デフォルト表紙
市場調査レポート
商品コード
1406369

水力タービン市場- 世界の産業規模、シェア、動向、機会、予測、タイプ別、容量別、用途別、地域別、競合別、2018年~2028年

Hydropower Turbine Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Capacity, By Application, By Region, By Competition, 2018-2028

出版日: | 発行: TechSci Research | ページ情報: 英文 180 Pages | 納期: 2~3営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=156.76円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

水力タービン市場- 世界の産業規模、シェア、動向、機会、予測、タイプ別、容量別、用途別、地域別、競合別、2018年~2028年
出版日: 2023年11月07日
発行: TechSci Research
ページ情報: 英文 180 Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 目次
概要

水力タービンの世界市場は2022年に25億7,000万米ドルと評価され、2028年までのCAGRは4.40%で、予測期間中に力強い成長が予測されています。

水力タービン市場とは、世界のエネルギー産業の中で、水の運動エネルギーから発電するために特別に設計されたタービンの設計、製造、設置、メンテナンスに重点を置く分野を指します。これらのタービンは、河川、ダム、滝など、流れる水のエネルギーを利用して電力を生産する水力発電所に不可欠な部品です。

水力発電用タービンは、水の力学的エネルギーを電気エネルギーに変換するプロセスに不可欠です。水力タービンには、フランシス・タービン、ペルトン・タービン、カプラン・タービンなどさまざまなタイプがあり、それぞれ特定の水流条件や水頭レベルに合わせて調整されています。市場には、タービンメーカー、エンジニアリング会社、電力会社、水力発電プロジェクトの計画・規制・推進に関わる政府機関など、幅広い利害関係者が含まれます。

市場概要
予測期間 2024-2028
市場規模 25億7,000万米ドル
2028年の市場規模 34億9,000万米ドル
CAGR 2023-2028 4.40%
急成長セグメント 電力貯蔵
最大市場 アジア太平洋

水力タービン市場は、再生可能エネルギーへの世界の移行において極めて重要な役割を果たし、温室効果ガスの排出削減とクリーンで持続可能な電力の供給に貢献しています。水力発電は、環境影響の緩和、老朽化したインフラの近代化、効率と環境持続可能性を高めるための技術革新の必要性といった課題に直面しています。とはいえ、世界的にクリーンエネルギー発電の重要な原動力であることに変わりはないです。

緩和への取り組み:

これらの環境問題に対処するには、慎重な計画と緩和策が必要です。魚に優しいタービンや魚道など、魚に優しいタービン設計が開発・実施されており、魚の通行を容易にし、水生生物への影響を軽減しています。さらに、環境影響評価と徹底的なモニタリングは、責任ある水力発電プロジェクト開発の重要な要素です。

持続可能性とライセンシングの課題:

水力発電プロジェクトの承認とライセンシングは、環境の持続可能性を証明する必要があるため、時間がかかり、困難な課題です。プロジェクトによっては、生態系への潜在的な害を懸念する環境保護団体や地域社会からの反対に直面することもあります。クリーンエネルギーへのニーズと環境保護のバランスを取ることは、水力発電業界にとって継続的な課題です。

インフラの老朽化とリハビリの必要性

世界の水力タービン市場におけるもう一つの重要な課題は、既存の水力発電施設のインフラの老朽化と、それに伴う改修・近代化の必要性です。

水力発電インフラの老朽化:

世界中の多くの水力発電施設は数十年前に建設され、現在では老朽化の兆候が見られます。これらの施設が老朽化するにつれて、効率は低下し、維持コストも高くなります。時代遅れのタービン技術は、エネルギー出力の低下、メンテナンスコストの上昇、信頼性の低下を招く可能性があります。

近代化の要件

この課題に対処するため、政府と水力発電事業者は、既存施設の近代化と復旧に投資しなければならないです。これには多くの場合、効率と信頼性を向上させるためのタービン、制御システム、およびその他のコンポーネントのアップグレードが含まれます。近代化の努力は、魚に優しいタービン設計の導入や水管理方法の改善など、環境性能の向上にも重点を置くことがあります。

財政的および技術的課題:

近代化プロジェクトは複雑で費用がかかる場合があり、財政的、技術的な課題があります。このようなプロジェクトの資金調達は、特に、継続的なメンテナンスとアップグレードをサポートするための収益が得られていない可能性のある古い施設にとっては、障壁となる可能性があります。さらに、古い施設を先進的なタービン技術で改修するには、かなりのエンジニアリングと技術的専門知識が必要になる場合もあります。

保全とアップグレードのバランス:

