デフォルト表紙
市場調査レポート
商品コード
1493586

陽電子放射断層撮影(PET)市場- 世界の産業規模、シェア、動向、機会、予測、製品タイプ別、用途別、エンドユーザー別、地域別、競合別、2019-2029年

Positron Emission Tomography Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Product Type, By Application, By End User, By Region, and By Competition, 2019-2029F


出版日
ページ情報
英文 184 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

陽電子放射断層撮影(PET)市場- 世界の産業規模、シェア、動向、機会、予測、製品タイプ別、用途別、エンドユーザー別、地域別、競合別、2019-2029年
出版日: 2024年05月15日
発行: TechSci Research
ページ情報: 英文 184 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

陽電子放射断層撮影の世界市場は、2023年に26億2,000万米ドルと評価され、予測期間では2029年までCAGR 6.79%で着実な成長が見込まれます。

陽電子放射断層撮影(PET)は、体内の代謝プロセスを可視化し測定するために医療で使用される非侵襲的イメージング技術です。PETは、病気の診断、治療効果の評価、様々な専門分野の研究に特に有用です。PETイメージングでは、放射性医薬品または放射性トレーサーとしても知られる放射性トレーサーを使用します。これらのトレーサーは、フッ素-18(18F)、炭素-11(11C)、酸素-15(15O)などの放射性同位元素で標識された化合物です。各トレーサーは、研究対象の代謝プロセスや生理機能に応じて、グルコース、神経伝達物質、タンパク質などの特定の分子を標的とするように設計されています。

市場概要
予測期間 2025-2029
市場規模:2023年 26億2,000万米ドル
市場規模:2029年 38億5,000万米ドル
CAGR:2024年-2029年 6.79%
急成長セグメント オンコロジー
最大市場 北米

放射性トレーサーは通常、トレーサーと対象となる臓器や組織に応じて、静脈内、経口、吸入により患者に投与されます。体内に入ると、トレーサーは血流にのって循環し、腫瘍、炎症組織、脳や心臓のようにグルコースの取り込みが亢進している臓器など、代謝活性の高い部位に集積します。放射性トレーサーが放射性崩壊を起こすと、正電荷を帯びた粒子である陽電子を放出します。この陽電子は周囲の組織内を短距離移動した後、電子と出会う。陽電子が電子と衝突すると、両方の粒子が互いに消滅し、反対方向にガンマ線を放出します。

ハードウェア、ソフトウェア、放射性医薬品を含むPETイメージング技術の絶え間ない進歩は、イメージングの質、感度、特異性を向上させています。ハイブリッドPET/CTやPET/MRIシステムなどの技術革新は、より包括的で正確な診断評価を可能にし、PETイメージングの臨床的有用性を高めています。PETイメージングは、神経学、循環器学、精神医学など、腫瘍学以外の医療分野でもますます活用されるようになっています。神経疾患、心血管疾患、精神疾患に対するPETイメージングの用途の拡大は、市場の成長と多様化の原動力となっています。疾患の早期発見と個別化医療が重視されるようになり、PET画像診断のような高度な診断モダリティの需要が高まっています。PETスキャンは、機能的・分子的情報を提供することで、治療可能な早期段階で病気を発見し、個々の患者の特性に基づいた個別化治療アプローチを促進することができます。

主な市場促進要因

技術の進歩

腫瘍学以外の用途の拡大

疾患の早期発見と個別化医療への関心の高まり

主な市場課題

代替イメージングモダリティとの競合

市場の細分化と統合

主な市場動向

費用対効果の重視

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 顧客の声

第5章 世界の陽電子放射断層撮影市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • 製品タイプ別(フルリングPETスキャナ、部分リングPETスキャナ)
    • 用途別(腫瘍学、心臓病学、神経学、その他)
    • エンドユーザー別(病院、診断センター、調査機関など)
    • 地域別
    • 企業別(2023)
  • 市場マップ

第6章 北米の陽電子放射断層撮影市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • 製品タイプ別
    • 用途別
    • エンドユーザー別
    • 国別
  • 北米:国別分析
    • 米国
    • カナダ
    • メキシコ

第7章 欧州の陽電子放射断層撮影市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • 製品タイプ別
    • 用途別
    • エンドユーザー別
    • 国別
  • 欧州:国別分析
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン

