デフォルト表紙
市場調査レポート
商品コード
1691790

小売エッジコンピューティング市場- 世界の産業規模、シェア、動向、機会、予測、セグメント別:コンポーネント別、用途別、組織規模別、地域別セグメント、競合、2020年~2030年

Retail Edge Computing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Application, By Organization Size, By Region & Competition, 2020-2030F


出版日
ページ情報
英文 185 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

小売エッジコンピューティング市場- 世界の産業規模、シェア、動向、機会、予測、セグメント別:コンポーネント別、用途別、組織規模別、地域別セグメント、競合、2020年~2030年
出版日: 2025年03月24日
発行: TechSci Research
ページ情報: 英文 185 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

小売エッジコンピューティングの世界市場規模は、2024年に48億7,000万米ドルとなり、2030年までのCAGRは20.88%で、2030年には151億9,000万米ドルに達すると予測されています。

小売エッジコンピューティングとは、遠くのデータセンターやクラウドプラットフォームだけに頼るのではなく、小売店や配送センターの現場など、データが発生する場所の近くでデータを処理することを指します。このテクノロジーは、センサーやカメラ、IoT(モノのインターネット)システムなどのエッジデバイスを活用し、リアルタイムでデータを収集、処理、分析することで、小売業者はデータに基づいた迅速な意思決定を行うことができます。顧客のニーズへの迅速な対応、在庫管理の改善、パーソナライズされたショッピング体験、業務効率の改善などが可能になるため、小売業界ではエッジコンピューティングの導入が進んでいます。例えば、店内カメラからのリアルタイム分析により、店舗レイアウトの最適化、消費者行動の予測、さらには高度なセキュリティシステムによる盗難の削減が可能になります。エッジコンピューティングは、在庫レベルや顧客の嗜好に関するフィードバックをほぼ瞬時に提供することで、サプライチェーン管理を強化します。

市場概要
予測期間 2026-2030
市場規模:2024年 48億7,000万米ドル
市場規模:2030年 151億9,000万米ドル
CAGR:2025年~2030年 20.88%
急成長セグメント 中小企業
最大市場 北米

小売エッジコンピューティング市場は、いくつかの主要促進要因によって大きく成長すると予想されます。即座にカスタマイズされたサービスを求める顧客の期待に後押しされ、超パーソナライズされたショッピング体験に対する需要が高まっているため、小売企業はリアルタイムのインサイトを提供できるテクノロジーの導入を推進しています。小売環境に設置されるIoTデバイスやセンサーの数が増え続ける中、これらのデバイスが生成する大量のデータを処理する分散型コンピューティングの必要性が高まっています。5Gは高速で低遅延の通信を可能にするため、エッジコンピューティングがリアルタイムデータ処理により効果的に対応できるようになります。消費者が実店舗とデジタルプラットフォームの両方を通じてブランドとやり取りするオムニチャネル小売の台頭により、エッジコンピューティングがサポートできるシームレスで応答性の高いシステムが求められています。セキュリティへの懸念や、トランザクション処理におけるデータ遅延を減らす必要性も、エッジコンピューティングの採用に一役買っています。スマートシェルフ、自動チェックアウト、パーソナライズされたプロモーションなど、小売業務における自動化の重要性が高まっていることも、市場の成長を促す要因となっています。エッジコンピューティングにより、より高速でローカルな処理が可能になるため、小売企業は業務を効率化し、顧客エンゲージメントを強化することができ、混雑する市場において競争優位性を高めることができます。したがって、小売エッジコンピューティング市場は、テクノロジーの進歩、業務効率化のニーズ、パーソナライズされたリアルタイムの顧客体験の推進によって、急速に成長するものと思われます。

市場促進要因

リアルタイムデータ処理と意思決定への需要

主な市場課題

既存インフラとの統合の複雑さ

主な市場動向

エッジにおける人工知能と機械学習の採用増加

目次

第1章 ソリューションの概要

  • 市場の定義
  • 市場の範囲
    • 対象市場
    • 調査対象年
    • 主要市場セグメンテーション

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 顧客の声

第5章 世界の小売エッジコンピューティング市場概要

第6章 世界の小売エッジコンピューティング市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • コンポーネント別(ハードウェア、ソフトウェア、サービス)
    • 用途別(スマートシティ、産業用 IoT、リモート監視、コンテンツ配信、拡張現実、仮想現実、その他)
    • 組織規模別(中小企業、大企業)
    • 地域別(北米、欧州、南米、中東・アフリカ、アジア太平洋)
  • 企業別(2024)
  • 市場マップ

