デフォルト表紙
市場調査レポート
商品コード
1532713

水素生成市場- 世界の産業規模、シェア、動向、機会、予測:供給源別、技術別、用途別、地域別、競合別、2019年~2029年

Hydrogen Generation Market - Global Industry Size, Share, Trends, Opportunity, and Forecast Segmented by Source, Technology (Steam Methane Reforming, Coal Gasification, and Other), Application, By Region & Competition, 2019-2029F

出版日: | 発行: TechSci Research | ページ情報: 英文 183 Pages | 納期: 2~3営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=153.40円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

水素生成市場- 世界の産業規模、シェア、動向、機会、予測:供給源別、技術別、用途別、地域別、競合別、2019年~2029年
出版日: 2024年08月12日
発行: TechSci Research
ページ情報: 英文 183 Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 目次
概要

水素生成の世界市場は、2023年に1,703億7,000万米ドルとなり、2029年までの予測期間中にCAGR 4.01%で成長しています。

当面、脱硫と温室効果ガス排出削減を支持する規制圧力と、水素の生産と利用を促進するイニシアティブが、水素生成市場を推進する見通しです。逆に、水素エネルギー貯蔵に必要な多額の設備投資が抑制要因となる可能性があります。水蒸気メタン改質は、予測期間を通じて水素生成市場における優位性を維持すると予想されます。しかし、再生可能な資源から水素を抽出する技術の進歩と、燃料としての水素の用途拡大が、水素生成市場の有望な成長の道を開くと予想されます。

市場概要
予測期間 2025-2029
市場規模:2023年 1,703億7,000万米ドル
市場規模:2029年 2,176億4,000万米ドル
CAGR:2024年~2029年 4.01%
急成長セグメント 化学加工
最大市場 アジア太平洋

市場促進要因

主な市場課題

主要市場動向

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 VOC (顧客の声)

第5章 世界の水素生成市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • 発生源別(ブルー水素、グリーン水素、グレー水素)
    • 技術別(水蒸気メタン改質(SMR)、石炭ガス化、その他)
    • 用途別(石油精製、化学処理、鉄鋼生産、その他)
    • 地域別
  • 企業別(2023)
  • 市場マップ

第6章 北米の水素生成市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • ソース別
    • 技術別
    • 用途別
    • 国別
  • 北米:国別分析
    • 米国
    • カナダ
    • メキシコ

第7章 アジア太平洋地域の水素生成市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • ソース別
    • 技術別
    • 用途別
    • 国別
  • アジア太平洋地域:国別分析
    • 中国
    • インド
    • 日本
    • 韓国
    • インドネシア

第8章 欧州の水素生成市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • ソース別
    • 技術別
    • 用途別
    • 国別
  • 欧州:国別分析
    • ドイツ
    • 英国
    • フランス
    • ロシア
    • スペイン

第9章 南米の水素生成市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • ソース別
    • 技術別
    • 用途別
    • 国別
  • 南米:国別分析
    • ブラジル
    • アルゼンチン

第10章 中東・アフリカの水素生成市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • ソース別
    • 技術別
    • 用途別
    • 国別
  • 中東・アフリカ:国別分析
    • サウジアラビア
    • 南アフリカ
    • アラブ首長国連邦
    • イスラエル
    • エジプト

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

第13章 企業プロファイル

  • Linde Plc
  • Air Liquide S.A.
  • Messer SE & Co. KGaA
  • ITM Power plc
  • Engie SA
  • Cummins Inc.
  • Air Products & Chemicals Inc.
  • FuelCell Energy Inc.
  • Nippon Sanso Holdings Corporation
  • McPhy Energy SA