第8章 アジア太平洋地域の陽電子放射断層撮影市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • 製品タイプ別
    • 用途別
    • エンドユーザー別
    • 国別
  • アジア太平洋地域:国別分析
    • 中国
    • インド
    • 日本
    • 韓国
    • オーストラリア

第9章 南米の陽電子放射断層撮影市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • 製品タイプ別
    • 用途別
    • エンドユーザー別
    • 国別
  • 南米:国別分析
    • ブラジル
    • アルゼンチン
    • コロンビア

第10章 中東・アフリカの陽電子放射断層撮影市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • 製品タイプ別
    • 用途別
    • エンドユーザー別
    • 国別
  • 中東・アフリカ:国別分析
    • 南アフリカ
    • サウジアラビア
    • アラブ首長国連邦

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

  • 合併および買収(該当する場合)
  • 製品の発売(ある場合)
  • 最近の動向

第13章 ポーターのファイブフォース分析

  • 業界内の競合
  • 新規参入の可能性
  • サプライヤーの力
  • 顧客の力
  • 代替品の脅威

第14章 競合情勢

  • GE HealthCare Technologies Inc.
  • Toshiba Corporation
  • Koninklijke Philips N.V.
  • Siemens Healthineers AG
  • Hitachi Medical Corporation
  • Positron Corporation
  • Mediso Ltd.
  • Yangzhou Kindsway Biotech Co., Ltd.

第15章 戦略的提言

第16章 調査会社について・免責事項

目次
Product Code: 23761

Global Positron Emission Tomography Market was valued at USD 2.62 billion in 2023 and will see a steady growth in the forecast period at a CAGR of 6.79% through 2029. Positron Emission Tomography (PET) is a non-invasive imaging technique used in medicine to visualize and measure metabolic processes in the body. It is particularly valuable for diagnosing diseases, assessing treatment response, and conducting research in various medical specialties. PET imaging involves the use of radioactive tracers, also known as radiopharmaceuticals or radiotracers. These tracers are compounds labeled with a radioactive isotope, such as fluorine-18 (18F), carbon-11 (11C), or oxygen-15 (15O). Each tracer is designed to target specific molecules, such as glucose, neurotransmitters, or proteins, depending on the metabolic process or physiological function being studied.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 2.62 Billion
Market Size 2029USD 3.85 Billion
CAGR 2024-20296.79%
Fastest Growing SegmentOncology
Largest MarketNorth America

The radioactive tracer is typically administered to the patient intravenously, orally, or by inhalation, depending on the tracer and the target organ or tissue of interest. Once inside the body, the tracer circulates through the bloodstream and accumulates in areas of high metabolic activity, such as tumors, inflamed tissues, or organs with increased glucose uptake, like the brain or heart. As the radioactive tracer undergoes radioactive decay, it emits positrons, which are positively charged particles. These positrons travel a short distance through the surrounding tissue before encountering electrons. When a positron collides with an electron, both particles annihilate each other, releasing gamma rays in opposite directions.

Continuous advancements in PET imaging technology, including hardware, software, and radiopharmaceuticals, improve imaging quality, sensitivity, and specificity. Technological innovations such as hybrid PET/CT and PET/MRI systems enable more comprehensive and accurate diagnostic evaluations, enhancing the clinical utility of PET imaging. PET imaging is increasingly utilized in other medical fields beyond oncology, including neurology, cardiology, and psychiatry. The expanding applications of PET imaging for neurological disorders, cardiovascular diseases, and psychiatric conditions drive market growth and diversification. There is a growing emphasis on early disease detection and personalized medicine, driving the demand for advanced diagnostic modalities like PET imaging. PET scans provide functional and molecular information that can detect diseases at earlier stages when they are more treatable and facilitate personalized treatment approaches based on individual patient characteristics.

Key Market Drivers

Technological Advancements

PET/CT and PET/MRI hybrid imaging systems combine the functional and metabolic information provided by PET with the anatomical details obtained from computed tomography (CT) or magnetic resonance imaging (MRI). These hybrid systems enable more precise localization and characterization of abnormalities, improve diagnostic accuracy, and enhance treatment planning in oncology, cardiology, neurology, and other clinical specialties. Time-of-flight PET scanners incorporate timing information to accurately determine the arrival time of photons emitted during PET imaging. TOF PET systems improve image quality, signal-to-noise ratio, and lesion detection sensitivity, leading to better spatial resolution and quantitative accuracy in PET images.

