表紙:機械学習市場- 世界の産業規模、シェア、動向、機会、予測、2018~2028年:コンポーネント別、企業規模別、デプロイメント別、エンドユーザー別、地域別区分
市場調査レポート
商品コード
1289669

機械学習市場- 世界の産業規模、シェア、動向、機会、予測、2018~2028年:コンポーネント別、企業規模別、デプロイメント別、エンドユーザー別、地域別区分

Machine Learning Market - Global Industry Size, Share, Trends, Opportunity, and Forecast. 2018-2028 Segmented By Component, By Enterprises Size, By Deployment, By End-User, By Region


出版日
ページ情報
英文 116 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.82円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

機械学習市場- 世界の産業規模、シェア、動向、機会、予測、2018~2028年:コンポーネント別、企業規模別、デプロイメント別、エンドユーザー別、地域別区分
出版日: 2023年06月01日
発行: TechSci Research
ページ情報: 英文 116 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

機械学習の世界市場は、予測期間2022-2028年に堅調なペースで成長すると予測されています。

技術革新は、世界の機械学習市場の成長を支える重要な強みです。機械学習(ML)における人工知能(AI)により、コンピュータープログラマーは明示的に訓練されなくても、より正確に結果を予測できるようになります。AIと機械学習は、開発とIT企業にとって最新の境界線です。機械学習は、与えられた一連のタスクの効率を高めるためにデータを使用する「学習」プロセスと方法の分析と開発に焦点を当てた研究分野です。

クラウドベースのサービスの採用が増加し、効果的なアウトプットが可能に

大量のデータを機械学習によって見直すことで、人が見過ごしてしまうような動向やパターンを特定することができます。例えば、アマゾンのようなeコマースサイトでは、顧客の閲覧パターンや過去の購入履歴を把握することで、適切な商品や割引、リマインダーを提供することができます。さらに、機械学習はクラウド・コンピューティング・プラットフォームのServiceNowでも一部利用されています。ワークフローソフトウェアを提供する同組織は、機械学習を採用することで、クライアントが面倒な手続きをできるだけ自動化し、スタッフが効率的に作業できるよう支援しています。

自動運転車の最新動向と複数のハンドルデータセット

企業は機械学習能力を開発するために、このオープンソースの人工知能ライブラリを利用しています。例えば、TensorFlowは、Javaプロジェクト、データフローグラフ、様々なアプリケーションを構築するために企業が使用しているライブラリです。Java用のAPIも存在します。例えば、アクセンチュア・コンサルタンシーやプロフェッショナル・サービス企業は、機械学習ベースの技術を使用しており、その市場規模は2,290億米ドルに達しています。このため、市場は予測期間中に成長すると予想されます。

最近のモバイル・デバイスの多くは、サイクリングやランニングなど、ユーザーが特定の活動を行うと自律的に認識することができます。現在、初心者の機械学習エンジニアは、この種のプロジェクトの練習のために、慣性センサーを搭載したモバイル機器を使用して取得された数人のフィットネス活動記録からなるデータセットを利用しています。さらに、将来の行動を的確に予測できる分類モデルも活用しています。このため、データセット市場における機械学習の採用は、予測期間中に増加すると思われます。

MLは自動車分野でも導入されています。例えば、アメリカの多国籍企業であるテスラは、自動運転の開始を発表しました。賛否両論を巻き起こしたが、自動運転車は機械学習で導入された最も顕著な進歩のひとつです。この市場は予測期間中に高いCAGRで成長すると予想されます。

機械学習市場は、機械学習-ロボットの統合によっても拡大しています。例えば、統計年鑑"World Robotics"によると、米国では2018年にロボットの設置台数が新たな高みに達しました。彼らはPIDアルゴリズムを使用したラインフォロワロボットを使用しています。

熟練従業員の不足

しかし、機械学習をビジネスプロセスに組み込む際、ほとんどの組織が抱える主な困難は、分析の才能を持つ有資格者の不足であり、分析資料に目を光らせることができる人材がさらに必要とされています。

市場企業

世界の機械学習市場における主な市場企業は、Amazon Web Services, Inc.、Baidu, Inc.、Domino Data Lab, Inc.、Microsoft Corporation、Google, Inc.、Alpine Data、IBM Corporation、SAP SE、Intel Corporation、SAS Institute Inc.です。

