![]() |
市場調査レポート
商品コード
1691790
小売エッジコンピューティング市場- 世界の産業規模、シェア、動向、機会、予測、セグメント別:コンポーネント別、用途別、組織規模別、地域別セグメント、競合、2020年~2030年Retail Edge Computing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Application, By Organization Size, By Region & Competition, 2020-2030F |
||||||
カスタマイズ可能
|
小売エッジコンピューティング市場- 世界の産業規模、シェア、動向、機会、予測、セグメント別:コンポーネント別、用途別、組織規模別、地域別セグメント、競合、2020年~2030年 |
出版日: 2025年03月24日
発行: TechSci Research
ページ情報: 英文 185 Pages
納期: 2~3営業日
|
小売エッジコンピューティングの世界市場規模は、2024年に48億7,000万米ドルとなり、2030年までのCAGRは20.88%で、2030年には151億9,000万米ドルに達すると予測されています。
小売エッジコンピューティングとは、遠くのデータセンターやクラウドプラットフォームだけに頼るのではなく、小売店や配送センターの現場など、データが発生する場所の近くでデータを処理することを指します。このテクノロジーは、センサーやカメラ、IoT(モノのインターネット)システムなどのエッジデバイスを活用し、リアルタイムでデータを収集、処理、分析することで、小売業者はデータに基づいた迅速な意思決定を行うことができます。顧客のニーズへの迅速な対応、在庫管理の改善、パーソナライズされたショッピング体験、業務効率の改善などが可能になるため、小売業界ではエッジコンピューティングの導入が進んでいます。例えば、店内カメラからのリアルタイム分析により、店舗レイアウトの最適化、消費者行動の予測、さらには高度なセキュリティシステムによる盗難の削減が可能になります。エッジコンピューティングは、在庫レベルや顧客の嗜好に関するフィードバックをほぼ瞬時に提供することで、サプライチェーン管理を強化します。
市場概要 | |
---|---|
予測期間 | 2026-2030 |
市場規模:2024年 | 48億7,000万米ドル |
市場規模:2030年 | 151億9,000万米ドル |
CAGR:2025年~2030年 | 20.88% |
急成長セグメント | 中小企業 |
最大市場 | 北米 |
小売エッジコンピューティング市場は、いくつかの主要促進要因によって大きく成長すると予想されます。即座にカスタマイズされたサービスを求める顧客の期待に後押しされ、超パーソナライズされたショッピング体験に対する需要が高まっているため、小売企業はリアルタイムのインサイトを提供できるテクノロジーの導入を推進しています。小売環境に設置されるIoTデバイスやセンサーの数が増え続ける中、これらのデバイスが生成する大量のデータを処理する分散型コンピューティングの必要性が高まっています。5Gは高速で低遅延の通信を可能にするため、エッジコンピューティングがリアルタイムデータ処理により効果的に対応できるようになります。消費者が実店舗とデジタルプラットフォームの両方を通じてブランドとやり取りするオムニチャネル小売の台頭により、エッジコンピューティングがサポートできるシームレスで応答性の高いシステムが求められています。セキュリティへの懸念や、トランザクション処理におけるデータ遅延を減らす必要性も、エッジコンピューティングの採用に一役買っています。スマートシェルフ、自動チェックアウト、パーソナライズされたプロモーションなど、小売業務における自動化の重要性が高まっていることも、市場の成長を促す要因となっています。エッジコンピューティングにより、より高速でローカルな処理が可能になるため、小売企業は業務を効率化し、顧客エンゲージメントを強化することができ、混雑する市場において競争優位性を高めることができます。したがって、小売エッジコンピューティング市場は、テクノロジーの進歩、業務効率化のニーズ、パーソナライズされたリアルタイムの顧客体験の推進によって、急速に成長するものと思われます。
リアルタイムデータ処理と意思決定への需要
既存インフラとの統合の複雑さ
エッジにおける人工知能と機械学習の採用増加
The Global Retail Edge Computing Market was valued at USD 4.87 billion in 2024 and is expected to reach USD 15.19 billion by 2030 with a CAGR of 20.88% through 2030. Retail Edge Computing refers to the practice of processing data closer to the location where it is generated, such as on-site at retail stores or distribution centers, rather than relying solely on distant data centers or cloud platforms. This technology leverages edge devices like sensors, cameras, and IoT (Internet of Things) systems to collect, process, and analyze data in real time, enabling retailers to make faster, data-driven decisions. The retail sector has been increasingly adopting edge computing as it allows for quicker responses to customer needs, better inventory management, personalized shopping experiences, and improved operational efficiency. For example, real-time analytics from in-store cameras can optimize store layouts, predict consumer behavior, and even reduce theft through advanced security systems. Edge computing enhances supply chain management by providing near-instantaneous feedback on inventory levels and customer preferences.