もう一つの課題は、古い水力発電施設の歴史的・文化的価値の保存と、技術的アップグレードの必要性のバランスを取ることです。一部の古いダムは歴史的建造物と見なされており、その保存は重要であるが、継続的な機能性と現代の環境基準への適合を確保しながら行わなければならないです。

結論として、世界の水力タービン市場は、既存の水力発電施設の老朽化だけでなく、環境や生態系への懸念に関連する課題に直面しています。こうした課題に対処するには、責任あるプロジェクト開発、緩和策、近代化への取り組み、クリーンエネルギーの必要性と環境保全のバランスを取る方法の発見など、多面的なアプローチが必要です。これらの課題を克服することは、信頼できるクリーンな電力源としての水力発電産業の継続的な成長と持続可能性にとって不可欠です。

セグメント別洞察

リアクティブ・インサイト

リアクティブ(反応型、フランシスとも呼ばれる)セグメントは、2022年に最大の市場シェアを占めました。フランシス水車は汎用性が高く、幅広い流量と揚程で効果的に運転できます。この適応性により、低水頭から高水頭までの幅広い水力発電プロジェクトに適しています。流量条件の変化に柔軟に対応できることは、利用可能な水量が変動する地域では大きな利点となります。フランシス水車は、その効率で有名です。流れる水の運動エネルギーの大部分を電力に変換することができます。この高い効率は、与えられた水源からのエネルギー出力を最大化し、投資収益率を最適化するため、水力発電開発者にとって魅力的です。フランシス水車は、さまざまな負荷条件下で安定した予測可能な性能を発揮します。水流や負荷需要の変化に適応できるため、連続発電の信頼性が高いです。この安定性は、送電網の信頼性を維持し、エネルギー需要を満たすために不可欠です。フランシス水車は何十年も前から使用されており、継続的な改良が加えられてきました。その設計と製造プロセスは確立されており、高品質で耐久性のあるタービンの製造につながっています。このような技術の成熟が、市場での優位性につながっています。フランシス・タービンは適応性が高いため、さまざまな地域や気候条件に対応できます。高揚程の水力発電が可能な山岳地帯から、低揚程の河川をベースとしたプロジェクトまで、さまざまな環境で使用されています。フランシス水車は、その普及、成熟した技術、効率性から、費用対効果が高いと見なされることが多いです。実績が証明されているため、リスクを最小限に抑え、プロジェクトの経済性を最適化したいプロジェクト開発者にとっては魅力的な選択肢です。規制機関や政府は、水力発電プロジェクトに関するガイドラインや基準を設けていることが多いです。フランシス水車は、よく理解され、広く受け入れられている技術であるため、規制当局の承認を受けやすく、プロジェクトの許認可プロセスが簡素化される傾向にあります。

発電事業の洞察

2022年には、発電分野が最大の市場シェアを占めました。水力発電は、1世紀以上にわたって信頼性が高く実績のある発電源です。水力発電は、再生可能エネルギーの中で最も古く確立された形態の一つです。その結果、ダム、貯水池、水力発電所を含む水力発電のインフラは広範囲に開発され、水力タービンの主要な用途となっています。水力発電プロジェクトは、大きな水頭を持つ高山地帯から低地の河川システムまで、幅広い地理的位置で開発することができます。この多様性は、水力発電資源が世界各地に豊富にあることを意味し、発電における水力発電の優位性に寄与しています。水力タービンは、信頼性が高く安定した発電を提供します。天候に左右され断続的な風力や太陽光などの他の再生可能エネルギーとは異なり、水力発電は必要に応じて制御し、配電することができます。この安定性により、ベースロード発電やピーキング発電に理想的な電源となり、安定した電力供給を保証します。水力タービンは、流れる水の運動エネルギーを電気に変換する効率が高いことで知られています。90%をはるかに超える効率レベルを達成することができるため、費用対効果が高く、エネルギー効率の高い発電の選択肢となっています。いったん水力発電所が建設されれば、その運転・維持コストは化石燃料を使用する発電所と比べて比較的低いです。この費用対効果の高さが、発電コストの削減を目指す電力会社や政府にとって、水力発電を魅力的な選択肢にしています。水力発電は、クリーンで環境に優しいエネルギー源です。運転中に温室効果ガスを直接排出することはなく、他の多くの発電形態と比べて環境フットプリントは最小です。この環境面での利点は、気候変動と闘い、大気汚染を減らすための世界の取り組みと一致しています。水力発電所とそれに付随するタービンのライフサイクルは長く、適切なメンテナンスが行われていれば50年を超えることも多いです。この長期的な信頼性と耐久性は、安定した永続的な電力源を求める投資家や電力会社にとって魅力的です。水力発電は、電力需要の変動に素早く対応できるため、送電網に安定性をもたらします。負荷追従に利用することができ、送電網の信頼性を維持し、需要と供給のバランスをとるのに役立ちます。多くの国々には未開発の水力発電の可能性があり、新たな水力発電プロジェクトを開発するチャンスがあります。世界のエネルギー需要が増加し続ける中、政府や電力会社は水力発電容量の拡大を模索しています。多くの政府は、再生可能エネルギーや環境政策の一環として、水力発電にインセンティブを与え、推進しています。支持的な規制の枠組み、補助金、インセンティブは、発電のための水力発電プロジェクトの開発を後押ししています。

.