第14章 戦略的提言

第15章 調査会社について・免責事項

目次
Product Code: 2314

The Global Hydrogen Generation Market was valued at USD 170.37 Billion in 2023 and is growing at a CAGR of 4.01% during the forecast period through 2029. In the foreseeable future, regulatory pressures favoring desulfurization and reduction of greenhouse gas emissions, alongside initiatives promoting hydrogen production and utilization, are poised to propel the hydrogen generation market. Conversely, the substantial capital investment required for hydrogen energy storage may pose a restraint. Steam methane reforming is anticipated to maintain its dominance in the hydrogen generation market throughout the forecast period. Nonetheless, advancements in extracting hydrogen from renewable sources and expanding applications of hydrogen as a fuel are expected to unlock promising growth avenues for the hydrogen generation market.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 170.37 Billion
Market Size 2029USD 217.64 Billion
CAGR 2024-20294.01%
Fastest Growing SegmentChemical Processing
Largest MarketAsia Pacific

Key Market Drivers

The global hydrogen generation market is experiencing dynamic growth driven by a confluence of factors that collectively shape the landscape of this burgeoning industry. One of the primary drivers fueling the growth of the hydrogen generation market is the escalating demand for clean energy solutions. Hydrogen, as a versatile and clean energy carrier, has gained prominence as nations worldwide seek alternatives to traditional fossil fuels. The imperative to address climate change and achieve ambitious carbon reduction goals has led to a surge in interest and investments in hydrogen technologies.

Government initiatives and policies have emerged as crucial catalysts propelling the hydrogen generation market forward. Governments across the globe are implementing a range of measures, including subsidies, incentives, and regulatory frameworks, to promote the development and adoption of hydrogen technologies. These policies not only encourage research and development but also create a conducive environment for private-sector investments, fostering a robust market ecosystem. The integration of renewable energy sources into hydrogen production processes is a significant driver reshaping the market. The concept of green hydrogen, produced through electrolysis powered by renewable energy such as wind or solar, has gained traction. This approach aligns with the broader goal of decarbonizing the energy sector, making hydrogen a key player in the transition towards sustainable and environmentally friendly energy solutions.

Technological advancements play a pivotal role in the evolution of the hydrogen generation market. Continuous improvements in hydrogen production technologies, such as electrolysis and steam methane reforming, are enhancing efficiency, reducing costs, and increasing scalability. These advancements not only make hydrogen production more economically viable but also contribute to the broader goal of making hydrogen a competitive and widely adopted energy solution.

The industrial sector's increasing interest in cleaner alternatives is another significant driver propelling the hydrogen generation market. Industries such as chemicals, refining, and metallurgy, which traditionally relied on conventional energy sources, are now exploring hydrogen as a cleaner and more sustainable option. As the demand for environmentally conscious practices grows, hydrogen is positioned as a crucial element in industrial processes aiming for lower carbon footprints.

In the transportation sector, hydrogen is gaining prominence as a viable and clean fuel option. Hydrogen fuel cells are being explored for various modes of transportation, including buses and trucks. The potential to replace traditional fossil fuels in heavy-duty vehicles is particularly appealing, offering a cleaner alternative that addresses both environmental concerns and the need for energy efficiency in the transportation industry.

The global energy transition towards a low-carbon future is a broader trend influencing the hydrogen generation market. As countries and industries strive to align with international climate goals, hydrogen emerges as a key player in the transition to a more sustainable energy mix. Its versatility, ranging from industrial applications to transportation and energy storage, positions hydrogen as a pivotal component in achieving a balanced and environmentally conscious energy landscape.

The global hydrogen generation market is experiencing robust growth driven by a combination of factors. The demand for clean energy, government support, renewable energy integration, technological advancements, industrial applications, transportation sector adoption, and the broader global energy transition collectively shape the trajectory of the hydrogen generation market. As the world continues to prioritize sustainability, hydrogen is poised to play a central role in the future of clean and efficient energy solutions.

Key Market Challenges

While the global hydrogen generation market is poised for growth, it faces a set of challenges that could potentially impede its progress and widespread adoption. One significant challenge is the high cost associated with hydrogen production, particularly when aiming for low-carbon or green hydrogen. Green hydrogen, produced through renewable energy-powered electrolysis, tends to be more expensive compared to hydrogen derived from conventional methods like steam methane reforming (SMR). The economic viability of green hydrogen remains a hurdle, requiring further advancements in technology and significant cost reductions to achieve parity with conventional hydrogen production methods. Infrastructure development poses another formidable challenge for the hydrogen generation market. The existing infrastructure for hydrogen storage, transportation, and distribution is limited and primarily geared towards industrial uses. To facilitate the widespread adoption of hydrogen across various sectors, a substantial investment in infrastructure is required. This includes the development of a comprehensive network of hydrogen refueling stations for the transportation sector and efficient storage and distribution systems.

