デフォルト表紙
市場調査レポート
商品コード
1728218

患者由来異種移植片モデル市場- 世界の産業規模、動向、機会、予測、腫瘍タイプ別、エンドユーザー別、地域別、競合別、2020-2030年

Patient-Derived Xenograft Model Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Tumor Type, By Type, By End-User, By Region and Competition, 2020-2030F


出版日
ページ情報
英文 185 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.91円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

患者由来異種移植片モデル市場- 世界の産業規模、動向、機会、予測、腫瘍タイプ別、エンドユーザー別、地域別、競合別、2020-2030年
出版日: 2025年05月16日
発行: TechSci Research
ページ情報: 英文 185 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界の患者由来異種移植(PDX)モデル市場は、2024年に22億6,000万米ドルと評価され、予測期間中にCAGR 9.98%で成長し、2030年には40億米ドルに達すると予測されています。

この成長の原動力となっているのは、がん研究や個別化医療におけるPDXモデルの役割の拡大です。ヒト腫瘍組織を免疫不全マウスに移植することで作製されるPDXモデルは、ヒト腫瘍の挙動を忠実に反映する臨床的に適切なプラットフォームを提供し、がんの進行の研究や新しい治療法の評価に非常に貴重なものとなっています。世界のがん罹患率の上昇に伴い、正確で予測可能な前臨床モデルの必要性はますます高まっています。PDXモデルは、元の腫瘍の遺伝的・分子的特徴を保持しており、研究者に薬効評価や標的治療開発のより精密なツールを提供します。患者個々の遺伝子プロファイルに合わせて治療法を調整する個別化腫瘍学へのシフトは、PDXモデルの需要をさらに押し上げています。これらのモデルは、科学者や臨床医が患者由来の腫瘍で治療法をテストすることを可能にし、治療反応を予測し、より効果的で個別化された治療戦略を推進します。

市場概要
予測期間 2026-2030
市場規模:2024年 22億6,000万米ドル
市場規模:2030年 40億米ドル
CAGR:2025年~2030年 9.98%
急成長セグメント 乳がん
最大市場 北米

市場促進要因

がん罹患率の上昇とアンメットニーズ

主な市場課題

不均一性とばらつき

主要市場動向

個別化医療への関心の高まり

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 顧客の声

第5章 世界の患者由来異種移植片モデル市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • 腫瘍の種類別(肺がん、膵臓がん、前立腺がん、乳がん、その他のがん)
    • 種類別(マウス、ラット)
    • エンドユーザー別(入院患者設定、コミュニティ設定)
    • 企業別(2024)
    • 地域別
  • 市場マップ

第6章 北米の患者由来異種移植片モデル市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 北米:国別分析
    • 米国
    • メキシコ
    • カナダ

第7章 欧州の患者由来異種移植片モデル市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 欧州:国別分析
    • フランス
    • ドイツ
    • 英国
    • イタリア
    • スペイン

第8章 アジア太平洋地域の患者由来異種移植片モデル市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • アジア太平洋地域:国別分析
    • 中国
    • インド
    • 韓国
    • 日本
    • オーストラリア

第9章 南米の患者由来異種移植片モデル市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 南米:国別分析
    • ブラジル
    • アルゼンチン
    • コロンビア

第10章 中東・アフリカの患者由来異種移植片モデル市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 中東・アフリカ:国別分析
    • 南アフリカ
    • サウジアラビア
    • アラブ首長国連邦

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

  • 最近の動向
  • 製品上市
  • 合併と買収

第13章 PESTEL分析

第14章 ポーターのファイブフォース分析

  • 業界内の競合
  • 新規参入の可能性
  • サプライヤーの力
  • 顧客の力
  • 代替品の脅威

第15章 競合情勢

  • Charles River Laboratories Inc.
  • The Jackson Laboratory
  • Crown Bioscience,Inc.
  • Altogen Labs
  • Envigo
  • WuxiAppTec
  • Oncodesign
  • Hera BioLabs
  • XenTech
  • Abnova Corporation