地域別インサイト

アジア太平洋:

アジア太平洋地域では、先進国と発展途上国の両方から水力発電用タービンの需要が伸びています。この地域には大規模な水力発電プロジェクトが数多くあり、さらに多くのプロジェクトが開発中です。アジア太平洋水力タービン市場の主な動向は以下の通り:

再生可能エネルギー開発への注目の高まり

水力発電開発を促進する政府の取り組み

タービンの設計と製造プロセスにおける技術の進歩

北米:

北米:北米の水力タービン市場は、再生可能エネルギー開発への注目の高まりにより、今後数年間で大きな成長が見込まれます。米国政府は水力発電開発に多額の投資を行っており、同国では多数の新規水力発電プロジェクトが開発中です。

欧州

欧州の水力タービン市場は、今後数年間は緩やかな成長が見込まれます。欧州の水力タービン市場の主な動向は以下の通り:

再生可能エネルギー開発への注目の高まり

既存の水力発電所の改修

新しい水力発電技術の開発

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 顧客の声

第5章 水力タービンの世界市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェアと予測
    • タイプ別(リアクティブ、インパルス、グラビティ、その他)
    • 容量別(1MW未満、1~10MW、10MW以上)、
    • 用途別(発電、電力貯蔵、海洋、航空)
    • 地域別
    • 企業別(2022年)
  • 市場マップ

第6章 北米の水力タービン市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 容量別
    • 用途別
    • 国別
  • 北米国別分析
    • 米国
    • カナダ
    • メキシコ

第7章 欧州の水力タービン市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェアと予測
    • タイプ別
    • 容量別
    • 用途別
    • 国別
  • 欧州国別分析
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン

第8章 アジア太平洋の水力タービン市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェアと予測
    • タイプ別
    • 容量別
    • 用途別
    • 国別
  • アジア太平洋地域国別分析
    • 中国
    • インド
    • 日本
    • 韓国
    • オーストラリア

第9章 南米の水力タービン市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェアと予測
    • タイプ別
    • 容量別
    • 用途別
    • 国別
  • 南米:国別分析
    • ブラジル
    • アルゼンチン
    • コロンビア

第10章 中東・アフリカの水力タービン市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェアと予測
    • タイプ別
    • 容量別
    • 用途別
    • 国別
  • 中東・アフリカ:国別分析
    • 南アフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • クウェート
    • トルコ

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

第13章 企業プロファイル

  • General Electric Company
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Voith Group
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Andritz AG
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Siemens Energy AG
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Harbin Electric Corporation
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Dongfang Electric Machinery Co. Ltd
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Hitachi Ltd
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Mitsubishi Heavy Industries Ltd
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Toshiba Corp.
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • GE Renewable Energy
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered

第14章 戦略的提言

第15章 調査会社について・免責事項

目次
Product Code: 19831

Global Hydropower Turbine Market was valued at USD 2.57 billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 4.40% through 2028.

The hydropower turbine market refers to the sector within the global energy industry that focuses on the design, manufacturing, installation, and maintenance of turbines specifically engineered for the generation of electricity from the kinetic energy of flowing water. These turbines are integral components of hydropower plants, which harness the energy of moving water, such as rivers, dams, and waterfalls, to produce electrical power.

Hydropower turbines are essential in the process of converting the mechanical energy of water into electrical energy. They come in various types, including Francis, Pelton, and Kaplan turbines, each tailored for specific water flow conditions and head levels. The market encompasses a wide range of stakeholders, including turbine manufacturers, engineering firms, utilities, and government agencies involved in the planning, regulation, and promotion of hydropower projects.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 2.57 Billion
Market Size 2028USD 3.49 Billion
CAGR 2023-20284.40%
Fastest Growing SegmentPower Storage
Largest MarketAsia-Pacific

The hydropower turbine market plays a pivotal role in the global transition to renewable energy sources, contributing to the reduction of greenhouse gas emissions and the provision of clean, sustainable electricity. It faces challenges related to environmental impact mitigation, modernization of aging infrastructure, and the need for innovation to enhance efficiency and environmental sustainability. Nevertheless, it remains a key driver of clean energy generation worldwide.