Advances in PET detector technology, including the development of high-resolution and solid-state detectors, enhance sensitivity, spatial resolution, and image quality in PET imaging. These detectors enable faster acquisition times, reduce radiation dose exposure, and improve the overall performance of PET scanners. Motion artifacts can degrade image quality and accuracy in PET imaging, particularly in dynamic studies and scans of moving organs such as the heart and lungs. Motion correction techniques, including respiratory gating, motion tracking, and image registration algorithms, compensate for patient motion during PET imaging, improving image quality and diagnostic accuracy.

Quantitative PET imaging techniques enable accurate measurement and quantification of radiotracer uptake, metabolism, and pharmacokinetics in tissues and organs. Quantitative analysis facilitates objective assessment of disease progression, treatment response, and therapeutic efficacy, supporting clinical decision-making and research applications in oncology, neurology, and cardiology. Ongoing research and development efforts focus on the synthesis and validation of novel radiotracers with improved targeting specificity, pharmacokinetics, and imaging properties.

Advances in radiopharmaceutical development expand the range of PET imaging applications and enable the early detection, characterization, and monitoring of various diseases and physiological processes. Advanced image reconstruction algorithms, such as iterative reconstruction methods and statistical algorithms, enhance image quality, reduce noise, and improve spatial resolution in PET images. These algorithms optimize image reconstruction parameters, maximize signal-to-noise ratio, and minimize artifacts, enhancing the diagnostic accuracy and clinical utility of PET imaging. This factor will help in the development of the Global Positron Emission Tomography Market.

Growing Applications Beyond Oncology

PET imaging plays a crucial role in the diagnosis and management of various neurological disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and traumatic brain injury. PET scans with radiotracers targeting specific neurotransmitter systems, amyloid plaques, and tau protein deposition provide valuable insights into disease pathology, disease progression, and treatment response in neurology. PET imaging is widely used in cardiology for the assessment of myocardial perfusion, viability, metabolism, and function.

PET scans with radiotracers such as 18F-fluorodeoxyglucose (FDG) and 82Rb chloride enable the evaluation of myocardial ischemia, infarction, hibernation, and viability, guiding clinical decision-making in coronary artery disease, heart failure, and cardiac transplantation. PET imaging is employed in neuroscience research to investigate brain function, neurotransmitter systems, receptor binding, and synaptic activity in healthy and diseased states. PET scans with radiotracers targeting dopamine, serotonin, acetylcholine, and other neurotransmitters provide valuable insights into brain physiology, cognitive function, mood disorders, and neuropsychiatric conditions.

PET imaging is utilized in infectious disease imaging to detect, localize, and monitor the activity of infectious agents and inflammatory processes in various organs and tissues. PET scans with radiotracers such as 18F-FDG, 18F-fluorothymidine (FLT), and 18F-fluoromisonidazole (FMISO) enable the assessment of infection, inflammation, and treatment response in conditions such as tuberculosis, HIV/AIDS, and bacterial or fungal infections. PET imaging is employed in endocrinology for the evaluation of hormone-producing tumors, neuroendocrine tumors, and metabolic disorders. PET scans with radiotracers targeting somatostatin receptors, insulin receptors, and other molecular targets enable the localization, characterization, and staging of endocrine tumors, guiding surgical planning and therapeutic management. PET imaging is used in pulmonology for the evaluation of pulmonary nodules, lung cancer staging, and assessment of pulmonary function. PET scans with radiotracers such as 18F-FDG and 68Ga-DOTATATE enable the differentiation of benign and malignant pulmonary lesions, guiding clinical decision-making in lung cancer diagnosis and treatment. This factor will pace up the demand of the Global Positron Emission Tomography Market.

