デフォルト表紙
市場調査レポート
商品コード
1510491

静注用免疫グロブリン市場:世界の産業規模、動向、機会、予測、タイプ別、用途別、地域別、競合別、2019年~2029F年

Intravenous Immunoglobulin Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Application By Region and Competition, 2019-2029F


出版日
ページ情報
英文 183 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

静注用免疫グロブリン市場:世界の産業規模、動向、機会、予測、タイプ別、用途別、地域別、競合別、2019年~2029F年
出版日: 2024年07月05日
発行: TechSci Research
ページ情報: 英文 183 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

静注用免疫グロブリンの世界市場規模は2023年に117億6,000万米ドルとなり、予測期間では2029年までCAGR 7.01%で堅調な成長が予測されています。

市場概要
予測期間 2025-2029
市場規模:2023年 117億6,000万米ドル
市場規模:2029年 175億9,000万米ドル
CAGR:2024年~2029年 7.01%
急成長セグメント 原発性免疫不全症
最大市場 北米

世界の静注用免疫グロブリン(IVIG)市場は、免疫不全疾患の有病率の増加、高齢者人口の増加、バイオテクノロジーやヘルスケアインフラの進歩などの要因によって、近年大幅な成長と進化を遂げています。IVIGは、健康なドナーの血漿から得られる血液製剤で、高濃度の抗体を含み、原発性免疫不全症、自己免疫性神経障害、特定の感染症など、さまざまな自己免疫疾患や炎症性疾患の治療のために静脈内投与されます。IVIGの市場は、グリフォルス、CSLベーリング、武田薬品工業、オクタファーマなど複数の主要企業が業界を支配しており、競合環境が特徴的です。これらの企業は、製品ポートフォリオを拡大し、製造プロセスを強化し、IVIG製品の有効性と安全性プロファイルを改善するために、研究開発活動に継続的に投資しています。さらに、戦略的提携、合併、買収は、市場での存在感を高め、競争優位を獲得するために市場参入企業が採用する一般的な戦略です。

地理的には、北米が世界のIVIG市場を独占しています。これは、免疫不全疾患の有病率の高さ、整備されたヘルスケアインフラ、有利な償還政策などの要因によるものです。しかし、アジア太平洋地域は、ヘルスケア支出の増加、免疫グロブリン療法に対する意識の高まり、自己免疫疾患や炎症性疾患の有病率の上昇などを背景に、予測期間中に大きな成長が見込まれています。さらに、高度なヘルスケアサービスや治療へのアクセスを改善するために政府やヘルスケア機関が行っているイニシアチブが、この地域の市場成長をさらに促進すると予想されています。前向きな成長見通しにもかかわらず、IVIG市場は、製品承認のための厳しい規制要件、IVIG治療に伴う高額な費用、アレルギー反応、血栓性事象、感染症の伝播などの副作用の潜在的リスクなど、特定の課題に直面しています。さらに、血漿提供者が限られており、血漿採取率が変動するため、製造業者にとっては、市場の需要を満たすIVIG製品の安定的かつ持続的な供給を確保する上でさらなる課題となります。しかし、血漿分画技術の継続的な進歩、厳格な品質管理措置の実施、IVIG療法の安全性と有効性の向上を目指した研究開発活動への投資の増加は、これらの課題を軽減し、今後数年間の市場成長を促進すると予想されます。

主な市場促進要因

免疫不全症の有病率の増加

自己免疫疾患および神経疾患における用途の拡大

バイオテクノロジーと製造プロセスの進歩

主な市場課題

規制上のハードル

IVIG療法の高コスト

サプライチェーンの脆弱性

主な市場動向

IVIG製造における技術の進歩

ヘルスケア支出の増加と償還支援

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 顧客の声

第5章 世界の静注用免疫グロブリン市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別(IgG、IgA、IgM、IgE、IgD)
    • 用途別(低ガンマグロブリン血症、慢性炎症性脱髄性多発神経炎(CIDP)、原発性免疫不全症、重症筋無力症、多巣性運動神経障害、その他)
    • 地域別
    • 企業別(2023)
  • 市場マップ
    • タイプ別
    • 用途別
    • 地域別

第6章 アジア太平洋地域の静注用免疫グロブリン市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 国別
  • アジア太平洋地域:国別分析
    • 中国
    • インド
    • オーストラリア
    • 日本
    • 韓国