Key Market Drivers

Renewable Energy Transition and Environmental Concerns

The global push for renewable energy sources in the face of climate change and environmental degradation has become a significant driver of the hydropower turbine market. With increasing awareness of the detrimental effects of fossil fuels, governments, businesses, and individuals are seeking cleaner energy alternatives. Hydropower stands out as one of the most established and reliable renewable energy sources, providing a steady and consistent supply of electricity without carbon emissions or pollution. This growing emphasis on sustainability and reducing greenhouse gas emissions is propelling investments in hydropower projects worldwide.

Hydropower's environmentally friendly attributes align with global efforts to combat climate change, and its reliability ensures a stable energy supply, making it an attractive option for governments and utilities looking to reduce their carbon footprints.

Energy Security and Reliability

Energy security and reliability are critical concerns for nations around the world. Unstable energy sources, such as wind and solar, can be intermittent and weather-dependent, which makes grid stability a challenge. In contrast, hydropower provides a consistent and reliable source of electricity, making it an essential driver in the global energy landscape. Hydropower plants can respond quickly to fluctuations in demand, making them valuable assets for grid stability and energy security.

As countries seek to reduce their dependence on imported fossil fuels and enhance their energy resilience, investments in hydropower turbines and infrastructure continue to rise.

Infrastructure Modernization and Rehabilitation

Many existing hydropower facilities around the world are aging and in need of modernization or rehabilitation. This presents a significant driver for the global hydropower turbine market. Governments and utilities recognize the potential to enhance the efficiency, capacity, and lifespan of these facilities by upgrading their turbine systems.

Modern turbine technologies offer improved efficiency, greater power generation, and reduced maintenance costs. Thus, the need to refurbish and upgrade older hydropower plants is boosting demand for new hydropower turbines and associated equipment.

Growing Urbanization and Energy Demand

Rapid urbanization and population growth are driving up global energy demand. As more people move to cities and economies expand, the need for electricity continues to grow. Hydropower is uniquely positioned to meet this escalating demand due to its ability to provide a stable and substantial energy supply.

Emerging economies are particularly keen on harnessing hydropower to support their expanding industrial and residential needs. As a result, investments in new hydropower projects and turbines are on the rise.

Government Incentives and Policies

Government policies and incentives play a pivotal role in shaping the growth of the hydropower turbine market. Many countries offer financial incentives, subsidies, and favorable regulatory frameworks to encourage the development of hydropower projects. These policies can include feed-in tariffs, tax credits, and grants, which attract private sector investments and drive market expansion.

Additionally, governments may set renewable energy targets and emissions reduction goals, further incentivizing the adoption of hydropower as a clean and sustainable energy source.

Technological Advancements and Innovation

Advancements in turbine technology and innovation are transforming the hydropower industry. New turbine designs, materials, and control systems are enhancing efficiency and performance while reducing environmental impacts. Miniaturization and modularization of turbines are making smaller-scale hydropower projects more feasible and cost-effective.

Moreover, the integration of digital technologies, such as predictive maintenance and remote monitoring, is optimizing the operation and maintenance of hydropower turbines, minimizing downtime and maximizing energy output.

In conclusion, the global hydropower turbine market is being driven by a combination of factors, including the renewable energy transition, energy security concerns, infrastructure modernization, urbanization, government policies, and technological advancements. As the world continues to prioritize clean and sustainable energy sources, the demand for hydropower turbines is expected to remain strong in the coming years.

Government Policies are Likely to Propel the Market

Renewable Portfolio Standards (RPS)

Renewable Portfolio Standards, commonly known as RPS or Renewable Energy Standards (RES), are government policies that mandate a certain percentage of electricity generation to come from renewable sources, including hydropower. These standards vary by country and region but typically require utilities to produce a specified portion of their electricity from renewable sources by a certain target year.

RPS policies create a strong incentive for the development of hydropower projects, as they provide a guaranteed market for renewable energy. They encourage the growth of the hydropower turbine market by ensuring a consistent demand for hydropower-generated electricity. To meet these standards, utilities often invest in the construction and upgrading of hydropower plants, leading to increased demand for hydropower turbines and related equipment.

Additionally, RPS policies drive innovation in the hydropower industry by encouraging the adoption of more efficient and environmentally friendly turbine technologies to meet renewable energy goals.

Investment Tax Credits (ITC) and Production Tax Credits (PTC)

Investment Tax Credits (ITC) and Production Tax Credits (PTC) are fiscal incentives provided by governments to promote the development of renewable energy, including hydropower. These policies offer financial incentives to investors, developers, and operators of hydropower projects.