The intermittent nature of renewable energy sources, such as wind and solar, poses challenges for green hydrogen production. Electrolysis, a common method for producing green hydrogen, relies on a consistent and reliable supply of renewable energy. Fluctuations in renewable energy availability can impact the efficiency and reliability of hydrogen production, making it necessary to develop energy storage solutions or alternative methods to ensure a stable and continuous hydrogen supply.

The lack of standardized regulations and international standards for hydrogen production, storage, and transportation is another challenge facing the global hydrogen generation market. Standardization is crucial for ensuring interoperability, safety, and the smooth integration of hydrogen technologies across different regions. The absence of globally recognized standards can create barriers to market growth and hinder the development of a cohesive and interconnected hydrogen ecosystem.

Storage and transportation of hydrogen present technical challenges. Hydrogen has a low energy density by volume, requiring advanced storage solutions to maximize its potential as an energy carrier. Additionally, hydrogen molecules are small and can permeate through materials, posing challenges for containment. Developing cost-effective and safe storage and transportation methods is essential to overcoming these hurdles.

Public awareness and acceptance are critical factors influencing the adoption of hydrogen technologies. While awareness of hydrogen's potential as a clean energy carrier is growing, there is still a need for education and outreach to address misconceptions and build public trust. Overcoming resistance to change and fostering a positive perception of hydrogen technologies among consumers and businesses alike is crucial for market expansion.

The competition with other low-carbon technologies and energy carriers presents a challenge for hydrogen. Alternative solutions, such as battery electric vehicles and advancements in energy storage technologies, compete with hydrogen in various applications. Balancing the strengths and weaknesses of different technologies and identifying the most suitable solutions for specific use cases is an ongoing challenge for market stakeholders.

Key Market Trends

The global hydrogen generation market is marked by a set of key trends that are shaping its trajectory and influencing the dynamics of the industry. One prominent trend is the increasing focus on green hydrogen production. Green hydrogen, produced through electrolysis powered by renewable energy sources such as wind and solar, is gaining traction as a sustainable and low-carbon alternative. Governments, industries, and investors are recognizing the importance of reducing the carbon footprint of hydrogen production, and as a result, there is a growing shift towards green hydrogen technologies. This trend aligns with the global push for decarbonization and sustainable energy practices. The integration of hydrogen into various sectors, beyond traditional industrial applications, is a notable trend. Hydrogen is increasingly being explored as a versatile energy carrier with applications in transportation, power generation, and heating. In the transportation sector, hydrogen fuel cells are gaining attention for their potential to power electric vehicles, particularly in heavy-duty applications such as buses and trucks. This diversification of hydrogen applications contributes to its role as a key player in the transition to a more sustainable and integrated energy landscape.

Technological advancements in hydrogen production methods are driving efficiency improvements and cost reductions. Electrolysis, a method for producing hydrogen by splitting water into hydrogen and oxygen, is experiencing advancements in terms of both alkaline and proton exchange membrane (PEM) electrolysis technologies. These improvements enhance the overall efficiency of the hydrogen generation process, making it more competitive with conventional methods like steam methane reforming. Continued research and development in hydrogen production technologies are key trends influencing the market.

The emergence of hydrogen as an energy storage solution is gaining prominence. Hydrogen can serve as a means of storing excess energy generated from renewable sources during periods of low demand. This stored hydrogen can then be used to generate electricity during high-demand periods, providing a valuable solution to the intermittent nature of renewable energy sources. This trend is particularly relevant as the world seeks reliable and scalable energy storage solutions to support the transition to a renewable energy-driven future. International collaborations and partnerships are becoming increasingly common in the hydrogen sector. Countries and companies are recognizing the global nature of the hydrogen economy and are engaging in joint ventures, research initiatives, and international agreements to foster the development and adoption of hydrogen technologies. These collaborations aim to share expertise, pool resources, and create a conducive environment for the growth of the global hydrogen generation market.