第7章 北米の小売エッジコンピューティング市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 北米:国別分析
    • 米国
    • カナダ
    • メキシコ

第8章 欧州の小売エッジコンピューティング市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 欧州:国別分析
    • ドイツ
    • フランス
    • 英国
    • イタリア
    • スペイン
    • ベルギー

第9章 アジア太平洋地域の小売エッジコンピューティング市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • アジア太平洋地域:国別分析
    • 中国
    • インド
    • 日本
    • 韓国
    • オーストラリア
    • インドネシア
    • ベトナム

第10章 南米の小売エッジコンピューティング市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 南米:国別分析
    • ブラジル
    • コロンビア
    • アルゼンチン
    • チリ

第11章 中東・アフリカの小売エッジコンピューティング市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 中東・アフリカ:国別分析
    • サウジアラビア
    • アラブ首長国連邦
    • 南アフリカ
    • トルコ
    • イスラエル

第12章 市場力学

  • 促進要因
  • 課題

第13章 市場動向と発展

第14章 企業プロファイル

  • Amazon.com, Inc.
  • Microsoft Corporation
  • IBM Corporation
  • Intel Corporation
  • Cisco Systems, Inc.
  • Hewlett Packard Enterprise Company
  • NVIDIA Corporation
  • Google LLC
  • Oracle Corporation
  • Qualcomm Incorporated

第15章 戦略的提言

第16章 調査会社について・免責事項

目次
Product Code: 27516

The Global Retail Edge Computing Market was valued at USD 4.87 billion in 2024 and is expected to reach USD 15.19 billion by 2030 with a CAGR of 20.88% through 2030. Retail Edge Computing refers to the practice of processing data closer to the location where it is generated, such as on-site at retail stores or distribution centers, rather than relying solely on distant data centers or cloud platforms. This technology leverages edge devices like sensors, cameras, and IoT (Internet of Things) systems to collect, process, and analyze data in real time, enabling retailers to make faster, data-driven decisions. The retail sector has been increasingly adopting edge computing as it allows for quicker responses to customer needs, better inventory management, personalized shopping experiences, and improved operational efficiency. For example, real-time analytics from in-store cameras can optimize store layouts, predict consumer behavior, and even reduce theft through advanced security systems. Edge computing enhances supply chain management by providing near-instantaneous feedback on inventory levels and customer preferences.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 4.87 Billion
Market Size 2030USD 15.19 Billion
CAGR 2025-203020.88%
Fastest Growing SegmentSmall & Medium Enterprises
Largest MarketNorth America

The market for retail edge computing is expected to rise significantly due to several key drivers. The growing demand for hyper-personalized shopping experiences, driven by customer expectations for instant and tailored services, is pushing retailers to adopt technologies that can provide real-time insights. As the number of IoT devices and sensors in retail environments continues to increase, the need for decentralized computing grows to handle the massive volume of data these devices generate. The ongoing expansion of 5G networks further accelerates this shift, as 5G enables high-speed, low-latency communication, making edge computing more effective in handling real-time data processing. The rise of omnichannel retail, where consumers interact with brands through both physical stores and digital platforms, demands seamless and responsive systems that edge computing can support. Security concerns and the need for reducing data latency in processing transactions also play a role in the adoption of edge computing, as retailers seek to ensure customer data is handled efficiently and securely. The increasing importance of automation in retail operations, such as smart shelves, automated checkout, and personalized promotions, is another factor driving the market's growth. As edge computing enables faster, local processing, retailers can streamline operations and enhance customer engagement, leading to more competitive advantages in a crowded market. Therefore, the retail edge computing market is poised to grow rapidly, driven by advancements in technology, the need for operational efficiency, and the push for personalized, real-time customer experiences.