第16章 戦略的提言

第17章 調査会社について・免責事項

目次
Product Code: 16332

The Global Patient-Derived Xenograft (PDX) Model Market was valued at USD 2.26 billion in 2024 and is projected to reach USD 4.00 billion by 2030, growing at a CAGR of 9.98% during the forecast period. This growth is being driven by the model's expanding role in cancer research and personalized medicine. PDX models, created by implanting human tumor tissue into immunodeficient mice, offer a clinically relevant platform that closely mirrors human tumor behavior, making them invaluable in studying cancer progression and evaluating new therapies. As global cancer incidence rises, the need for accurate and predictive preclinical models becomes increasingly critical. PDX models preserve the genetic and molecular characteristics of original tumors, offering researchers a more precise tool for evaluating drug efficacy and developing targeted treatments. The shift towards personalized oncology, which tailors therapies to the individual genetic profiles of patients, is further boosting demand for PDX models. These models enable scientists and clinicians to test therapies on patient-derived tumors, predicting treatment responses and advancing more effective and individualized care strategies.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 2.26 Billion
Market Size 2030USD 4.00 Billion
CAGR 2025-20309.98%
Fastest Growing SegmentBreast Cancer
Largest MarketNorth America

Key Market Drivers

Rising Cancer Incidence and Unmet Medical Needs

The increasing global burden of cancer is a key factor fueling the growth of the PDX model market. With cancer expected to see a 70% increase in new cases over the next two decades, the urgency for innovative treatment options has intensified. PDX models replicate the complexity and heterogeneity of human tumors, making them ideal for understanding tumor biology and testing therapeutic agents. These models maintain critical aspects of patient tumors-such as genetic diversity, microenvironment interactions, and treatment resistance-allowing researchers to evaluate treatment outcomes with greater accuracy. As cancer research shifts towards precision-based therapies, the utility of PDX models in identifying and validating new drug candidates has become even more pronounced. Their ability to model real-world tumor behavior supports drug development pipelines and helps address significant unmet medical needs.

Key Market Challenges

Heterogeneity and Variability

Despite their advantages, PDX models face limitations due to the inherent heterogeneity of human tumors. Tumor samples differ significantly between patients, even within the same cancer type, complicating efforts to create universally representative models. This variability can influence drug response outcomes, affecting the reliability of data and complicating clinical translation. While PDX models retain many biological features of the original tumors, they cannot capture the full extent of molecular and cellular complexity. Furthermore, the engraftment process itself may alter tumor characteristics over time. These limitations highlight the need for ongoing refinement in PDX model development to ensure broader applicability and predictive accuracy in therapeutic evaluation.

Key Market Trends

Rising Interest in Personalized Medicine

The growing adoption of personalized medicine is a major trend shaping the PDX model market. Personalized treatment strategies require models that can mimic patient-specific tumor biology. PDX models allow for the creation of "avatar mice"-animal models implanted with tumor samples from individual patients-which are used to test a range of therapeutic options. These models help clinicians determine the most effective course of treatment, reducing adverse effects and improving outcomes. The integration of PDX models into clinical research has accelerated drug development and enhanced the success rate of oncology trials by providing patient-relevant data. As the pharmaceutical industry increasingly embraces targeted therapies, PDX models are expected to play a crucial role in refining therapeutic selection and reducing trial-and-error approaches in cancer treatment.

Key Market Players

  • Charles River Laboratories Inc.
  • The Jackson Laboratory
  • Crown Bioscience, Inc.
  • Altogen Labs
  • Envigo
  • WuxiAppTec
  • Oncodesign
  • Hera BioLabs
  • XenTech
  • Abnova Corporation

Report Scope:

In this report, the Global Patient-Derived Xenograft Model Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Patient-Derived Xenograft Model Market, By Tumor Type:

  • Lung Cancer
  • Pancreatic Cancer
  • Prostate Cancer
  • Breast Cancer
  • Other Cancer

Patient-Derived Xenograft Model Market, By End User:

  • Inpatient Settings
  • Community Settings

Patient-Derived Xenograft Model Market, By Type:

  • Rats
  • Mice

Patient-Derived Xenograft Model Market, By Region:

  • North America
    • United States
    • Mexico
    • Canada
  • Europe
    • France
    • Germany
    • United Kingdom
    • Italy
    • Spain
  • Asia-Pacific
    • China
    • India
    • South Korea
    • Japan
    • Australia
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East and Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Patient-Derived Xenograft Model Market.

Available Customizations:

Global Patient-Derived Xenograft Model Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Patient-Derived Xenograft Model Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Tumor Type (Lung Cancer, Pancreatic Cancer, Prostate Cancer, Breast Cancer, Other Cancer)
    • 5.2.2. By Type (Mice, Rats)
    • 5.2.3. By End-User (Inpatient Settings, Community Settings)
    • 5.2.4. By Company (2024)
    • 5.2.5. By Region
  • 5.3. Market Map