第7章 欧州の静注用免疫グロブリン市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 国別
  • 欧州:国別分析
    • フランス
    • ドイツ
    • スペイン
    • イタリア
    • 英国

第8章 北米の静注用免疫グロブリン市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 国別
  • 北米:国別分析
    • 米国
    • メキシコ
    • カナダ

第9章 南米の静注用免疫グロブリン市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 国別
  • 南米:国別分析
    • ブラジル
    • アルゼンチン
    • コロンビア

第10章 中東・アフリカの静注用免疫グロブリン市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 国別
  • 中東・アフリカ:国別分析
    • 南アフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • エジプト

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

  • 最近の動向
  • 製品の発売(ある場合)
  • 合併および買収(ある場合)

第13章 世界の静注用免疫グロブリン市場:SWOT分析

第14章 ポーターのファイブフォース分析

  • 業界内の競合
  • 新規参入の可能性
  • サプライヤーの力
  • 顧客の力
  • 代替品の脅威

第15章 競合情勢

  • Bio Products Laboratory Ltd
  • Biotest AG
  • China Biologic Products Holdings Inc.
  • CSL Behring
  • Grifols SA
  • Kedrion SpA
  • Shanghai RAAS Blood Products Co. Ltd
  • Octapharma AG
  • Takeda Pharmaceutical Company Limited
  • Baxter International Inc

第16章 戦略的提言

第17章 調査会社について・免責事項

目次
Product Code: 23901

Global Intravenous Immunoglobulin Market was valued at USD 11.76 billion in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 7.01% through 2029.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 11.76 Billion
Market Size 2029USD 17.59 Billion
CAGR 2024-20297. 01%
Fastest Growing SegmentPrimary Immunodeficiency Diseases
Largest MarketNorth America

The global intravenous immunoglobulin (IVIG) market has witnessed substantial growth and evolution in recent years, driven by factors such as increasing prevalence of immunodeficiency disorders, rising geriatric population, and advancements in biotechnology and healthcare infrastructure. IVIG, a blood product derived from the plasma of healthy donors, contains a high concentration of antibodies and is administered intravenously to treat various autoimmune and inflammatory diseases, including primary immunodeficiency disorders, autoimmune neuropathies, and certain infectious diseases. The market for IVIG is characterized by a competitive landscape with several key players dominating the industry, including Grifols, CSL Behring, Takeda Pharmaceutical Company Limited, and Octapharma AG, among others. These companies are continuously investing in research and development activities to expand their product portfolios, enhance manufacturing processes, and improve the efficacy and safety profiles of their IVIG products. Additionally, strategic collaborations, mergers, and acquisitions are prevalent strategies adopted by market players to strengthen their market presence and gain a competitive edge.

Geographically, North America dominates the global IVIG market, attributed to factors such as high prevalence of immunodeficiency disorders, well-established healthcare infrastructure, and favorable reimbursement policies. However, the Asia Pacific region is expected to witness significant growth during the forecast period, driven by increasing healthcare expenditure, growing awareness about immunoglobulin therapies, and rising prevalence of autoimmune and inflammatory diseases. Moreover, initiatives undertaken by governments and healthcare organizations to improve access to advanced healthcare services and treatments are expected to further fuel market growth in the region. Despite the positive growth outlook, the IVIG market faces certain challenges, including stringent regulatory requirements for product approval, high costs associated with IVIG therapy, and potential risks of adverse reactions such as allergic reactions, thrombotic events, and transmission of infectious agents. Moreover, limited availability of plasma donors and fluctuations in plasma collection rates pose additional challenges for manufacturers in ensuring a stable and sustainable supply of IVIG products to meet market demand. However, ongoing advancements in plasma fractionation technologies, implementation of stringent quality control measures, and increasing investment in research and development activities aimed at improving the safety and efficacy of IVIG therapies are expected to mitigate these challenges and drive market growth in the coming years.