Market Overview | |
---|---|
Forecast Period | 2026-2030 |
Market Size 2024 | USD 4.87 Billion |
Market Size 2030 | USD 15.19 Billion |
CAGR 2025-2030 | 20.88% |
Fastest Growing Segment | Small & Medium Enterprises |
Largest Market | North America |
The market for retail edge computing is expected to rise significantly due to several key drivers. The growing demand for hyper-personalized shopping experiences, driven by customer expectations for instant and tailored services, is pushing retailers to adopt technologies that can provide real-time insights. As the number of IoT devices and sensors in retail environments continues to increase, the need for decentralized computing grows to handle the massive volume of data these devices generate. The ongoing expansion of 5G networks further accelerates this shift, as 5G enables high-speed, low-latency communication, making edge computing more effective in handling real-time data processing. The rise of omnichannel retail, where consumers interact with brands through both physical stores and digital platforms, demands seamless and responsive systems that edge computing can support. Security concerns and the need for reducing data latency in processing transactions also play a role in the adoption of edge computing, as retailers seek to ensure customer data is handled efficiently and securely. The increasing importance of automation in retail operations, such as smart shelves, automated checkout, and personalized promotions, is another factor driving the market's growth. As edge computing enables faster, local processing, retailers can streamline operations and enhance customer engagement, leading to more competitive advantages in a crowded market. Therefore, the retail edge computing market is poised to grow rapidly, driven by advancements in technology, the need for operational efficiency, and the push for personalized, real-time customer experiences.
Key Market Drivers
Demand for Real-Time Data Processing and Decision Making
One of the primary drivers of the retail edge computing market is the increasing demand for real-time data processing and decision making within retail environments. The modern retail landscape is becoming increasingly data-driven, with retailers collecting vast amounts of information from in-store sensors, cameras, point-of-sale systems, and online interactions. These data points include customer behavior, inventory levels, and transaction details. For retail businesses, the ability to process this information as it is generated, without having to send it to a centralized cloud or data center, has become a critical factor in staying competitive. Retailers are under constant pressure to improve customer experiences, optimize operations, and stay ahead of market trends. Real-time data processing allows them to gain immediate insights into their operations, whether it is for analyzing customer foot traffic, adjusting pricing, or making stock replenishment decisions. Edge computing enables data to be processed closer to the point of origin, reducing latency and enabling quicker decision-making, which is especially crucial during peak hours or sales events. For instance, by leveraging real-time data at the edge, a retailer can adjust promotions, manage store layouts, and even optimize staff allocation instantly based on customer behavior patterns, thereby enhancing operational efficiency and improving customer experience. This ability to make informed decisions promptly is a major factor driving the retail edge computing market's growth. By the end of 2025, it is estimated that 80% of all enterprise data will need to be processed in real-time or near real-time to drive critical decision-making.
Key Market Challenges
Complexity of Integration with Existing Infrastructure
One of the primary challenges for the retail edge computing market is the complexity of integrating edge computing solutions with existing retail infrastructure. Many retailers, particularly legacy businesses, already have established systems in place for their operations, such as centralized data centers, cloud-based applications, and traditional point-of-sale systems. Implementing edge computing requires significant changes to this infrastructure, which can be costly, time-consuming, and technically challenging. Retailers must ensure that their edge computing solutions are seamlessly integrated with these legacy systems to maintain smooth operations and avoid disruptions. This can involve substantial investments in both hardware and software, as well as training personnel to manage and operate new systems. Many edge computing solutions require specialized hardware, such as local data processing units, sensors, or specialized network equipment, which may not be compatible with older retail technologies. Integrating such diverse systems can lead to compatibility issues, data silos, or inefficiencies that hinder the desired performance improvements. The process of integration may involve significant customization to align with the specific needs of a retail business. Retailers must work closely with technology vendors and service providers to ensure that edge computing solutions are tailored to their particular operational requirements, which can increase project timelines and costs. For businesses with a wide range of store formats or a diverse product offering, integrating edge computing at scale can be particularly challenging. A lack of standardized solutions or processes across different retail environments can create inconsistencies in performance and operational challenges, delaying the expected benefits of edge computing. Thus, retailers face considerable challenges in ensuring that edge computing solutions can be effectively incorporated into their existing infrastructure while maintaining operational continuity.
Key Market Trends
Increased Adoption of Artificial Intelligence and Machine Learning at the Edge
One of the significant trends in the retail edge computing market is the increasing integration of artificial intelligence and machine learning technologies directly at the edge. Traditionally, artificial intelligence and machine learning models required heavy processing power in centralized cloud environments, resulting in latency and bandwidth challenges. However, with the advancement of edge computing technologies, retailers are now able to deploy these advanced algorithms at the edge, closer to where data is generated. This enables real-time analysis of customer behavior, inventory management, and store operations. For example, edge devices equipped with artificial intelligence can instantly analyze video feeds from in-store cameras to recognize customer actions, detect patterns, and even predict future purchasing behavior. Retailers can leverage this data to offer personalized promotions, optimize store layouts, or detect shoplifting in real-time. Machine learning algorithms can be used to predict inventory needs based on in-store data, reducing stockouts and overstocking. The ability to run these sophisticated models locally ensures quicker response times and minimizes the need for constant cloud communication, which enhances overall system efficiency. The growing reliance on artificial intelligence and machine learning at the edge is transforming how retailers operate, providing them with enhanced insights and decision-making capabilities that drive business success.
In this report, the Global Retail Edge Computing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the Global Retail Edge Computing Market.
Global Retail Edge Computing Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report: