PwC US invested USD 1 billion over the next three years to improve the work of its tax accountants, auditors, and consultants for clients by leveraging artificial intelligence. This project, which involves collaboration with Microsoft Corp., aims to decrease busywork so that employees may focus on tasks that require expert eyes.

TABLE OF CONTENTS

1 INTRODUCTION OF THE GLOBAL ARTIFICIAL INTELLIGENCE FOR ACCOUNTING MARKET

  • 1.1 Overview of the Market
  • 1.2 Scope of Report
  • 1.3 Assumptions

2 EXECUTIVE SUMMARY

  • 2.1 Data mining
  • 2.2 Secondary research
  • 2.3 Primary research
  • 2.4 Subject matter expert advice
  • 2.5 Quality check
  • 2.6 Final review
  • 2.7 Data triangulation
  • 2.8 Bottom-up approach
  • 2.9 Top-down approach
  • 2.10 Research flow
  • 2.11 Data sources

3 RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

  • 3.1 Overview
  • 3.2 Absolute $ Opportunity
  • 3.3 Market attractiveness
  • 3.4 Future Market Opportunities

4 GLOBAL ARTIFICIAL INTELLIGENCE FOR ACCOUNTING MARKET OUTLOOK

  • 4.1 Overview
  • 4.2 Market Dynamics
    • 4.2.1 Drivers
    • 4.2.2 Restraints
    • 4.2.3 Opportunities
  • 4.3 Porter's Five Force Model
  • 4.4 Value Chain Analysis

5 Artificial Intelligence for Accounting Market, By Component

  • 5.1 Solutions
  • 5.2 Services

6 GLOBAL ARTIFICIAL INTELLIGENCE FOR ACCOUNTING MARKET, BY APPLICATION

  • 6.1 Overview
  • 6.2 Automated Bookkeeping
  • 6.3 Invoice Classification and Approvals
  • 6.4 Fraud and Risk Management
  • 6.5 Others

7 GLOBAL ARTIFICIAL INTELLIGENCE FOR ACCOUNTING MARKET, BY DEPLOYMENT MODE

  • 7.1 Overview
  • 7.2 On-Cloud
  • 7.3 On-Premises

8 GLOBAL ARTIFICIAL INTELLIGENCE FOR ACCOUNTING MARKET, BY ORGANIZATION SIZE

  • 8.1 Overview
  • 8.2 Small and Medium Enterprise
  • 8.3 Large Enterprise

9 GLOBAL ARTIFICIAL INTELLIGENCE FOR ACCOUNTING MARKET, BY GEOGRAPHY

  • 9.1 Overview
  • 9.2 North America
    • 9.2.1 The U.S.
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 The U.K.
    • 9.3.3 France
    • 9.3.4 Italy
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 Japan
    • 9.4.3 India
    • 9.4.4 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Argentina
    • 9.5.3 Rest of LATAM
  • 9.6 Middle East and Africa
    • 9.6.1 UAE
    • 9.6.2 Saudi Arabia
    • 9.6.3 South Africa
    • 9.6.4 Rest of the Middle East and Africa

10 GLOBAL ARTIFICIAL INTELLIGENCE FOR ACCOUNTING MARKET COMPETITIVE LANDSCAPE

  • 10.1 Overview
  • 10.2 Company Market Ranking
  • 10.3 Key Development Strategies
  • 10.4 Company Regional Footprint
  • 10.5 Company Industry Footprint
  • 10.6 ACE Matrix