Government support and policies are crucial drivers shaping the hydrogen generation market. Many countries are implementing strategies and financial incentives to promote hydrogen as part of their broader energy transition plans. Subsidies, tax credits, and funding for research and development projects are encouraging private-sector investments and creating a supportive regulatory environment for the hydrogen industry. The financial sector's increasing interest and investment in hydrogen-related projects and companies represent a noteworthy trend. Investors are recognizing the long-term potential of the hydrogen generation market and are directing capital towards companies involved in hydrogen production, distribution, and application technologies. This trend reflects a growing confidence in the economic viability and sustainability of hydrogen as a key component of the future energy landscape.

The global hydrogen generation market is characterized by a dynamic set of trends that collectively reflect the industry's evolution and increasing significance. The focus on green hydrogen, diversification of applications, technological advancements, energy storage solutions, international collaborations, government support, and heightened financial sector interest are key trends influencing the trajectory of the hydrogen generation market. As these trends continue to unfold, they are expected to drive further innovation and expansion in the hydrogen sector, positioning hydrogen as a central player in the global transition to a more sustainable and low-carbon energy future.

Segmental Insights

Source Insights

Blue Hydrogen emerges as the leading segment within the Global Hydrogen Generation Market. Produced through the steam reforming process, blue hydrogen results from the combination of natural gas and heated steam, offering a low-carbon fuel alternative. Its applications span across vehicle propulsion, energy generation, and building heating. Notably, blue hydrogen production includes carbon capture and storage (CCS) techniques, ensuring minimal CO2 emissions. Despite the added cost of carbon storage, blue hydrogen presents a more environmentally sustainable option compared to grey hydrogen. The demand for blue hydrogen is anticipated to surge, driven by the rising adoption of hydrogen in fuel cell-powered vehicles. These fuel cells represent an eco-friendly transportation solution, poised to replace traditional fossil fuels. Strong governmental support globally, including subsidies, tax incentives, and infrastructure investments, further propels the shift towards fuel cell vehicles, consequently fueling the demand for blue hydrogen in the foreseeable future.

Regional Insights

The Asia-Pacific region stands out as the powerhouse of the hydrogen generation market, largely propelled by escalating demand for hydrogen in power generation within China and India. These two economic giants are witnessing a significant uptick in the utilization of hydrogen as a clean energy source, driven by both environmental concerns and the pursuit of energy security. Moreover, governmental initiatives aimed at promoting clean and green energy across key countries in the region, including India, Japan, and Australia, are further amplifying market growth prospects. These measures encompass a spectrum of policies, ranging from subsidies and incentives to regulatory frameworks that incentivize the adoption of hydrogen-based technologies.

In China, the world's largest emitter of greenhouse gases, the transition towards cleaner energy sources has become a national priority, spurred by concerns over air pollution and climate change. Hydrogen has emerged as a crucial component of the country's strategy to reduce carbon emissions, with substantial investments pouring into hydrogen infrastructure development and research initiatives. Similarly, India, with its ambitious renewable energy targets and burgeoning industrial sector, is increasingly turning to hydrogen to diversify its energy mix and curb reliance on fossil fuels.

Meanwhile, countries like Japan and Australia are forging ahead with ambitious hydrogen strategies, viewing the hydrogen economy as a promising avenue for sustainable economic growth. Japan, in particular, is leveraging its technological prowess to pioneer advancements in hydrogen production, storage, and utilization, aiming to become a global leader in the hydrogen industry. Australia, endowed with abundant renewable resources, is strategically positioning itself as a major exporter of green hydrogen, capitalizing on its vast potential for renewable energy generation, particularly solar and wind. Collectively, these concerted efforts underscore the Asia-Pacific region's pivotal role in driving the growth trajectory of the hydrogen generation market on a global scale.

