デフォルト表紙
市場調査レポート
商品コード
1748797

風力タービン用複合材料市場- 世界の産業規模、シェア、動向、機会、予測、繊維タイプ別、樹脂別、製造工程別、用途別、地域別、競合別、2020~2030年

Wind Turbine Composites Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented, By Fiber Type, By Resin, By Manufacturing Process, By Application, By Region, By Competition, 2020-2030F


出版日
ページ情報
英文 180 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.08円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

風力タービン用複合材料市場- 世界の産業規模、シェア、動向、機会、予測、繊維タイプ別、樹脂別、製造工程別、用途別、地域別、競合別、2020~2030年
出版日: 2025年06月13日
発行: TechSci Research
ページ情報: 英文 180 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界の風力タービン用複合材料の市場規模は2024年に157億8,000万米ドルで、予測期間中のCAGRは8.01%を記録し、2030年には252億8,000万米ドルに達すると予測されています。

この市場には、ブレード、ナセル、タワーなどの風力タービン部品の製造に使用される、ガラス繊維、炭素繊維、エポキシ樹脂やポリエステル樹脂などの複合材料の生産と利用が含まれます。これらの材料は、高い強度対重量比、強化された耐疲労性、腐食保護を提供し、より長く、より軽く、より耐久性のあるタービン構造の開発をサポートします。市場は、再生可能エネルギーインフラの拡大、化石燃料への依存度の低減、気候変動目標の達成に向けた世界の取り組みによって推進されています。リサイクル可能な複合材料、自動製造、熱可塑性樹脂の技術的進歩により、コストと持続可能性の課題が解決されつつあります。政府のインセンティブ、政策支援、オンショア・オフショア風力発電所への投資拡大(特に北米、アジア太平洋地域)は、風力タービン用複合材料の需要をさらに加速させています。

市場概要
予測期間 2026~2030年
市場規模:2024年 157億8,000万米ドル
市場規模:2030年 252億8,000万米ドル
CAGR:2025~2030年 8.01%
急成長セグメント 炭素繊維
最大市場 北米

市場促進要因

気候変動対策としての再生可能エネルギーへの世界的な注目の高まり

主な市場課題

高コストな複合材料と製造の複雑さ

主な市場動向

タービン効率向上のための炭素繊維複合材料の採用増加

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 顧客の声

第5章 世界の風力タービン用複合材料市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • 繊維タイプ別(ガラス繊維、炭素繊維)
    • 樹脂別(エポキシ、ポリエステル、ビニルエステル)
    • 製造工程別(真空射出成形、プリプレグ、ハンドレイアップ)
    • 用途別(ブレード、ナセル)
    • 地域別
  • 企業別(2024年)
  • 市場マップ

第6章 北米の風力タービン用複合材料市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 北米:国別分析
    • 米国
    • カナダ
    • メキシコ

第7章 欧州の風力タービン用複合材料市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 欧州:国別分析
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン

第8章 アジア太平洋地域の風力タービン用複合材料市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • アジア太平洋地域:国別分析
    • 中国
    • インド
    • 日本
    • 韓国
    • オーストラリア

第9章 南米の風力タービン用複合材料市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 南米:国別分析
    • ブラジル
    • アルゼンチン
    • コロンビア

第10章 中東・アフリカの風力タービン用複合材料市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 中東・アフリカ:国別分析
    • 南アフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • クウェート
    • トルコ

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

  • 合併と買収
  • 製品上市
  • 最近の動向

第13章 企業プロファイル

  • LM Wind Power(GE Renewable Energy)
  • TPI Composites Inc.
  • Siemens Gamesa Renewable Energy
  • Vestas Wind Systems A/S
  • Suzlon Energy Limited
  • MFG Wind(Molded Fiber Glass Companies)
  • Hexcel Corporation
  • Toray Industries, Inc.
  • SGL Carbon SE
  • Teijin Limited

第14章 戦略的提言

第15章 調査会社について・免責事項

目次
Product Code: 29415

The Global Wind Turbine Composites Market was valued at USD 15.78 billion in 2024 and is projected to reach USD 25.28 billion by 2030, registering a CAGR of 8.01% during the forecast period. This market encompasses the production and utilization of composite materials-including glass fiber, carbon fiber, and epoxy or polyester resins-used in manufacturing wind turbine components such as blades, nacelles, and towers. These materials offer high strength-to-weight ratios, enhanced fatigue resistance, and corrosion protection, supporting the development of longer, lighter, and more durable turbine structures. The market is propelled by global efforts to expand renewable energy infrastructure, reduce dependence on fossil fuels, and meet climate goals. Technological advancements in recyclable composites, automated manufacturing, and thermoplastic resins are addressing cost and sustainability challenges. Government incentives, policy support, and increased investments in onshore and offshore wind farms-especially across Europe, North America, and Asia-Pacific-are further accelerating demand for wind turbine composites.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 15.78 Billion
Market Size 2030USD 25.28 Billion
CAGR 2025-20308.01%
Fastest Growing SegmentCarbon Fiber
Largest MarketNorth America

Key Market Drivers

Rising Global Focus on Renewable Energy to Combat Climate Change

The increasing prioritization of renewable energy as a response to climate change is a primary driver of growth in the wind turbine composites market. Many countries are implementing strict environmental regulations and supporting international climate commitments, such as the Paris Agreement, to lower carbon emissions. As a mature and cost-efficient renewable energy source, wind power is gaining momentum globally, spurring growth in wind farm installations. This, in turn, fuels demand for composite materials that enhance turbine performance.

Composites like fiberglass and carbon fiber reinforced polymers are critical in building lightweight, high-strength turbine components that resist fatigue and environmental wear. Their use enables the production of longer and more efficient blades, contributing to increased energy capture and reduced LCOE. The expansion of wind energy is further supported by public-private partnerships, government incentives, and green financing. Financial tools such as tax credits, feed-in tariffs, and renewable energy certificates are encouraging investment in wind infrastructure, indirectly boosting demand for composites.

Rising corporate sustainability goals and consumer awareness also support market growth, with industries pursuing low-carbon transitions. With initiatives like the European Union's Green Deal aiming for 45% renewable energy by 2030, wind turbine composites are positioned to play an essential role in achieving global clean energy objectives.

Key Market Challenges

High Cost of Composite Materials and Manufacturing Complexity

A major barrier to the expansion of the wind turbine composites market is the elevated cost of advanced composite materials and the intricate manufacturing processes they require. While carbon and glass fiber composites are preferred for their strength and durability, they are substantially more expensive than traditional materials such as steel. Manufacturing processes like resin infusion, curing, and molding also demand skilled labor and specialized facilities, adding to production costs.

These capital and labor-intensive requirements limit entry for smaller firms and restrict scalability. Larger turbine sizes for offshore applications intensify these challenges, requiring longer blades and larger molds, as well as stricter quality controls. The logistics of transporting massive blades, particularly in regions with weak infrastructure, further increases operational costs. This is particularly restrictive in developing economies where renewable infrastructure is still emerging, leading to a preference for lower-cost solutions that can slow the adoption of high-performance composites.

Key Market Trends

Rising Adoption of Carbon Fiber Composites for Enhanced Turbine Efficiency

A notable trend in the wind turbine composites market is the increasing shift toward carbon fiber composites due to their superior stiffness-to-weight ratios and fatigue resistance. As turbine blade sizes continue to increase, particularly in offshore settings, carbon fiber enables lighter and longer blades, improving energy capture and overall efficiency.

The improved aerodynamic performance and reduced structural load offered by carbon fiber result in better long-term operational efficiency. Manufacturers are increasingly adopting hybrid composites-integrating glass and carbon fibers-to balance performance and cost. Although carbon fiber remains costlier, its extended service life and reduced maintenance needs justify its use in high-performance applications.

Ongoing R&D aims to reduce carbon fiber costs and develop recyclable composites that meet both performance and sustainability goals. Advanced resin systems such as epoxy and vinyl ester are being combined with carbon fiber for enhanced environmental durability. Innovations in manufacturing techniques like automated fiber placement are helping to reduce production costs, making carbon fiber more commercially viable. These developments align with global energy goals of maximizing output and ensuring sustainable operations in the wind power sector.

Key Market Players

  • LM Wind Power (GE Renewable Energy)
  • TPI Composites Inc.
  • Siemens Gamesa Renewable Energy
  • Vestas Wind Systems A/S
  • Suzlon Energy Limited
  • MFG Wind (Molded Fiber Glass Companies)
  • Hexcel Corporation
  • Toray Industries, Inc.
  • SGL Carbon SE
  • Teijin Limited

Report Scope:

In this report, the Global Wind Turbine Composites Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Wind Turbine Composites Market, By Fiber Type:

  • Glass Fiber
  • Carbon Fiber

Wind Turbine Composites Market, By Resin:

  • Epoxy
  • Polyester
  • Vinyl Ester

Wind Turbine Composites Market, By Manufacturing Process:

  • Vacuum Injection Molding
  • Prepreg
  • Hand Lay-Up

Wind Turbine Composites Market, By Application:

  • Blades
  • Nacelles

Wind Turbine Composites Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Kuwait
    • Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Wind Turbine Composites Market.

Available Customizations:

Global Wind Turbine Composites Market report with the given Market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Wind Turbine Composites Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Fiber Type (Glass Fiber, Carbon Fiber)
    • 5.2.2. By Resin (Epoxy, Polyester, Vinyl Ester)
    • 5.2.3. By Manufacturing Process (Vacuum Injection Molding, Prepreg, Hand Lay-Up)
    • 5.2.4. By Application (Blades, Nacelles)
    • 5.2.5. By Region
  • 5.3. By Company (2024)
  • 5.4. Market Map

6. North America Wind Turbine Composites Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Fiber Type
    • 6.2.2. By Resin
    • 6.2.3. By Manufacturing Process
    • 6.2.4. By Application
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Wind Turbine Composites Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Fiber Type
        • 6.3.1.2.2. By Resin
        • 6.3.1.2.3. By Manufacturing Process
        • 6.3.1.2.4. By Application
    • 6.3.2. Canada Wind Turbine Composites Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Fiber Type
        • 6.3.2.2.2. By Resin
        • 6.3.2.2.3. By Manufacturing Process
        • 6.3.2.2.4. By Application
    • 6.3.3. Mexico Wind Turbine Composites Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Fiber Type
        • 6.3.3.2.2. By Resin
        • 6.3.3.2.3. By Manufacturing Process
        • 6.3.3.2.4. By Application

7. Europe Wind Turbine Composites Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Fiber Type
    • 7.2.2. By Resin
    • 7.2.3. By Manufacturing Process
    • 7.2.4. By Application
    • 7.2.5. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Wind Turbine Composites Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Fiber Type
        • 7.3.1.2.2. By Resin
        • 7.3.1.2.3. By Manufacturing Process
        • 7.3.1.2.4. By Application
    • 7.3.2. United Kingdom Wind Turbine Composites Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Fiber Type
        • 7.3.2.2.2. By Resin
        • 7.3.2.2.3. By Manufacturing Process
        • 7.3.2.2.4. By Application
    • 7.3.3. Italy Wind Turbine Composites Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Fiber Type
        • 7.3.3.2.2. By Resin
        • 7.3.3.2.3. By Manufacturing Process
        • 7.3.3.2.4. By Application
    • 7.3.4. France Wind Turbine Composites Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Fiber Type
        • 7.3.4.2.2. By Resin
        • 7.3.4.2.3. By Manufacturing Process
        • 7.3.4.2.4. By Application
    • 7.3.5. Spain Wind Turbine Composites Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Fiber Type
        • 7.3.5.2.2. By Resin
        • 7.3.5.2.3. By Manufacturing Process
        • 7.3.5.2.4. By Application