The Investment Tax Credit provides a direct reduction in the income tax liability of those investing in hydropower projects. This tax credit can significantly lower the overall project costs, making hydropower investments more attractive to private investors.

Production Tax Credits, on the other hand, offer a per-kilowatt-hour tax credit for the electricity generated by qualified renewable energy facilities, including hydropower plants. These credits provide ongoing financial support for the operation of hydropower projects, ensuring their long-term viability.

Both ITC and PTC policies stimulate investment in the hydropower turbine market by reducing the financial burden on project developers and investors. This encourages the construction of new hydropower facilities and the modernization of existing ones.

Environmental Regulations and Permitting

Government regulations and permitting processes significantly impact the hydropower turbine market, particularly concerning environmental considerations. Hydropower projects often involve the construction of dams, which can have environmental and ecological implications. Therefore, governments establish stringent regulations and permitting requirements to ensure that hydropower developments are conducted responsibly and sustainably.

Environmental impact assessments, fish passage requirements, and water quality standards are some of the key components of these regulations. Compliance with these regulations often necessitates the installation of advanced turbine technologies and fish-friendly designs, which drive innovation in the hydropower industry.

While these regulations can add complexity and cost to hydropower projects, they also help ensure the long-term sustainability of the industry. Governments may offer incentives or streamlined permitting processes for projects that meet high environmental standards, further incentivizing the use of advanced hydropower turbines and responsible project development.

Research and Development Funding

Government funding for research and development (R&D) in the hydropower sector plays a crucial role in advancing turbine technologies and increasing the efficiency of hydropower generation. Governments often allocate budgets to support R&D initiatives aimed at enhancing the performance, reliability, and environmental sustainability of hydropower turbines.

R&D funding can be directed towards various aspects of hydropower technology, including materials research, turbine design, and control systems. These investments lead to the development of cutting-edge turbine technologies that can increase energy output, reduce maintenance costs, and minimize environmental impacts.

Additionally, government-funded research projects often involve collaboration between academia, industry, and government agencies, fostering innovation and knowledge sharing within the hydropower turbine market.

Export Credit Agencies (ECAs) and International Support

Export Credit Agencies are government entities that provide financial and risk mitigation services to domestic companies engaged in international trade and investment. In the context of the hydropower turbine market, ECAs can play a pivotal role in supporting the export of domestically manufactured turbines to foreign markets.

Many governments offer support through their ECAs to promote the export of renewable energy technologies, including hydropower turbines. This support may include financing options, insurance against political and commercial risks, and assistance with market entry strategies.

By facilitating the export of hydropower turbines, governments can boost the domestic manufacturing sector, create jobs, and expand the global reach of their hydropower industry. This policy encourages turbine manufacturers to invest in research and development, quality control, and competitiveness in the global marketplace.

Renewable Energy Subsidies and Incentive Programs

Renewable energy subsidies and incentive programs are critical government policies that directly impact the hydropower turbine market. These programs are designed to reduce the financial barriers associated with hydropower project development and encourage the adoption of renewable energy.

Subsidies may include grants, low-interest loans, or direct financial incentives for the construction and operation of hydropower plants. Incentive programs often provide financial rewards for each unit of electricity generated from renewable sources, such as feed-in tariffs, which guarantee a fixed payment per kilowatt-hour of hydropower electricity produced.

These policies stimulate investment in hydropower projects by making them more economically viable. They create a predictable revenue stream for project developers and operators, which, in turn, drives demand for hydropower turbines and encourages the expansion of hydropower capacity.

In conclusion, government policies have a profound impact on the global hydropower turbine market. Renewable Portfolio Standards, tax incentives, environmental regulations, research funding, export support, and subsidies all play crucial roles in shaping the growth, innovation, and sustainability of the hydropower industry worldwide. These policies are essential drivers for meeting renewable energy goals and mitigating climate change through the adoption of clean and sustainable hydropower technologies.

Key Market Challenges

Environmental and Ecological Concerns

The global hydropower turbine market, while crucial for sustainable energy generation, is not without its challenges. One of the most significant challenges pertains to environmental and ecological concerns associated with the construction and operation of hydropower projects.

Environmental Impact on Waterways:

Hydropower projects typically involve the construction of dams and reservoirs to regulate water flow, which can have a range of environmental impacts. Large dams can disrupt natural river ecosystems, altering the flow of sediment and nutrients downstream, and potentially harming aquatic life. The creation of reservoirs often results in the flooding of land, which can displace local communities and affect terrestrial ecosystems. Additionally, changes in water temperature and flow can impact the breeding and migration patterns of fish, potentially leading to declines in fish populations.