Key Market Players

Air Liquide S.A.

Messer SE & Co. KGaA

ITM Power plc

Engie SA

Cummins Inc.

Air Products and Chemicals, Inc.

FuelCell Energy, Inc.

Nippon Sanso Holdings Corporation

McPhy Energy SA

Linde Plc

Report Scope:

In this report, the Global Hydrogen Generation Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

* Hydrogen Generation Market, By Source:

    Blue hydrogen Green hydrogen Grey Hydrogen

* Hydrogen Generation Market, By Technology:

    Steam Methane Reforming (SMR) Coal Gasification Other

* Hydrogen Generation Market, By Application:

    Oil Refining Chemical Processing Iron & Steel Production Other

* Hydrogen Generation Market, By Region:

    North America
    • United States
    • Canada
    • Mexico
    Asia-Pacific
    • China
    • India
    • Japan
    • South Korea
    • Indonesia
    Europe
    • Germany
    • United Kingdom
    • France
    • Russia
    • Spain
    South America
    • Brazil
    • Argentina
    Middle East & Africa
    • Saudi Arabia
    • South Africa
    • Egypt
    • UAE
    • Israel

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Hydrogen Generation Market.

Available Customizations:

Global Hydrogen Generation Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
  • 1.3. Markets Covered
  • 1.4. Years Considered for Study
  • 1.5. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

4. Voice of Customers

5. Global Hydrogen Generation Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Source (Blue hydrogen, Green hydrogen, and Grey Hydrogen)
    • 5.2.2. By Technology (Steam Methane Reforming (SMR), Coal Gasification, and Other)
    • 5.2.3. By Application (Oil Refining, Chemical Processing, Iron & Steel Production, and Other)
    • 5.2.4. By Region
  • 5.3. By Company (2023)
  • 5.4. Market Map

6. North America Hydrogen Generation Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Source
    • 6.2.2. By Technology
    • 6.2.3. By Application
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Hydrogen Generation Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Source
        • 6.3.1.2.2. By Technology
        • 6.3.1.2.3. By Application
    • 6.3.2. Canada Hydrogen Generation Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Source
        • 6.3.2.2.2. By Technology
        • 6.3.2.2.3. By Application
    • 6.3.3. Mexico Hydrogen Generation Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Source
        • 6.3.3.2.2. By Technology
        • 6.3.3.2.3. By Application

7. Asia-Pacific Hydrogen Generation Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Source
    • 7.2.2. By Technology
    • 7.2.3. By Application
    • 7.2.4. By Country
  • 7.3. Asia-Pacific: Country Analysis
    • 7.3.1. China Hydrogen Generation Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Source
        • 7.3.1.2.2. By Technology
        • 7.3.1.2.3. By Application
    • 7.3.2. India Hydrogen Generation Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Source
        • 7.3.2.2.2. By Technology
        • 7.3.2.2.3. By Application
    • 7.3.3. Japan Hydrogen Generation Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Source
        • 7.3.3.2.2. By Technology
        • 7.3.3.2.3. By Application
    • 7.3.4. South Korea Hydrogen Generation Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Source
        • 7.3.4.2.2. By Technology
        • 7.3.4.2.3. By Application
    • 7.3.5. Indonesia Hydrogen Generation Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Source
        • 7.3.5.2.2. By Technology
        • 7.3.5.2.3. By Application

8. Europe Hydrogen Generation Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Source
    • 8.2.2. By Technology
    • 8.2.3. By Application
    • 8.2.4. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. Germany Hydrogen Generation Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Source
        • 8.3.1.2.2. By Technology
        • 8.3.1.2.3. By Application
    • 8.3.2. United Kingdom Hydrogen Generation Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Source
        • 8.3.2.2.2. By Technology
        • 8.3.2.2.3. By Application
    • 8.3.3. France Hydrogen Generation Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Source
        • 8.3.3.2.2. By Technology
        • 8.3.3.2.3. By Application
    • 8.3.4. Russia Hydrogen Generation Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Source
        • 8.3.4.2.2. By Technology
        • 8.3.4.2.3. By Application
    • 8.3.5. Spain Hydrogen Generation Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Source
        • 8.3.5.2.2. By Technology
        • 8.3.5.2.3. By Application