Growing Emphasis on Early Disease Detection and Personalized Medicine

PET imaging allows for the early detection of diseases at the molecular and cellular levels, often before symptoms manifest or conventional imaging modalities can detect abnormalities. This early detection capability is crucial for improving patient outcomes by enabling timely intervention and treatment initiation when diseases are more treatable and potentially curable. PET scans can detect metabolic changes associated with disease processes, facilitating the identification of disease at its earliest stages. PET imaging can be used for screening individuals at high risk for certain diseases, such as individuals with a family history of cancer or those with genetic predispositions to certain conditions. PET scans can help identify preclinical disease states, stratify individuals based on their risk profiles, and guide personalized screening and prevention strategies tailored to individual patient needs. PET imaging enables the accurate assessment of treatment response and disease progression in real-time. By monitoring changes in metabolic activity, tumor size, and treatment response over time, PET scans help clinicians evaluate the effectiveness of therapeutic interventions, adjust treatment regimens accordingly, and optimize patient care. Early identification of treatment response or lack thereof allows for timely adjustments in treatment plans, potentially improving patient outcomes and quality of life.

PET imaging plays a key role in the era of personalized medicine by providing valuable information about disease biology, molecular pathways, and individual patient characteristics. PET scans with specific radiotracers can identify molecular targets, receptor expression patterns, and genetic mutations associated with disease phenotypes, guiding the selection of targeted therapies and personalized treatment approaches tailored to each patient's unique molecular profile. Personalized medicine aims to maximize treatment efficacy, minimize adverse effects, and optimize therapeutic outcomes by customizing treatment strategies based on individual patient factors and disease characteristics. PET imaging is increasingly used in clinical trials and drug development to assess drug efficacy, pharmacokinetics, and pharmacodynamics in vivo. PET scans provide quantitative measurements of drug distribution, target engagement, and biological response to therapeutic interventions, facilitating the development of novel drugs, biologics, and targeted therapies for a wide range of diseases. PET imaging endpoints in clinical trials help accelerate the drug development process, streamline regulatory approval pathways, and bring innovative treatments to patients more quickly. This factor will accelerate the demand of the Global Positron Emission Tomography Market

Key Market Challenges

Competition from Alternative Imaging Modalities

Alternative imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, and single-photon emission computed tomography (SPECT) have witnessed significant advancements in recent years. These modalities offer improved image resolution, faster scanning times, and enhanced anatomical and functional imaging capabilities, posing competition to PET imaging systems. PET imaging is often more expensive than other imaging modalities, including MRI and CT. Cost considerations play a crucial role in the selection of imaging modalities by healthcare providers, payers, and patients. In cost-sensitive environments, the higher cost of PET imaging may limit its widespread adoption and utilization, particularly in resource-constrained settings or for routine diagnostic imaging studies.

Access to PET imaging facilities may be limited in certain regions or healthcare settings compared to other imaging modalities that are more widely available and accessible. The geographical distribution of PET centers, equipment availability, and infrastructure requirements may influence the choice of imaging modalities by healthcare providers and patients, affecting market demand for PET imaging services. The choice of imaging modality depends on the clinical indications, diagnostic needs, and specific requirements of each patient and medical condition. While PET imaging offers unique advantages in functional and molecular imaging, alternative modalities may be more suitable for certain clinical indications, anatomical imaging studies, or specific patient populations, leading to competition between imaging modalities based on clinical utility and diagnostic accuracy.

Market Fragmentation and Consolidation

The PET market is characterized by the presence of multiple manufacturers, service providers, and stakeholders, leading to market fragmentation. Numerous companies compete for market share, offering a variety of PET imaging systems, radiopharmaceuticals, and related services. This fragmentation can lead to pricing pressures, product commoditization, and challenges in market differentiation. Intense competition among PET manufacturers and service providers can result in pricing pressures and margin compression. Companies may engage in price wars, discounting strategies, and promotional activities to gain market share, leading to reduced profitability and financial viability for some players in the market. Pricing pressures may also affect investment decisions, research and development efforts, and innovation in the PET market.

Healthcare providers, imaging centers, and medical institutions have diverse needs, preferences, and requirements when selecting PET imaging systems and services. Market fragmentation complicates the decision-making process for customers, who must evaluate and compare various products, features, and pricing options from multiple vendors. This diversity of customer needs and preferences can create challenges for PET manufacturers and service providers in addressing market demand and maintaining customer satisfaction. Market consolidation through mergers, acquisitions, and strategic partnerships is a prominent trend in the PET market. Larger companies seek to expand their market presence, diversify their product portfolios, and achieve economies of scale through consolidation activities. Market consolidation can result in reduced competition, increased market concentration, and barriers to entry for new players, potentially limiting innovation and choice in the PET market.