Key Market Drivers

Growing Prevalence of Immunodeficiency Disorders

The growing prevalence of immunodeficiency disorders is a significant factor driving the expansion of the global intravenous immunoglobulin (IVIG) market. Immunodeficiency disorders encompass a range of conditions characterized by impaired immune function, leaving individuals vulnerable to recurrent infections and other complications. Primary immunodeficiency diseases (PIDs), such as agammaglobulinemia, common variable immunodeficiency (CVID), and specific antibody deficiency (SAD), are among the most commonly diagnosed disorders in this category. One of the primary reasons behind the increasing prevalence of immunodeficiency disorders is improved diagnostic capabilities and awareness among healthcare professionals. Advancements in medical technology and screening methods have enabled more accurate and timely diagnosis of these conditions, leading to a higher reported prevalence. Growing awareness campaigns and educational initiatives aimed at healthcare providers and the general public have contributed to early detection and intervention, further driving up the number of diagnosed cases.

The rise in immunodeficiency disorders is also attributed to factors such as genetic predisposition, environmental factors, and lifestyle changes. Genetic mutations or defects in the immune system can predispose individuals to immunodeficiency disorders, while environmental factors such as pollution, exposure to toxins, and infectious agents may exacerbate immune dysfunction. Moreover, lifestyle factors such as stress, poor nutrition, and sedentary behavior can compromise immune function, increasing susceptibility to infections and immune-related disorders.

The increasing prevalence of immunodeficiency disorders has led to a corresponding rise in the demand for IVIG therapy. IVIG products, derived from plasma donors, contain a concentrated mixture of antibodies that can help bolster the immune response in individuals with immunodeficiency disorders. By supplying exogenous antibodies, IVIG therapy compensates for the defective or deficient immune system, reducing the frequency and severity of infections and improving overall quality of life for patients.

Healthcare providers are increasingly turning to IVIG therapy as a standard treatment option for managing immunodeficiency disorders. This growing demand for IVIG products is fueling market growth, prompting manufacturers to expand production capacities, improve product quality, and invest in research and development to meet the needs of patients worldwide. Advancements in biotechnology and manufacturing processes are driving efficiency gains in IVIG production, enhancing product safety, and expanding market access, further bolstering the growth of the global IVIG market.

Expanding Applications in Autoimmune and Neurological Disorders

The expanding applications of intravenous immunoglobulin (IVIG) in autoimmune and neurological disorders are playing a pivotal role in driving the growth of the global IVIG market. IVIG therapy, traditionally used to treat immunodeficiency disorders, has increasingly found utility in managing a wide array of autoimmune conditions and neurological diseases. Autoimmune disorders, characterized by the body's immune system attacking its own tissues and organs, encompass a diverse range of conditions such as immune thrombocytopenic purpura (ITP), Guillain-Barre syndrome (GBS), myasthenia gravis (MG), and systemic lupus erythematosus (SLE), among others. IVIG therapy has emerged as an effective treatment modality for these disorders due to its immunomodulatory properties. IVIG contains a high concentration of antibodies that can modulate immune responses, suppress inflammatory pathways, and promote immune tolerance, thereby mitigating autoimmune reactions and reducing disease activity. As a result, healthcare providers are increasingly prescribing IVIG therapy as a first-line or adjunctive treatment option for managing autoimmune disorders, driving up the demand for IVIG products.

In addition to autoimmune disorders, IVIG therapy is also gaining traction in the field of neurology for the treatment of various neurological conditions. Chronic inflammatory demyelinating polyneuropathy (CIDP), multifocal motor neuropathy (MMN), and stiff person syndrome (SPS) are among the neurological disorders that have shown positive responses to IVIG treatment. IVIG exerts neuroprotective effects by modulating immune-mediated neuroinflammation, promoting nerve regeneration, and restoring neuromuscular function. In CIDP, for example, IVIG therapy has been shown to improve muscle strength, reduce disability, and prevent disease relapse, leading to its widespread adoption as a standard treatment option.

The expanding applications of IVIG in autoimmune and neurological disorders are driving market growth by increasing the demand for IVIG products across diverse therapeutic indications. As research continues to uncover new therapeutic targets and treatment strategies, the potential applications of IVIG therapy are expected to expand further, creating opportunities for market expansion and innovation. Moreover, advancements in biotechnology and manufacturing processes are enhancing the efficacy, safety, and accessibility of IVIG products, further fueling market growth and meeting the evolving needs of patients with autoimmune and neurological conditions.