最近の動向

  • インドのNITI Aayogでは、糖尿病と心臓リスクの早期診断と特定にDNNモデルを使用することに取り組んでいます。また、FDAはヘルスケア分野でAIや機械知能を活用するための法的枠組みの整備を進めています。
  • エヌビディアはハイエンドのゲームグラフィックスを提供しているが、AIと機械学習に賭ける同社の賭けは近年、実を結び始めています。
  • ロンドンを拠点とするWayve社は、2022年1月に2億米ドルを調達しました。その結果、企業は困難な運転状況に対応できる人工知能を訓練し、構築するための設備が整うことになります。
  • アクセンチュアは世界有数のコンサルティング組織であり、テクノロジーの権威でもあります。機械学習はアクセンチュアの様々な専門分野の1つです。

利用可能なカスタマイズ

機械学習の世界市場レポートでは、与えられた市場データを用いて、TechSci Research社は企業固有のニーズに応じたカスタマイズを提供しています。レポートでは以下のカスタマイズが可能です:

企業情報

追加市場参入企業(最大5社)の詳細分析とプロファイリング

目次

第1章 サービス概要

  • 市場の定義
  • 市場の範囲
  • 対象市場
  • 研究の対象となる年数
  • 主要な市場セグメンテーション

第2章 調査手法

  • ベースライン調査手法
  • 主要な業界パートナー
  • 主要な関連情報源と二次情報
  • 予測調査手法論
  • データの三角測量と検証
  • 前提と制限

第3章 エグゼクティブサマリー

第4章 VOC (顧客の声)

第5章 世界の機械学習市場

  • 市場規模と予測
    • 金額ベース
  • 市場シェアと予測
    • コンポーネント別(サービスおよびソリューション)
    • 企業規模別(中小企業と大企業)
    • デプロイメント別(クラウドおよびオンプレミス)
    • エンドユーザー別(ヘルスケア、小売、ITおよび通信、自動車および輸送、広告およびメディア、BFSI、政府および防衛など)
    • 地域別
  • 企業別(2022年)
  • 市場マップ

第6章 北米の機械学習市場の展望

  • 市場規模と予測
    • 金額ベース
  • 市場シェアと予測
    • コンポーネント別
    • 企業規模別
    • デプロイメント別
    • 最終用途別
    • 国別
  • 北米:国別分析
    • 米国
    • カナダ
    • メキシコ

第7章 アジア太平洋の機械学習市場の展望

  • 市場規模と予測
    • 金額ベース
  • 市場シェアと予測
    • コンポーネント別
    • 企業規模別
    • デプロイメント別
    • 最終用途別
    • 国別
  • アジア太平洋:国別分析
    • 中国
    • インド
    • 日本
    • 韓国
    • オーストラリア
    • シンガポール
    • マレーシア

第8章 欧州の機械学習市場の展望

  • 市場規模と予測
    • 金額ベース
  • 市場シェアと予測
    • コンポーネント別
    • 企業規模別
    • デプロイメント別
    • 最終用途別
    • 国別
  • 欧州:国別分析
    • ドイツ
    • 英国
    • フランス
    • ロシア
    • スペイン
    • ポーランド
    • イタリア
    • デンマーク

第9章 南米の機械学習市場の展望

  • 市場規模と予測
    • 金額ベース
  • 市場シェアと予測
    • コンポーネント別
    • 企業規模別
    • デプロイメント別
    • 最終用途別
    • 国別
  • 南米:国別分析
    • ブラジル
    • アルゼンチン
    • コロンビア
    • ペルー
    • チリ

第10章 中東・アフリカの機械学習市場の展望

  • 市場規模と予測
    • 金額ベース
  • 市場シェアと予測
    • コンポーネント別
    • 企業規模別
    • デプロイメント別
    • 最終用途別
    • 国別
  • 中東・アフリカ:国別分析
    • サウジアラビア
    • 南アフリカ
    • アラブ首長国連邦
    • トルコ

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

第13章 企業プロファイル

  • Amazon Web Services, Inc.
  • Baidu, Inc.
  • Domino Data Lab, Inc.
  • Microsoft Corporation
  • Google, Inc.
  • Alpine Data
  • IBM Corporation
  • SAP SE
  • Intel Corporation
  • SAS Institute Inc.