Mitigation Efforts:

Addressing these environmental concerns requires careful planning and mitigation measures. Fish-friendly turbine designs, such as fish-friendly turbines and fish ladders, are being developed and implemented to facilitate fish passage and reduce the impact on aquatic life. Additionally, environmental impact assessments and thorough monitoring are critical components of responsible hydropower project development.

Sustainability and Licensing Challenges:

The approval and licensing of hydropower projects can be time-consuming and challenging due to the need to demonstrate environmental sustainability. Some projects may face opposition from environmental groups and local communities concerned about the potential harm to ecosystems. Balancing the need for clean energy with environmental protection is an ongoing challenge for the industry.

Aging Infrastructure and Rehabilitation Needs

Another significant challenge in the global hydropower turbine market is the aging infrastructure of existing hydropower facilities and the associated need for rehabilitation and modernization.

Aging Hydropower Infrastructure:

Many hydropower facilities around the world were constructed several decades ago and are now showing signs of aging. As these facilities deteriorate, they become less efficient and more costly to maintain. Outdated turbine technologies may result in lower energy output, higher maintenance costs, and reduced reliability.

Modernization Requirements:

To address this challenge, governments and hydropower operators must invest in the modernization and rehabilitation of existing facilities. This often involves upgrading turbines, control systems, and other components to improve efficiency and reliability. Modernization efforts may also focus on enhancing environmental performance, such as implementing fish-friendly turbine designs and improving water management practices.

Financial and Technical Challenges:

Modernization projects can be complex and costly, presenting financial and technical challenges. Funding such projects can be a barrier, especially for older facilities that may not have generated revenue to support ongoing maintenance and upgrades. Additionally, retrofitting older facilities with advanced turbine technology may require significant engineering and technical expertise.

Balancing Preservation and Upgrades:

Another challenge is striking a balance between preserving the historical and cultural value of older hydropower facilities and the need for technological upgrades. Some older dams are considered historical landmarks, and their preservation is important, but this must be done while ensuring their continued functionality and compliance with modern environmental standards.

In conclusion, the global hydropower turbine market faces challenges related to environmental and ecological concerns, as well as the aging infrastructure of existing hydropower facilities. Addressing these challenges requires a multi-faceted approach that includes responsible project development, mitigation measures, modernization efforts, and finding ways to balance the need for clean energy with environmental preservation. Overcoming these challenges is essential for the continued growth and sustainability of the hydropower industry as a reliable and clean source of electricity.

Segmental Insights

Reactive Insights

The Reactive (Reactive also known as Francis) segment held the largest Market share in 2022. Francis turbines are highly versatile and can operate effectively across a wide range of water flow rates and heads. This adaptability makes them suitable for a broad spectrum of hydropower projects, from low-head to high-head applications. Their flexibility in handling varying flow conditions is a significant advantage in regions with fluctuating water availability. Francis turbines are renowned for their efficiency. They can convert a significant portion of the kinetic energy from flowing water into electricity. This high efficiency is attractive to hydropower developers because it maximizes the energy output from a given water source, optimizing the return on investment. Francis turbines provide stable and predictable performance under varying load conditions. They can adapt to changes in water flow and load demand, making them reliable for continuous power generation. This stability is essential for maintaining grid reliability and meeting energy demand. Francis turbines have been in use for many decades and have undergone continuous improvement. Their design and manufacturing processes are well-established, leading to the production of high-quality and durable turbines. This maturity in technology contributes to their dominance in the market. The adaptability of Francis turbines allows them to be used in a wide range of geographic locations and climate conditions. They are found in various settings, from mountainous regions with high-head hydropower potential to river-based projects with lower heads. Francis turbines are often considered cost-effective due to their widespread use, mature technology, and efficiency. Their proven track record makes them an attractive choice for project developers looking to minimize risks and optimize project economics. Regulatory bodies and governments often have established guidelines and standards for hydropower projects. Francis turbines, being a well-understood and widely accepted technology, tend to receive regulatory approval more readily, simplifying the permitting and licensing process for projects.