Key Market Trends

Focus on Cost-effectiveness

Healthcare systems globally are under pressure to contain costs while improving patient outcomes and quality of care. As PET imaging becomes more widely utilized in clinical practice, there is a growing emphasis on optimizing resource allocation, reducing healthcare expenditures, and maximizing the value of healthcare services, including PET scans. The shift towards value-based healthcare models incentivizes healthcare providers to deliver high-quality care at lower costs. PET imaging plays a crucial role in value-based care by enabling early disease detection, personalized treatment approaches, and improved patient outcomes. Emphasizing cost-effectiveness ensures that PET imaging services deliver meaningful clinical benefits while minimizing unnecessary healthcare spending.

Reimbursement policies, payment models, and healthcare financing mechanisms are evolving to promote cost-effective care delivery and incentivize efficient resource utilization. Payers, including government agencies, private insurers, and healthcare systems, may implement reimbursement strategies that prioritize cost-effective interventions, encourage appropriate utilization of PET imaging, and align financial incentives with value-based outcomes. Health technology assessment processes evaluate the clinical effectiveness, safety, and cost-effectiveness of medical technologies, including PET imaging systems and services. HTA informs healthcare decision-making, resource allocation, and coverage determinations by assessing the value proposition of PET imaging in relation to alternative diagnostic modalities, treatment strategies, and healthcare interventions.

Segmental Insights

Product Type Insights

The Full Ring PET Scanner segment is projected to experience rapid growth in the Global Positron Emission Tomography Market during the forecast period. Full Ring PET scanners offer superior image quality and spatial resolution compared to partial ring or segmented PET scanners. The full ring design allows for more complete sampling of the entire field of view, resulting in higher sensitivity and better image quality, which is essential for accurate diagnosis and interpretation of PET scans. The improved image quality and resolution provided by full ring PET scanners enable more accurate detection, localization, and characterization of abnormalities, lesions, and metabolic activity in various organs and tissues.

This enhanced diagnostic accuracy is particularly valuable in oncology, neurology, and cardiology, where precise anatomical and functional information is critical for clinical decision-making. Full ring PET scanners support a wide range of clinical applications, including oncology staging and restaging, neurology imaging for dementia and neurodegenerative disorders, cardiology evaluation for myocardial perfusion and viability, and research applications in drug development and molecular imaging. The versatility and flexibility of full ring PET scanners make them suitable for diverse clinical and research settings, driving their adoption and utilization across different specialties.

Application Insights

The Cardiology segment is projected to experience significant dominance in the Global Positron Emission Tomography Market during the forecast period. Cardiovascular diseases (CVDs) such as coronary artery disease, heart failure, and myocardial infarction are significant contributors to morbidity and mortality worldwide. With the aging population and changes in lifestyle factors, the incidence of CVDs is rising globally, driving the demand for advanced diagnostic technologies like PET imaging. Early detection and accurate diagnosis of cardiovascular conditions are crucial for effective management and prevention of complications. PET imaging offers superior sensitivity and specificity for detecting myocardial perfusion defects, assessing myocardial viability, and evaluating myocardial metabolism, making it valuable for early diagnosis and risk stratification in cardiology patients.

Technological advancements in PET imaging systems, radiopharmaceuticals, and image processing techniques have improved the diagnostic accuracy and clinical utility of cardiac PET imaging. Hybrid imaging modalities such as PET/CT and PET/MRI enable comprehensive assessment of cardiac anatomy, function, and metabolism, enhancing the diagnostic capabilities of PET in cardiology. There is growing clinical evidence supporting the use of cardiac PET imaging for various applications in cardiology, including assessment of myocardial perfusion, myocardial viability, coronary artery disease, and cardiac sarcoidosis. Clinical guidelines and recommendations endorse the use of PET imaging in specific cardiac indications, further driving its adoption and utilization in clinical practice.

Regional Insights

North America emerged as the dominant player in the Global Positron Emission Tomography Market in 2023. North America, particularly the United States, is a hub for technological innovation and research in the medical imaging field. Many leading PET scanner manufacturers and research institutions are based in North America, contributing to the region's technological advancements and leadership in PET imaging. North America has one of the highest healthcare expenditures globally, with significant investments in advanced medical technologies and imaging modalities like PET. The availability of financial resources and funding for healthcare infrastructure and research enables widespread adoption and utilization of PET imaging systems in North America. North America benefits from a robust research and development ecosystem, with collaboration among academic institutions, healthcare providers, industry stakeholders, and government agencies. This collaborative environment fosters innovation in PET imaging technology, radiopharmaceutical development, and clinical applications.