第14章 戦略的推奨事項

第15章 調査会社について・免責事項

目次
Product Code: 14561

The Global Machine Learning Market is anticipated to grow at a robust pace in the forecast period 2022-2028. Technological innovation is the key strength behind the growth of the global machine-learning market. Artificial intelligence (AI) in machine learning (ML) enables computer programmers to forecast outcomes more accurately without being expressly trained. AI and machine learning are the newest boundaries for development and IT enterprises. Machine learning is an area of research focused on analyzing and developing "learning" processes and methods that use data to enhance efficiency on a given set of tasks.

Rising adoption of cloud-based services & ability to perform effectual output

Massive amounts of data can be reviewed by machine learning, which can identify trends and patterns that people would overlook. For instance, an e-commerce site like Amazon, knowing its customers' browsing patterns and past purchases, enables it to offer them the appropriate goods, discounts, and reminders. Furthermore, machine learning is used in part by ServiceNow, a cloud computing platform. The organization, which provides workflow software, employs machine learning to assist its clients in automating as many tedious procedures as possible and ensuring that staff members are working efficiently.

The ability to perform operations without involving human involvement, improvements in data center capabilities, and high computing power contribute to the technology's rise to prominence. Additionally, the market is expanding as a result of the quick adoption of cloud-based technologies in numerous sectors, such as Virtual services like software as a service (SaaS), platforms as a service (PaaS), and infrastructure as a service.

Machine Learning allows the identification of failures and their mitigation, directly affecting the standard and advancement of the process. Making errors enables process improvement. In addition to the ability for mistake and failure prevention, ML has stock prediction algorithms. Models built from data can forecast when an error may happen, enabling preventative measures to stop it from happening. This will likely cause the market to grow throughout the projected period.

Latest Trend of Self-Driving Vehicles and Multiple Handle Datasets

Companies are using this open-source artificial intelligence library to develop their machine-learning capabilities. For Instance, TensorFlow is library organizations use to build Java projects, data flow graphs, and various applications. APIs for Java are also present. For instance, Accenture Consultancy and professional services firms are using machine learning-based technologies with a market cap of USD 229 billion. Due to this market is expected to grow in the forecast period.

Many modern mobile devices can recognize autonomously when a user performs a certain activity, like cycling or running. Nowadays, novice machine learning engineers utilize a dataset that comprises fitness activity records for a few people that were acquired using mobile devices equipped with inertial sensors to practice with this sort of project. Furthermore, students are using categorization models that can precisely forecast future actions. Due to this, the adoption of machine learning in the datasets market is likely to increase in the forecast period.

ML is also being introduced in the automotive sector. For instance, Tesla, an American multinational company, announced the launch of self-driving. Although they have generated controversy, self-driving cars constitute one of the most remarkable advancements introduced in machine learning. This market is expected to grow with a high CAGR in the forecast period.

The machine-learning market has also expanded due to the integration of machine learning-in robots. For instance, Robot installations reached a new height in the United States in 2018, according to the statistics yearbook "World Robotics." Supporting they are using Line Follower Robot Using PID Algorithm due to which the Global machine learning market is expanding in the future.

Lack of skilled employees

However, the main difficulty most organizations have when integrating machine learning into their business processes is a lack of qualified workers with analytical talent, and there is an even greater need for those who can keep an eye on analytical material.

Market Segmentation

The Global Machine Learning Market is segmented into component, enterprise size, deployment, end-user, regional distribution, and competitive landscape. Based on components, the market is segmented into Services & Solutions. Based on enterprises' size, the market is divided into SMEs and large enterprises. Based on deployment, the market is divided into cloud and on-premises. Based on end-user, the market is divided into healthcare, retailer, it & telecom, automotive and transports, advertising & media, BFSI, government and defense, and others.

Market player

The main market players in the Global Machine Learning Market are Amazon Web Services, Inc., Baidu, Inc, Domino Data Lab, Inc, Microsoft Corporation, Google, Inc, Alpine Data, IBM Corporation, SAP SE, Intel Corporation, and SAS Institute Inc.

Recent Developments

  • The use of DNN models for the early diagnosis and identification of diabetes and cardiac risk is now being worked on by NITI Aayog in India. The FDA is also developing a legal framework for utilizing AI and machine intelligence in the healthcare sector.
  • Nvidia provides high-end video game graphics best, but the company's gamble on AI and machine learning has begun to pay off in recent years.
  • The London-based firm Wayve raised USD200 million in January 2022. As a result, enterprises will be better equipped to train and build artificial intelligence capable of handling challenging driving situations.
  • Accenture is a leading worldwide consulting organization and technology authority that frequently assists businesses in using technology to alter their operations. Machine learning is one of Accenture's various specialties.