9. South America Hydrogen Generation Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Source
    • 9.2.2. By Technology
    • 9.2.3. By Application
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Hydrogen Generation Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Source
        • 9.3.1.2.2. By Technology
        • 9.3.1.2.3. By Application
    • 9.3.2. Argentina Hydrogen Generation Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Source
        • 9.3.2.2.2. By Technology
        • 9.3.2.2.3. By Application

10. Middle East & Africa Hydrogen Generation Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Source
    • 10.2.2. By Technology
    • 10.2.3. By Application
    • 10.2.4. By Country
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. Saudi Arabia Hydrogen Generation Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Source
        • 10.3.1.2.2. By Technology
        • 10.3.1.2.3. By Application
    • 10.3.2. South Africa Hydrogen Generation Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Source
        • 10.3.2.2.2. By Technology
        • 10.3.2.2.3. By Application
    • 10.3.3. UAE Hydrogen Generation Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Source
        • 10.3.3.2.2. By Technology
        • 10.3.3.2.3. By Application
    • 10.3.4. Israel Hydrogen Generation Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Source
        • 10.3.4.2.2. By Technology
        • 10.3.4.2.3. By Application
    • 10.3.5. Egypt Hydrogen Generation Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Source
        • 10.3.5.2.2. By Technology
        • 10.3.5.2.3. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenge

12. Market Trends & Developments

13. Company Profiles

  • 13.1. Linde Plc
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel
    • 13.1.5. Key Product/Services
  • 13.2. Air Liquide S.A.
    • 13.2.1. Business Overview
    • 13.2.2. Key Revenue and Financials
    • 13.2.3. Recent Developments
    • 13.2.4. Key Personnel
    • 13.2.5. Key Product/Services
  • 13.3. Messer SE & Co. KGaA
    • 13.3.1. Business Overview
    • 13.3.2. Key Revenue and Financials
    • 13.3.3. Recent Developments
    • 13.3.4. Key Personnel
    • 13.3.5. Key Product/Services
  • 13.4. ITM Power plc
    • 13.4.1. Business Overview
    • 13.4.2. Key Revenue and Financials
    • 13.4.3. Recent Developments
    • 13.4.4. Key Personnel
    • 13.4.5. Key Product/Services
  • 13.5. Engie SA
    • 13.5.1. Business Overview
    • 13.5.2. Key Revenue and Financials
    • 13.5.3. Recent Developments
    • 13.5.4. Key Personnel
    • 13.5.5. Key Product/Services
  • 13.6. Cummins Inc.
    • 13.6.1. Business Overview
    • 13.6.2. Key Revenue and Financials
    • 13.6.3. Recent Developments
    • 13.6.4. Key Personnel
    • 13.6.5. Key Product/Services
  • 13.7. Air Products & Chemicals Inc.
    • 13.7.1. Business Overview
    • 13.7.2. Key Revenue and Financials
    • 13.7.3. Recent Developments
    • 13.7.4. Key Personnel
    • 13.7.5. Key Product/Services
  • 13.8. FuelCell Energy Inc.
    • 13.8.1. Business Overview
    • 13.8.2. Key Revenue and Financials
    • 13.8.3. Recent Developments
    • 13.8.4. Key Personnel
    • 13.8.5. Key Product/Services
  • 13.9. Nippon Sanso Holdings Corporation
    • 13.9.1. Business Overview
    • 13.9.2. Key Revenue and Financials
    • 13.9.3. Recent Developments
    • 13.9.4. Key Personnel
    • 13.9.5. Key Product/Services
  • 13.10. McPhy Energy SA
    • 13.10.1. Business Overview
    • 13.10.2. Key Revenue and Financials
    • 13.10.3. Recent Developments
    • 13.10.4. Key Personnel
    • 13.10.5. Key Product/Services

14. Strategic Recommendations

15. About Us & Disclaimer