Key Market Players

GE HealthCare Technologies Inc.

Toshiba Corporation

Koninklijke Philips N.V.

Siemens Healthineers AG

Hitachi Medical Corporation

Positron Corporation

Mediso Ltd.

Yangzhou Kindsway Biotech Co., Ltd.

Report Scope:

In this report, the Global Positron Emission Tomography Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Positron Emission Tomography Market, By Product Type:

    Full Ring PET Scanner Partial Ring PET Scanner

Positron Emission Tomography Market, By Application:

    Oncology Cardiology Neurology Others

Positron Emission Tomography Market, By End User:

    Hospitals Diagnostic Centres Research Institutes Others

Positron Emission Tomography Market, By Region:

    North America

United States

Canada

Mexico

    Europe

Germany

United Kingdom

France

Italy

Spain

    Asia-Pacific

China

Japan

India

Australia

South Korea

    South America

Brazil

Argentina

Colombia

    Middle East & Africa

South Africa

Saudi Arabia

UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Positron Emission Tomography Market.

Available Customizations:

Global Positron Emission Tomography market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Positron Emission Tomography Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Product Type (Full Ring PET Scanner, Partial Ring PET Scanner)
    • 5.2.2. By Application (Oncology, Cardiology, Neurology, Others)
    • 5.2.3. By End User (Hospitals, Diagnostic Centres, Research Institutes, others)
    • 5.2.4. By Region
    • 5.2.5. By Company (2023)
  • 5.3. Market Map

6. North America Positron Emission Tomography Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Product Type
    • 6.2.2. By Application
    • 6.2.3. By End User
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Positron Emission Tomography Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Product Type
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By End User
    • 6.3.2. Canada Positron Emission Tomography Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Product Type
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By End User
    • 6.3.3. Mexico Positron Emission Tomography Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Product Type
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By End User

7. Europe Positron Emission Tomography Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Product Type
    • 7.2.2. By Application
    • 7.2.3. By End User
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Positron Emission Tomography Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Product Type
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By End User
    • 7.3.2. United Kingdom Positron Emission Tomography Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Product Type
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By End User
    • 7.3.3. Italy Positron Emission Tomography Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Product Type
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By End User
    • 7.3.4. France Positron Emission Tomography Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Product Type
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By End User
    • 7.3.5. Spain Positron Emission Tomography Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Product Type
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By End User

8. Asia-Pacific Positron Emission Tomography Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Product Type
    • 8.2.2. By Application
    • 8.2.3. By End User
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Positron Emission Tomography Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Product Type
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By End User
    • 8.3.2. India Positron Emission Tomography Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Product Type
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By End User
    • 8.3.3. Japan Positron Emission Tomography Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Product Type
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By End User
    • 8.3.4. South Korea Positron Emission Tomography Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Product Type
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By End User
    • 8.3.5. Australia Positron Emission Tomography Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Product Type
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By End User

9. South America Positron Emission Tomography Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Product Type
    • 9.2.2. By Application
    • 9.2.3. By End User
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Positron Emission Tomography Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Product Type
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By End User
    • 9.3.2. Argentina Positron Emission Tomography Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Product Type
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By End User
    • 9.3.3. Colombia Positron Emission Tomography Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Product Type
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By End User

10. Middle East and Africa Positron Emission Tomography Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Product Type
    • 10.2.2. By Application
    • 10.2.3. By End User
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Positron Emission Tomography Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Product Type
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By End User
    • 10.3.2. Saudi Arabia Positron Emission Tomography Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Product Type
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By End User
    • 10.3.3. UAE Positron Emission Tomography Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Product Type
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Product

14. Competitive Landscape

  • 14.1. GE HealthCare Technologies Inc.
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (As Reported)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. Toshiba Corporation
  • 14.3. Koninklijke Philips N.V.
  • 14.4. Siemens Healthineers AG
  • 14.5. Hitachi Medical Corporation
  • 14.6. Positron Corporation
  • 14.7. Mediso Ltd.
  • 14.8. Yangzhou Kindsway Biotech Co., Ltd.

15. Strategic Recommendations

16. About Us & Disclaimer