Power Generation Insights

The Power Generation segment held the largest Market share in 2022. Hydropower has been a reliable and proven source of electricity generation for over a century. It represents one of the oldest and most established forms of renewable energy. As a result, the infrastructure for hydropower generation, including dams, reservoirs, and hydropower plants, has been extensively developed, making it the leading application for hydropower turbines. Hydropower projects can be developed in a wide range of geographical locations, from high mountainous regions with significant heads to lowland river systems. This versatility means that hydropower resources are abundant in many parts of the world, contributing to its dominance in power generation. Hydropower turbines provide reliable and consistent electricity generation. Unlike some other renewable sources, such as wind and solar, which are weather-dependent and intermittent, hydropower can be controlled and dispatched as needed. This stability makes it an ideal source for baseload and peaking power generation, ensuring a steady supply of electricity. Hydropower turbines are known for their high efficiency in converting the kinetic energy of flowing water into electricity. They can achieve efficiency levels well above 90%, making them a cost-effective and energy-efficient choice for power generation. Once hydropower plants are constructed, their operating and maintenance costs are relatively low compared to fossil fuel-based power plants. This cost-effectiveness makes hydropower an attractive option for utilities and governments aiming to reduce electricity production costs. Hydropower is a clean and environmentally friendly source of energy. It produces no direct greenhouse gas emissions during operation and has a minimal environmental footprint compared to many other forms of electricity generation. This environmental advantage aligns with global efforts to combat climate change and reduce air pollution. Hydropower plants and their associated turbines have long lifecycles, often exceeding 50 years with proper maintenance. This long-term reliability and durability are attractive to investors and utilities seeking a stable and enduring source of electricity. Hydropower provides grid stability due to its ability to respond quickly to fluctuations in electricity demand. It can be used for load following, helping to maintain grid reliability and balance supply and demand. Many countries have untapped hydroelectric potential, meaning there are opportunities to develop new hydropower projects. As global energy demand continues to rise, governments and utilities are exploring the expansion of hydropower capacity. Many governments incentivize and promote hydropower as part of their renewable energy and environmental policies. Supportive regulatory frameworks, subsidies, and incentives encourage the development of hydropower projects for electricity generation.

.

Regional Insights

Asia-Pacific:

The Asia-Pacific region is witnessing a growing demand for hydropower turbines from both developed and developing countries. The region is home to a number of large hydroelectric projects, and many more are under development. The key trends in the Asia-Pacific hydropower turbine market include:

Increasing focus on renewable energy development.

Government initiatives promoting hydropower development.

Technological advancements in turbine designs and manufacturing processes

North America:

The North American hydropower turbine market is expected to witness significant growth in the coming years, driven by the increasing focus on renewable energy development. The US government is investing heavily in hydropower development, and a number of new hydroelectric projects are under development in the country.

Europe:

The European hydropower turbine market is expected to grow at a moderate pace in the coming years. The key trends in the European hydropower turbine market include:

Increasing focus on renewable energy development

Refurbishment of existing hydropower plants

Development of new hydropower technologies

Key Market Players

General Electric Company

Voith Group

Andritz AG

Siemens Energy AG

Harbin Electric Corporation

Dongfang Electric Machinery Co. Ltd

Hitachi Ltd

Mitsubishi Heavy Industries Ltd

Toshiba Corp.

GE Renewable Energy.

Report Scope:

In this report, the Global Hydropower Turbine Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Hydropower Turbine Market, By Type:

  • Reactive
  • Impulse
  • Gravity
  • Others

Hydropower Turbine Market, By Application:

  • Power Generation
  • Power Storage
  • Marine
  • Aeronautics

Hydropower Turbine Market, By Capacity:

  • Less than 1 MW
  • Between 1 - 10 MW
  • Above 10 MW

Hydropower Turbine Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait
  • Turkey

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Hydropower Turbine Market.

Available Customizations:

  • Global Hydropower Turbine Market report with the given Market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional Market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Voice of Customer

5. Global Hydropower Turbine Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Reactive, Impulse, Gravity, Others),
    • 5.2.2. By Capacity (Less than 1 MW, Between 1 - 10 MW, Above 10 MW),
    • 5.2.3. By Application (Power Generation, Power Storage, Marine, Aeronautics)
    • 5.2.4. By Region
    • 5.2.5. By Company (2022)
  • 5.3. Market Map

6. North America Hydropower Turbine Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Capacity
    • 6.2.3. By Application
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Hydropower Turbine Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Capacity
        • 6.3.1.2.3. By Application
    • 6.3.2. Canada Hydropower Turbine Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Capacity
        • 6.3.2.2.3. By Application
    • 6.3.3. Mexico Hydropower Turbine Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Capacity
        • 6.3.3.2.3. By Application

7. Europe Hydropower Turbine Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Capacity
    • 7.2.3. By Application
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Hydropower Turbine Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Capacity
        • 7.3.1.2.3. By Application
    • 7.3.2. United Kingdom Hydropower Turbine Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Capacity
        • 7.3.2.2.3. By Application
    • 7.3.3. Italy Hydropower Turbine Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Capacity
        • 7.3.3.2.3. By Application
    • 7.3.4. France Hydropower Turbine Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Capacity
        • 7.3.4.2.3. By Application
    • 7.3.5. Spain Hydropower Turbine Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Capacity
        • 7.3.5.2.3. By Application