Key Market Drivers

Demand for Real-Time Data Processing and Decision Making

One of the primary drivers of the retail edge computing market is the increasing demand for real-time data processing and decision making within retail environments. The modern retail landscape is becoming increasingly data-driven, with retailers collecting vast amounts of information from in-store sensors, cameras, point-of-sale systems, and online interactions. These data points include customer behavior, inventory levels, and transaction details. For retail businesses, the ability to process this information as it is generated, without having to send it to a centralized cloud or data center, has become a critical factor in staying competitive. Retailers are under constant pressure to improve customer experiences, optimize operations, and stay ahead of market trends. Real-time data processing allows them to gain immediate insights into their operations, whether it is for analyzing customer foot traffic, adjusting pricing, or making stock replenishment decisions. Edge computing enables data to be processed closer to the point of origin, reducing latency and enabling quicker decision-making, which is especially crucial during peak hours or sales events. For instance, by leveraging real-time data at the edge, a retailer can adjust promotions, manage store layouts, and even optimize staff allocation instantly based on customer behavior patterns, thereby enhancing operational efficiency and improving customer experience. This ability to make informed decisions promptly is a major factor driving the retail edge computing market's growth. By the end of 2025, it is estimated that 80% of all enterprise data will need to be processed in real-time or near real-time to drive critical decision-making.

Key Market Challenges

Complexity of Integration with Existing Infrastructure

One of the primary challenges for the retail edge computing market is the complexity of integrating edge computing solutions with existing retail infrastructure. Many retailers, particularly legacy businesses, already have established systems in place for their operations, such as centralized data centers, cloud-based applications, and traditional point-of-sale systems. Implementing edge computing requires significant changes to this infrastructure, which can be costly, time-consuming, and technically challenging. Retailers must ensure that their edge computing solutions are seamlessly integrated with these legacy systems to maintain smooth operations and avoid disruptions. This can involve substantial investments in both hardware and software, as well as training personnel to manage and operate new systems. Many edge computing solutions require specialized hardware, such as local data processing units, sensors, or specialized network equipment, which may not be compatible with older retail technologies. Integrating such diverse systems can lead to compatibility issues, data silos, or inefficiencies that hinder the desired performance improvements. The process of integration may involve significant customization to align with the specific needs of a retail business. Retailers must work closely with technology vendors and service providers to ensure that edge computing solutions are tailored to their particular operational requirements, which can increase project timelines and costs. For businesses with a wide range of store formats or a diverse product offering, integrating edge computing at scale can be particularly challenging. A lack of standardized solutions or processes across different retail environments can create inconsistencies in performance and operational challenges, delaying the expected benefits of edge computing. Thus, retailers face considerable challenges in ensuring that edge computing solutions can be effectively incorporated into their existing infrastructure while maintaining operational continuity.

Key Market Trends

Increased Adoption of Artificial Intelligence and Machine Learning at the Edge

One of the significant trends in the retail edge computing market is the increasing integration of artificial intelligence and machine learning technologies directly at the edge. Traditionally, artificial intelligence and machine learning models required heavy processing power in centralized cloud environments, resulting in latency and bandwidth challenges. However, with the advancement of edge computing technologies, retailers are now able to deploy these advanced algorithms at the edge, closer to where data is generated. This enables real-time analysis of customer behavior, inventory management, and store operations. For example, edge devices equipped with artificial intelligence can instantly analyze video feeds from in-store cameras to recognize customer actions, detect patterns, and even predict future purchasing behavior. Retailers can leverage this data to offer personalized promotions, optimize store layouts, or detect shoplifting in real-time. Machine learning algorithms can be used to predict inventory needs based on in-store data, reducing stockouts and overstocking. The ability to run these sophisticated models locally ensures quicker response times and minimizes the need for constant cloud communication, which enhances overall system efficiency. The growing reliance on artificial intelligence and machine learning at the edge is transforming how retailers operate, providing them with enhanced insights and decision-making capabilities that drive business success.