11 COMPANY PROFILES

  • 11.1 Xero Limited
    • 11.1.1 Company Overview
    • 11.1.2 Company Insights
    • 11.1.3 Business Breakdown
    • 11.1.4 Product Benchmarking
    • 11.1.5 Key Developments
    • 11.1.6 Winning Imperatives
    • 11.1.7 Current Focus & Strategies
    • 11.1.8 Threat from Competition
    • 11.1.9 SWOT Analysis
  • 11.2 Intuit Inc.
    • 11.2.1 Company Overview
    • 11.2.2 Company Insights
    • 11.2.3 Business Breakdown
    • 11.2.4 Product Benchmarking
    • 11.2.5 Key Developments
    • 11.2.6 Winning Imperatives
    • 11.2.7 Current Focus & Strategies
    • 11.2.8 Threat from Competition
    • 11.2.9 SWOT Analysis
  • 11.3 Sage Group
    • 11.3.1 Company Overview
    • 11.3.2 Company Insights
    • 11.3.3 Business Breakdown
    • 11.3.4 Product Benchmarking
    • 11.3.5 Key Developments
    • 11.3.6 Winning Imperatives
    • 11.3.7 Current Focus & Strategies
    • 11.3.8 Threat from Competition
    • 11.3.9 SWOT Analysis
  • 11.4 SAP SE
    • 11.4.1 Company Overview
    • 11.4.2 Company Insights
    • 11.4.3 Business Breakdown
    • 11.4.4 Product Benchmarking
    • 11.4.5 Key Developments
    • 11.4.6 Winning Imperatives
    • 11.4.7 Current Focus & Strategies
    • 11.4.8 Threat from Competition
    • 11.4.9 SWOT Analysis
  • 11.5 Epicor Software Corporation
    • 11.5.1 Company Overview
    • 11.5.2 Company Insights
    • 11.5.3 Business Breakdown
    • 11.5.4 Product Benchmarking
    • 11.5.5 Key Developments
    • 11.5.6 Winning Imperatives
    • 11.5.7 Current Focus & Strategies
    • 11.5.8 Threat from Competition
    • 11.5.9 SWOT Analysis
  • 11.6 OSP
    • 11.6.1 Company Overview
    • 11.6.2 Company Insights
    • 11.6.3 Business Breakdown
    • 11.6.4 Product Benchmarking
    • 11.6.5 Key Developments
    • 11.6.6 Winning Imperatives
    • 11.6.7 Current Focus & Strategies
    • 11.6.8 Threat from Competition
    • 11.6.9 SWOT Analysis
  • 11.7 UiPath
    • 11.7.1 Company Overview
    • 11.7.2 Company Insights
    • 11.7.3 Business Breakdown
    • 11.7.4 Product Benchmarking
    • 11.7.5 Key Developments
    • 11.7.6 Winning Imperatives
    • 11.7.7 Current Focus & Strategies
    • 11.7.8 Threat from Competition
    • 11.7.9 SWOT Analysis
  • 11.8 Kore.AI
    • 11.8.1 Company Overview
    • 11.8.2 Company Insights
    • 11.8.3 Business Breakdown
    • 11.8.4 Product Benchmarking
    • 11.8.5 Key Developments
    • 11.8.6 Winning Imperatives
    • 11.8.7 Current Focus & Strategies
    • 11.8.8 Threat from Competition
    • 11.8.9 SWOT Analysis
  • 11.9 Appzen
    • 11.9.1 Company Overview
    • 11.9.2 Company Insights
    • 11.9.3 Business Breakdown
    • 11.9.4 Product Benchmarking
    • 11.9.5 Key Developments
    • 11.9.6 Winning Imperatives
    • 11.9.7 Current Focus & Strategies
    • 11.9.8 Threat from Competition
    • 11.9.9 SWOT Analysis
  • 11.10 Yaypay
    • 11.10.1 Company Overview
    • 11.10.2 Company Insights
    • 11.10.3 Business Breakdown
    • 11.10.4 Product Benchmarking
    • 11.10.5 Key Developments
    • 11.10.6 Winning Imperatives
    • 11.10.7 Current Focus & Strategies
    • 11.10.8 Threat from Competition
    • 11.10.9 SWOT Analysis

12 KEY DEVELOPMENTS

  • 12.1 Product Launches/Developments
  • 12.2 Mergers and Acquisitions
  • 12.3 Business Expansions
  • 12.4 Partnerships and Collaborations

13 Appendix

  • 13.1 Related Research