Advancements in Biotechnology and Manufacturing Processes

Advancements in biotechnology and manufacturing processes are significant drivers behind the growth of the global intravenous immunoglobulin (IVIG) market. These advancements have led to improvements in the quality, safety, and efficacy of IVIG products, thereby expanding their utilization across various therapeutic applications. One of the key advancements in biotechnology is the refinement of plasma fractionation techniques. Plasma, the raw material used in IVIG production, undergoes a complex fractionation process to isolate and purify immunoglobulins. Innovations in fractionation technology have enabled manufacturers to produce IVIG products with higher purity levels and reduced levels of contaminants. This has resulted in safer and more effective IVIG therapies, minimizing the risk of adverse reactions and ensuring better patient outcomes.

Advancements in viral inactivation and pathogen reduction techniques have enhanced the safety profile of IVIG products. Viral inactivation methods such as solvent-detergent treatment, pasteurization, and nanofiltration are employed during the manufacturing process to eliminate potential pathogens and infectious agents from the plasma-derived products. These advancements have significantly reduced the risk of transfusion-transmitted infections, making IVIG therapy safer for patients with compromised immune systems.

Improvements in formulation technologies have facilitated the development of stabilized liquid IVIG formulations. Traditionally, IVIG products were available in lyophilized (freeze-dried) form, requiring reconstitution before administration. However, liquid IVIG formulations offer several advantages, including convenience in storage and administration, reduced preparation time, and lower risk of medication errors. These advancements in formulation technology have improved patient compliance and healthcare provider convenience, driving the adoption of IVIG therapy across various clinical settings. Advancements in manufacturing processes have enabled scalability and increased production capacities, ensuring a stable and sustainable supply of IVIG products to meet growing market demand. Automation and optimization of manufacturing workflows have led to cost efficiencies and reduced production timelines, enabling manufacturers to scale up production and meet the needs of patients worldwide.

Key Market Challenges

Regulatory Hurdles

One of the primary challenges facing the IVIG market is the stringent regulatory requirements for product approval and manufacturing. Regulatory agencies impose rigorous standards for the production, testing, and distribution of IVIG products to ensure their safety, efficacy, and quality. Compliance with these regulations involves substantial investments in infrastructure, quality control measures, and documentation, which can significantly impact manufacturing costs and timelines. Differences in regulatory requirements across regions and countries can create barriers to market entry and expansion, further complicating the regulatory landscape for IVIG manufacturers.

High Cost of IVIG Therapy

The high cost of IVIG therapy poses a significant barrier to patient access and market growth. IVIG products are expensive to manufacture due to the complex fractionation process involved in plasma-derived products, as well as the stringent quality control measures required to ensure product safety and efficacy. As a result, IVIG therapies are associated with high treatment costs, placing financial strain on patients, healthcare systems, and payers. Limited reimbursement coverage for IVIG therapy in some regions further exacerbates the affordability issue, restricting patient access to treatment and constraining market demand.

Supply Chain Vulnerabilities

The global IVIG market relies heavily on a stable and sustainable supply of plasma, the raw material used in IVIG production. Plasma collection involves a complex and highly regulated process, which can be susceptible to disruptions due to factors such as donor availability, seasonal fluctuations, and regulatory changes. Moreover, the consolidation of plasma collection centers and the dependence on a limited number of plasma suppliers can increase the vulnerability of the IVIG supply chain to supply shortages and disruptions. These supply chain vulnerabilities pose risks to market stability and continuity of care for patients dependent on IVIG therapy.

Key Market Trends

Technological Advancements in IVIG Production

Technological advancements in IVIG production are playing a pivotal role in boosting the global intravenous immunoglobulin (IVIG) market. IVIG, derived from plasma donors, is a critical therapeutic agent used in the treatment of various autoimmune, immunodeficiency, and neurological disorders. Advancements in IVIG production processes have led to improved efficiency, quality, and safety of IVIG products, thereby expanding their availability and utilization across diverse therapeutic indications. One of the key technological advancements in IVIG production is the refinement of plasma fractionation techniques. Plasma, the raw material used in IVIG production, undergoes a complex fractionation process to isolate and purify immunoglobulins. Innovations in fractionation technology have enabled manufacturers to produce IVIG products with higher purity levels and reduced levels of contaminants. This has resulted in safer and more effective IVIG therapies, minimizing the risk of adverse reactions and ensuring better patient outcomes.