Key Market Players

  • Amazon.com, Inc.
  • Microsoft Corporation
  • IBM Corporation
  • Intel Corporation
  • Cisco Systems, Inc.
  • Hewlett Packard Enterprise Company
  • NVIDIA Corporation
  • Google LLC
  • Oracle Corporation
  • Qualcomm Incorporated

Report Scope:

In this report, the Global Retail Edge Computing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Retail Edge Computing Market, By Component:

  • Hardware
  • Software
  • Services

Retail Edge Computing Market, By Application:

  • Smart Cities
  • Industrial Internet of Things
  • Remote Monitoring
  • Content Delivery
  • Augmented Reality
  • Virtual Reality
  • Others

Retail Edge Computing Market, By Organization Size:

  • Small & Medium Enterprises
  • Large Enterprises

Retail Edge Computing Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Belgium
  • Asia Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia
    • Indonesia
    • Vietnam
  • South America
    • Brazil
    • Colombia
    • Argentina
    • Chile
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • South Africa
    • Turkey
    • Israel

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Retail Edge Computing Market.

Available Customizations:

Global Retail Edge Computing Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Solution Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Voice of Customer

5. Global Retail Edge Computing Market Overview

6. Global Retail Edge Computing Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Component (Hardware, Software, Services)
    • 6.2.2. By Application (Smart Cities, Industrial Internet of Things, Remote Monitoring, Content Delivery, Augmented Reality, Virtual Reality, Others)
    • 6.2.3. By Organization Size (Small & Medium Enterprises, Large Enterprises)
    • 6.2.4. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 6.3. By Company (2024)
  • 6.4. Market Map

7. North America Retail Edge Computing Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component
    • 7.2.2. By Application
    • 7.2.3. By Organization Size
    • 7.2.4. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Retail Edge Computing Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Component
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By Organization Size
    • 7.3.2. Canada Retail Edge Computing Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Component
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By Organization Size
    • 7.3.3. Mexico Retail Edge Computing Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Component
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By Organization Size

8. Europe Retail Edge Computing Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Application
    • 8.2.3. By Organization Size
    • 8.2.4. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. Germany Retail Edge Computing Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By Organization Size
    • 8.3.2. France Retail Edge Computing Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By Organization Size
    • 8.3.3. United Kingdom Retail Edge Computing Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By Organization Size
    • 8.3.4. Italy Retail Edge Computing Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Component
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By Organization Size
    • 8.3.5. Spain Retail Edge Computing Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Component
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By Organization Size
    • 8.3.6. Belgium Retail Edge Computing Market Outlook
      • 8.3.6.1. Market Size & Forecast
        • 8.3.6.1.1. By Value
      • 8.3.6.2. Market Share & Forecast
        • 8.3.6.2.1. By Component
        • 8.3.6.2.2. By Application
        • 8.3.6.2.3. By Organization Size

9. Asia Pacific Retail Edge Computing Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Application
    • 9.2.3. By Organization Size
    • 9.2.4. By Country
  • 9.3. Asia Pacific: Country Analysis
    • 9.3.1. China Retail Edge Computing Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By Organization Size
    • 9.3.2. India Retail Edge Computing Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By Organization Size
    • 9.3.3. Japan Retail Edge Computing Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By Organization Size
    • 9.3.4. South Korea Retail Edge Computing Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Component
        • 9.3.4.2.2. By Application
        • 9.3.4.2.3. By Organization Size
    • 9.3.5. Australia Retail Edge Computing Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Component
        • 9.3.5.2.2. By Application
        • 9.3.5.2.3. By Organization Size
    • 9.3.6. Indonesia Retail Edge Computing Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Component
        • 9.3.6.2.2. By Application
        • 9.3.6.2.3. By Organization Size
    • 9.3.7. Vietnam Retail Edge Computing Market Outlook
      • 9.3.7.1. Market Size & Forecast
        • 9.3.7.1.1. By Value
      • 9.3.7.2. Market Share & Forecast
        • 9.3.7.2.1. By Component
        • 9.3.7.2.2. By Application
        • 9.3.7.2.3. By Organization Size

10. South America Retail Edge Computing Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Application
    • 10.2.3. By Organization Size
    • 10.2.4. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Retail Edge Computing Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By Organization Size
    • 10.3.2. Colombia Retail Edge Computing Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By Organization Size
    • 10.3.3. Argentina Retail Edge Computing Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By Organization Size
    • 10.3.4. Chile Retail Edge Computing Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Component
        • 10.3.4.2.2. By Application
        • 10.3.4.2.3. By Organization Size