8. Asia-Pacific Wind Turbine Composites Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Fiber Type
    • 8.2.2. By Resin
    • 8.2.3. By Manufacturing Process
    • 8.2.4. By Application
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Wind Turbine Composites Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Fiber Type
        • 8.3.1.2.2. By Resin
        • 8.3.1.2.3. By Manufacturing Process
        • 8.3.1.2.4. By Application
    • 8.3.2. India Wind Turbine Composites Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Fiber Type
        • 8.3.2.2.2. By Resin
        • 8.3.2.2.3. By Manufacturing Process
        • 8.3.2.2.4. By Application
    • 8.3.3. Japan Wind Turbine Composites Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Fiber Type
        • 8.3.3.2.2. By Resin
        • 8.3.3.2.3. By Manufacturing Process
        • 8.3.3.2.4. By Application
    • 8.3.4. South Korea Wind Turbine Composites Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Fiber Type
        • 8.3.4.2.2. By Resin
        • 8.3.4.2.3. By Manufacturing Process
        • 8.3.4.2.4. By Application
    • 8.3.5. Australia Wind Turbine Composites Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Fiber Type
        • 8.3.5.2.2. By Resin
        • 8.3.5.2.3. By Manufacturing Process
        • 8.3.5.2.4. By Application

9. South America Wind Turbine Composites Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Fiber Type
    • 9.2.2. By Resin
    • 9.2.3. By Manufacturing Process
    • 9.2.4. By Application
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Wind Turbine Composites Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Fiber Type
        • 9.3.1.2.2. By Resin
        • 9.3.1.2.3. By Manufacturing Process
        • 9.3.1.2.4. By Application
    • 9.3.2. Argentina Wind Turbine Composites Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Fiber Type
        • 9.3.2.2.2. By Resin
        • 9.3.2.2.3. By Manufacturing Process
        • 9.3.2.2.4. By Application
    • 9.3.3. Colombia Wind Turbine Composites Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Fiber Type
        • 9.3.3.2.2. By Resin
        • 9.3.3.2.3. By Manufacturing Process
        • 9.3.3.2.4. By Application

10. Middle East and Africa Wind Turbine Composites Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Fiber Type
    • 10.2.2. By Resin
    • 10.2.3. By Manufacturing Process
    • 10.2.4. By Application
    • 10.2.5. By Country
  • 10.3. Middle East and Africa: Country Analysis
    • 10.3.1. South Africa Wind Turbine Composites Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Fiber Type
        • 10.3.1.2.2. By Resin
        • 10.3.1.2.3. By Manufacturing Process
        • 10.3.1.2.4. By Application
    • 10.3.2. Saudi Arabia Wind Turbine Composites Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Fiber Type
        • 10.3.2.2.2. By Resin
        • 10.3.2.2.3. By Manufacturing Process
        • 10.3.2.2.4. By Application
    • 10.3.3. UAE Wind Turbine Composites Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Fiber Type
        • 10.3.3.2.2. By Resin
        • 10.3.3.2.3. By Manufacturing Process
        • 10.3.3.2.4. By Application
    • 10.3.4. Kuwait Wind Turbine Composites Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Fiber Type
        • 10.3.4.2.2. By Resin
        • 10.3.4.2.3. By Manufacturing Process
        • 10.3.4.2.4. By Application
    • 10.3.5. Turkey Wind Turbine Composites Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Fiber Type
        • 10.3.5.2.2. By Resin
        • 10.3.5.2.3. By Manufacturing Process
        • 10.3.5.2.4. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Company Profiles

  • 13.1. LM Wind Power (GE Renewable Energy)
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. TPI Composites Inc.
  • 13.3. Siemens Gamesa Renewable Energy
  • 13.4. Vestas Wind Systems A/S
  • 13.5. Suzlon Energy Limited
  • 13.6. MFG Wind (Molded Fiber Glass Companies)
  • 13.7. Hexcel Corporation
  • 13.8. Toray Industries, Inc.
  • 13.9. SGL Carbon SE
  • 13.10. Teijin Limited

14. Strategic Recommendations

15. About Us & Disclaimer