Advancements in viral inactivation methods have further enhanced the safety profile of IVIG products. Viral inactivation techniques such as solvent-detergent treatment, pasteurization, and nanofiltration are employed during the manufacturing process to eliminate potential pathogens and infectious agents from the plasma-derived products. These advancements have significantly reduced the risk of transfusion-transmitted infections, making IVIG therapy safer for patients with compromised immune systems. Improvements in formulation technologies have facilitated the development of stabilized liquid IVIG formulations. Traditionally, IVIG products were available in lyophilized (freeze-dried) form, requiring reconstitution before administration. However, liquid IVIG formulations offer several advantages, including convenience in storage and administration, reduced preparation time, and lower risk of medication errors. These advancements in formulation technology have improved patient compliance and healthcare provider convenience, driving the adoption of IVIG therapy across various clinical settings.

Advancements in manufacturing processes have enabled scalability and increased production capacities, ensuring a stable and sustainable supply of IVIG products to meet growing market demand. Automation and optimization of manufacturing workflows have led to cost efficiencies and reduced production timelines, enabling manufacturers to scale up production and meet the needs of patients worldwide.

Rising Healthcare Expenditure and Reimbursement Support

Rising healthcare expenditure and reimbursement support are key factors boosting the global intravenous immunoglobulin (IVIG) market. IVIG, derived from plasma donors, is a crucial therapeutic agent used in the treatment of various autoimmune, immunodeficiency, and neurological disorders. The increasing healthcare expenditure and favorable reimbursement policies create a conducive environment for market growth in the IVIG segment, ensuring affordability and accessibility for patients. As healthcare expenditure continues to rise globally, governments and healthcare organizations are prioritizing investments in healthcare infrastructure and expanding access to advanced medical treatments. IVIG therapy, being a life-saving treatment for many patients with immunodeficiency disorders and other conditions requiring IVIG, is among the areas benefiting from increased healthcare spending. Governments are allocating substantial funds to support research and development initiatives, enhance healthcare delivery systems, and improve patient access to innovative therapies like IVIG.

Favorable reimbursement policies play a critical role in driving market adoption and uptake of IVIG therapy. Reimbursement policies that provide coverage for IVIG treatments ensure affordability for patients, reducing financial barriers to access. Health insurance companies and government healthcare programs often provide reimbursement for IVIG therapy, either partially or in full, depending on the specific indication and healthcare system regulations. This reimbursement support incentivizes healthcare providers to prescribe IVIG therapy and encourages patients to seek treatment, thereby driving market demand.

Collaborations between manufacturers and healthcare providers are also contributing to the optimization of reimbursement processes and patient access to IVIG therapy. Manufacturers work closely with healthcare providers, payers, and patient advocacy groups to streamline reimbursement procedures, address reimbursement challenges, and optimize patient access to IVIG products. By improving reimbursement processes and increasing awareness about reimbursement coverage options, stakeholders in the IVIG market are enhancing patient access to treatment and driving market growth.

Segmental Insights

Type Insights

Based on the type, In the Intravenous Immunoglobulin (IVIG) market, Immunoglobulin G (IgG) dominates due to its extensive therapeutic applications and proven efficacy. IgG constitutes the majority of immunoglobulins in plasma, making it crucial for immune response regulation and pathogen neutralization. Its wide-ranging use in treating immunodeficiency disorders, autoimmune diseases, and acute infections underpins its market leadership. IgG's established safety profile, coupled with ongoing advancements in purification and production technologies, enhances its therapeutic potential and accessibility. As a result, IgG remains the cornerstone of IVIG therapies, driving its dominance in the market.

Regional Insights

North America emerged as the dominant region in the global intravenous immunoglobulin (IVIG) market, commanding the largest market share. This dominance can be attributed to North America's well-established healthcare infrastructure, which comprises advanced medical facilities and a robust regulatory framework. The region is home to numerous prominent pharmaceutical and biotechnology companies specializing in IVIG production, research, and development. Leveraging the region's favorable regulatory environment and access to cutting-edge technology, these companies have developed high-quality IVIG products that meet stringent safety and efficacy standards. Additionally, North America benefits from extensive research and clinical trials conducted in collaboration with leading academic institutions and healthcare organizations, further solidifying its position as a key player in the global IVIG market.

Key Market Players

Bio Products Laboratory Ltd.

Biotest AG

China Biologic Products Holdings Inc.