11. Middle East & Africa Retail Edge Computing Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Component
    • 11.2.2. By Application
    • 11.2.3. By Organization Size
    • 11.2.4. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Retail Edge Computing Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Component
        • 11.3.1.2.2. By Application
        • 11.3.1.2.3. By Organization Size
    • 11.3.2. UAE Retail Edge Computing Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Component
        • 11.3.2.2.2. By Application
        • 11.3.2.2.3. By Organization Size
    • 11.3.3. South Africa Retail Edge Computing Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Component
        • 11.3.3.2.2. By Application
        • 11.3.3.2.3. By Organization Size
    • 11.3.4. Turkey Retail Edge Computing Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Component
        • 11.3.4.2.2. By Application
        • 11.3.4.2.3. By Organization Size
    • 11.3.5. Israel Retail Edge Computing Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Component
        • 11.3.5.2.2. By Application
        • 11.3.5.2.3. By Organization Size

12. Market Dynamics

  • 12.1. Drivers
  • 12.2. Challenges

13. Market Trends and Developments

14. Company Profiles

  • 14.1. Amazon.com, Inc.
    • 14.1.1. Business Overview
    • 14.1.2. Key Revenue and Financials
    • 14.1.3. Recent Developments
    • 14.1.4. Key Personnel/Key Contact Person
    • 14.1.5. Key Product/Services Offered
  • 14.2. Microsoft Corporation
    • 14.2.1. Business Overview
    • 14.2.2. Key Revenue and Financials
    • 14.2.3. Recent Developments
    • 14.2.4. Key Personnel/Key Contact Person
    • 14.2.5. Key Product/Services Offered
  • 14.3. IBM Corporation
    • 14.3.1. Business Overview
    • 14.3.2. Key Revenue and Financials
    • 14.3.3. Recent Developments
    • 14.3.4. Key Personnel/Key Contact Person
    • 14.3.5. Key Product/Services Offered
  • 14.4. Intel Corporation
    • 14.4.1. Business Overview
    • 14.4.2. Key Revenue and Financials
    • 14.4.3. Recent Developments
    • 14.4.4. Key Personnel/Key Contact Person
    • 14.4.5. Key Product/Services Offered
  • 14.5. Cisco Systems, Inc.
    • 14.5.1. Business Overview
    • 14.5.2. Key Revenue and Financials
    • 14.5.3. Recent Developments
    • 14.5.4. Key Personnel/Key Contact Person
    • 14.5.5. Key Product/Services Offered
  • 14.6. Hewlett Packard Enterprise Company
    • 14.6.1. Business Overview
    • 14.6.2. Key Revenue and Financials
    • 14.6.3. Recent Developments
    • 14.6.4. Key Personnel/Key Contact Person
    • 14.6.5. Key Product/Services Offered
  • 14.7. NVIDIA Corporation
    • 14.7.1. Business Overview
    • 14.7.2. Key Revenue and Financials
    • 14.7.3. Recent Developments
    • 14.7.4. Key Personnel/Key Contact Person
    • 14.7.5. Key Product/Services Offered
  • 14.8. Google LLC
    • 14.8.1. Business Overview
    • 14.8.2. Key Revenue and Financials
    • 14.8.3. Recent Developments
    • 14.8.4. Key Personnel/Key Contact Person
    • 14.8.5. Key Product/Services Offered
  • 14.9. Oracle Corporation
    • 14.9.1. Business Overview
    • 14.9.2. Key Revenue and Financials
    • 14.9.3. Recent Developments
    • 14.9.4. Key Personnel/Key Contact Person
    • 14.9.5. Key Product/Services Offered
  • 14.10. Qualcomm Incorporated
    • 14.10.1. Business Overview
    • 14.10.2. Key Revenue and Financials
    • 14.10.3. Recent Developments
    • 14.10.4. Key Personnel/Key Contact Person
    • 14.10.5. Key Product/Services Offered

15. Strategic Recommendations

16. About Us & Disclaimer