8. Asia-Pacific Hydropower Turbine Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Capacity
    • 8.2.3. By Application
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Hydropower Turbine Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Capacity
        • 8.3.1.2.3. By Application
    • 8.3.2. India Hydropower Turbine Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Capacity
        • 8.3.2.2.3. By Application
    • 8.3.3. Japan Hydropower Turbine Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Capacity
        • 8.3.3.2.3. By Application
    • 8.3.4. South Korea Hydropower Turbine Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Capacity
        • 8.3.4.2.3. By Application
    • 8.3.5. Australia Hydropower Turbine Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Capacity
        • 8.3.5.2.3. By Application

9. South America Hydropower Turbine Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Capacity
    • 9.2.3. By Application
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Hydropower Turbine Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Capacity
        • 9.3.1.2.3. By Application
    • 9.3.2. Argentina Hydropower Turbine Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Capacity
        • 9.3.2.2.3. By Application
    • 9.3.3. Colombia Hydropower Turbine Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Capacity
        • 9.3.3.2.3. By Application

10. Middle East and Africa Hydropower Turbine Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Capacity
    • 10.2.3. By Application
    • 10.2.4. By Country
  • 10.3. Middle East and Africa: Country Analysis
    • 10.3.1. South Africa Hydropower Turbine Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Capacity
        • 10.3.1.2.3. By Application
    • 10.3.2. Saudi Arabia Hydropower Turbine Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Capacity
        • 10.3.2.2.3. By Application
    • 10.3.3. UAE Hydropower Turbine Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Capacity
        • 10.3.3.2.3. By Application
    • 10.3.4. Kuwait Hydropower Turbine Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type
        • 10.3.4.2.2. By Capacity
        • 10.3.4.2.3. By Application
    • 10.3.5. Turkey Hydropower Turbine Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Type
        • 10.3.5.2.2. By Capacity
        • 10.3.5.2.3. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

13. Company Profiles

  • 13.1. General Electric Company
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. Voith Group
    • 13.2.1. Business Overview
    • 13.2.2. Key Revenue and Financials
    • 13.2.3. Recent Developments
    • 13.2.4. Key Personnel/Key Contact Person
    • 13.2.5. Key Product/Services Offered
  • 13.3. Andritz AG
    • 13.3.1. Business Overview
    • 13.3.2. Key Revenue and Financials
    • 13.3.3. Recent Developments
    • 13.3.4. Key Personnel/Key Contact Person
    • 13.3.5. Key Product/Services Offered
  • 13.4. Siemens Energy AG
    • 13.4.1. Business Overview
    • 13.4.2. Key Revenue and Financials
    • 13.4.3. Recent Developments
    • 13.4.4. Key Personnel/Key Contact Person
    • 13.4.5. Key Product/Services Offered
  • 13.5. Harbin Electric Corporation
    • 13.5.1. Business Overview
    • 13.5.2. Key Revenue and Financials
    • 13.5.3. Recent Developments
    • 13.5.4. Key Personnel/Key Contact Person
    • 13.5.5. Key Product/Services Offered
  • 13.6. Dongfang Electric Machinery Co. Ltd
    • 13.6.1. Business Overview
    • 13.6.2. Key Revenue and Financials
    • 13.6.3. Recent Developments
    • 13.6.4. Key Personnel/Key Contact Person
    • 13.6.5. Key Product/Services Offered
  • 13.7. Hitachi Ltd
    • 13.7.1. Business Overview
    • 13.7.2. Key Revenue and Financials
    • 13.7.3. Recent Developments
    • 13.7.4. Key Personnel/Key Contact Person
    • 13.7.5. Key Product/Services Offered
  • 13.8. Mitsubishi Heavy Industries Ltd
    • 13.8.1. Business Overview
    • 13.8.2. Key Revenue and Financials
    • 13.8.3. Recent Developments
    • 13.8.4. Key Personnel/Key Contact Person
    • 13.8.5. Key Product/Services Offered
  • 13.9. Toshiba Corp.
    • 13.9.1. Business Overview
    • 13.9.2. Key Revenue and Financials
    • 13.9.3. Recent Developments
    • 13.9.4. Key Personnel/Key Contact Person
    • 13.9.5. Key Product/Services Offered
  • 13.10. GE Renewable Energy
    • 13.10.1. Business Overview
    • 13.10.2. Key Revenue and Financials
    • 13.10.3. Recent Developments
    • 13.10.4. Key Personnel/Key Contact Person
    • 13.10.5. Key Product/Services Offered

14. Strategic Recommendations

15. About Us & Disclaimer