CSL Behring

Grifols SA

Kedrion SpA

Shanghai RAAS Blood Products Co. Ltd

Octapharma AG

Takeda Pharmaceutical Company Limited

Baxter International Inc

Report Scope:

In this report, the Global Intravenous Immunoglobulin Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Intravenous Immunoglobulin Market, By Type:

    IgG IgA IgM IgE IgD

Intravenous Immunoglobulin Market, By Application:

    Hypogammaglobulinemia Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) Primary Immunodeficiency Diseases Myasthenia Gravis Multifocal Motor Neuropathy Other Applications

Intravenous Immunoglobulin Market, By Region:

    North America
    • United States
    • Canada
    • Mexico
    Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
    Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
    South America
    • Brazil
    • Argentina
    • Colombia
    Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Egypt

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Intravenous Immunoglobulin Market.

Available Customizations:

Global Intravenous Immunoglobulin Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Intravenous Immunoglobulin Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (IgG, IgA, IgM, IgE, IgD)
    • 5.2.2. By Application (Hypogammaglobulinemia, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Primary Immunodeficiency Diseases, Myasthenia Gravis, Multifocal Motor Neuropathy, and Others)
    • 5.2.3. By Region
    • 5.2.4. By Company (2023)
  • 5.3. Market Map
    • 5.3.1. By Type
    • 5.3.2. By Application
    • 5.3.3. By Region

6. Asia Pacific Intravenous Immunoglobulin Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Application
    • 6.2.3. By Country
  • 6.3. Asia Pacific: Country Analysis
    • 6.3.1. China Intravenous Immunoglobulin Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Application
    • 6.3.2. India Intravenous Immunoglobulin Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Application
    • 6.3.3. Australia Intravenous Immunoglobulin Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Application
    • 6.3.4. Japan Intravenous Immunoglobulin Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Type
        • 6.3.4.2.2. By Application
    • 6.3.5. South Korea Intravenous Immunoglobulin Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Type
        • 6.3.5.2.2. By Application

7. Europe Intravenous Immunoglobulin Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Application
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Intravenous Immunoglobulin Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Application
    • 7.3.2. Germany Intravenous Immunoglobulin Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Application
    • 7.3.3. Spain Intravenous Immunoglobulin Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Application
    • 7.3.4. Italy Intravenous Immunoglobulin Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Application
    • 7.3.5. United Kingdom Intravenous Immunoglobulin Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Application

8. North America Intravenous Immunoglobulin Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Application
    • 8.2.3. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Intravenous Immunoglobulin Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Application
    • 8.3.2. Mexico Intravenous Immunoglobulin Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Application
    • 8.3.3. Canada Intravenous Immunoglobulin Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Application

9. South America Intravenous Immunoglobulin Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Application
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Intravenous Immunoglobulin Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Application
    • 9.3.2. Argentina Intravenous Immunoglobulin Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Application
    • 9.3.3. Colombia Intravenous Immunoglobulin Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Application

10. Middle East and Africa Intravenous Immunoglobulin Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Application
    • 10.2.3. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Intravenous Immunoglobulin Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Application
    • 10.3.2. Saudi Arabia Intravenous Immunoglobulin Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Application
    • 10.3.3. UAE Intravenous Immunoglobulin Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Application
    • 10.3.4. Egypt Intravenous Immunoglobulin Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type
        • 10.3.4.2.2. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Developments
  • 12.2. Product Launches (If Any)
  • 12.3. Mergers & Acquisitions (If Any)

13. Global Intravenous immunoglobulin Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Product

15. Competitive Landscape

  • 15.1. Bio Products Laboratory Ltd
    • 15.1.1. Business Overview
    • 15.1.2. Company Snapshot
    • 15.1.3. Products & Services
    • 15.1.4. Financials (As Reported)
    • 15.1.5. Recent Developments
    • 15.1.6. Key Personnel Details
    • 15.1.7. SWOT Analysis
  • 15.2. Biotest AG
  • 15.3. China Biologic Products Holdings Inc.
  • 15.4. CSL Behring
  • 15.5. Grifols SA
  • 15.6. Kedrion SpA
  • 15.7. Shanghai RAAS Blood Products Co. Ltd
  • 15.8. Octapharma AG
  • 15.9. Takeda Pharmaceutical Company Limited
  • 15.10. Baxter International Inc

16. Strategic Recommendations

17. About Us & Disclaimer