6. North America Patient-Derived Xenograft Model Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Tumor Type
    • 6.2.2. By Type
    • 6.2.3. By End-user
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Patient-Derived Xenograft Model Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Tumor Type
        • 6.3.1.2.2. By Type
        • 6.3.1.2.3. By End-user
    • 6.3.2. Mexico Patient-Derived Xenograft Model Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Tumor Type
        • 6.3.2.2.2. By Type
        • 6.3.2.2.3. By End-user
    • 6.3.3. Canada Patient-Derived Xenograft Model Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Tumor Type
        • 6.3.3.2.2. By Type
        • 6.3.3.2.3. By End-user

7. Europe Patient-Derived Xenograft Model Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Tumor Type
    • 7.2.2. By Type
    • 7.2.3. By End-user
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Patient-Derived Xenograft Model Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Tumor Type
        • 7.3.1.2.2. By Type
        • 7.3.1.2.3. By End-user
    • 7.3.2. Germany Patient-Derived Xenograft Model Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Tumor Type
        • 7.3.2.2.2. By Type
        • 7.3.2.2.3. By End-user
    • 7.3.3. United Kingdom Patient-Derived Xenograft Model Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Tumor Type
        • 7.3.3.2.2. By Type
        • 7.3.3.2.3. By End-user
    • 7.3.4. Italy Patient-Derived Xenograft Model Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Tumor Type
        • 7.3.4.2.2. By Type
        • 7.3.4.2.3. By End-user
    • 7.3.5. Spain Patient-Derived Xenograft Model Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Tumor Type
        • 7.3.5.2.2. By Type
        • 7.3.5.2.3. By End-user

8. Asia-Pacific Patient-Derived Xenograft Model Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Tumor Type
    • 8.2.2. By Type
    • 8.2.3. By End-user
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Patient-Derived Xenograft Model Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Tumor Type
        • 8.3.1.2.2. By Type
        • 8.3.1.2.3. By End-user
    • 8.3.2. India Patient-Derived Xenograft Model Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Tumor Type
        • 8.3.2.2.2. By Type
        • 8.3.2.2.3. By End-user
    • 8.3.3. South Korea Patient-Derived Xenograft Model Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Tumor Type
        • 8.3.3.2.2. By Type
        • 8.3.3.2.3. By End-user
    • 8.3.4. Japan Patient-Derived Xenograft Model Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Tumor Type
        • 8.3.4.2.2. By Type
        • 8.3.4.2.3. By End-user
    • 8.3.5. Australia Patient-Derived Xenograft Model Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Tumor Type
        • 8.3.5.2.2. By Type
        • 8.3.5.2.3. By End-user

9. South America Patient-Derived Xenograft Model Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Tumor Type
    • 9.2.2. By Type
    • 9.2.3. By End-user
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Patient-Derived Xenograft Model Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Tumor Type
        • 9.3.1.2.2. By Type
        • 9.3.1.2.3. By End-user
    • 9.3.2. Argentina Patient-Derived Xenograft Model Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Tumor Type
        • 9.3.2.2.2. By Type
        • 9.3.2.2.3. By End-user
    • 9.3.3. Colombia Patient-Derived Xenograft Model Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Tumor Type
        • 9.3.3.2.2. By Type
        • 9.3.3.2.3. By End-user

10. Middle East and Africa Patient-Derived Xenograft Model Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Tumor Type
    • 10.2.2. By Type
    • 10.2.3. By End-user
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Patient-Derived Xenograft Model Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Tumor Type
        • 10.3.1.2.2. By Type
        • 10.3.1.2.3. By End-user
    • 10.3.2. Saudi Arabia Patient-Derived Xenograft Model Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Tumor Type
        • 10.3.2.2.2. By Type
        • 10.3.2.2.3. By End-user
    • 10.3.3. UAE Patient-Derived Xenograft Model Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Tumor Type
        • 10.3.3.2.2. By Type
        • 10.3.3.2.3. By End-user

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Developments
  • 12.2. Product Launches
  • 12.3. Mergers & Acquisitions

13. PESTLE Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Product

15. Competitive Landscape

  • 15.1. Charles River Laboratories Inc.
    • 15.1.1. Business Overview
    • 15.1.2. Company Snapshot
    • 15.1.3. Products & Services
    • 15.1.4. Financials (As Reported)
    • 15.1.5. Recent Developments
    • 15.1.6. Key Personnel Details
    • 15.1.7. SWOT Analysis
  • 15.2. The Jackson Laboratory
  • 15.3. Crown Bioscience,Inc.
  • 15.4. Altogen Labs
  • 15.5. Envigo
  • 15.6. WuxiAppTec
  • 15.7. Oncodesign
  • 15.8. Hera BioLabs
  • 15.9. XenTech
  • 15.10. Abnova Corporation

16. Strategic Recommendation

17. About Us & Disclaimer