Report Scope

In this report, Global Machine Learning Market has been segmented into the following categories, in addition to the industry trends, which have also been detailed below:

Machine Learning Market, By Component:

  • Services
  • Solutions

Machine Learning Market, By Enterprises Size:

  • SMEs
  • Large enterprises

Machine Learning Market, By Deployment:

  • Cloud
  • On-premises

Machine Learning Market, By End-user:

  • Healthcare
  • Retailer
  • IT & telecom
  • Automotive and Transports
  • Advertising & Media
  • BFSI
  • Government and Defense
  • Others

Machine Learning Market, By Region:

  • North America
    • United States
    • Mexico
    • Canada
  • Asia-Pacific
    • India
    • Japan
    • South Korea
    • Australia
    • Singapore
    • Malaysia
    • China
  • Europe
    • Germany
    • United Kingdom
    • France
    • Italy
    • Spain
    • Poland
    • Denmark
  • South America
    • Brazil
    • Argentina
    • Colombia
    • Peru
    • Chile
  • Middle East
    • Saudi Arabia
    • South Africa
    • UAE
    • Iraq
    • Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Machine Learning Market.

Available Customizations

Global Machine Learning Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Service Overview

2. Research Methodology

3. Impact of COVID-19 Global Machine Learning Market

4. Executive Summary

5. Voice of Customers

6. Global Machine Learning Market

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Component (Services & Solutions)
    • 6.2.2. By Enterprises Size (SMEs and Large enterprises)
    • 6.2.3. By Deployment (Cloud and On-premises)
    • 6.2.4. By End-User (Healthcare, Retailer, IT & Telecom, Automotive and Transports, Advertising & Media, BFSI, Government and Defense and Others)
    • 6.2.5. By Region
  • 6.3. By Company (2022)
  • 6.4. Market Map

7. North America Machine Learning Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component
    • 7.2.2. By Enterprises Size
    • 7.2.3. By Deployment
    • 7.2.4. By End-Use
    • 7.2.5. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Machine Learning Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Component
        • 7.3.1.2.2. By Enterprises Size
        • 7.3.1.2.3. By Deployment
        • 7.3.1.2.4. By End-Use
    • 7.3.2. Canada Machine Learning Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Component
        • 7.3.2.2.2. By Enterprises Size
        • 7.3.2.2.3. By Deployment
        • 7.3.2.2.4. By End-Use
    • 7.3.3. Mexico Machine Learning Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Component
        • 7.3.3.2.2. By Enterprises Size
        • 7.3.3.2.3. By Deployment
        • 7.3.3.2.4. By End-Use

8. Asia-Pacific Machine Learning Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Enterprises Size
    • 8.2.3. By Deployment
    • 8.2.4. By End-Use
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Machine Learning Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Enterprises Size
        • 8.3.1.2.3. By Deployment
        • 8.3.1.2.4. By End-Use
    • 8.3.2. India Machine Learning Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Enterprises Size
        • 8.3.2.2.3. By Deployment
        • 8.3.2.2.4. By End-Use
    • 8.3.3. Japan Machine Learning Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Enterprises Size
        • 8.3.3.2.3. By Deployment
        • 8.3.3.2.4. By End-Use
    • 8.3.4. South Korea Machine Learning Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Component
        • 8.3.4.2.2. By Enterprises Size
        • 8.3.4.2.3. By Deployment
        • 8.3.4.2.4. By End-Use
    • 8.3.5. Australia Machine Learning Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Component
        • 8.3.5.2.2. By Enterprises Size
        • 8.3.5.2.3. By Deployment
        • 8.3.5.2.4. By End-Use
    • 8.3.6. Singapore Machine Learning Market Outlook
      • 8.3.6.1. Market Size & Forecast
        • 8.3.6.1.1. By Value
      • 8.3.6.2. Market Share & Forecast
        • 8.3.6.2.1. By Component
        • 8.3.6.2.2. By Enterprises Size
        • 8.3.6.2.3. By Deployment
        • 8.3.6.2.4. By End-Use
    • 8.3.7. Malaysia Machine Learning Market Outlook
      • 8.3.7.1. Market Size & Forecast
        • 8.3.7.1.1. By Value
      • 8.3.7.2. Market Share & Forecast
        • 8.3.7.2.1. By Component
        • 8.3.7.2.2. By Enterprises Size
        • 8.3.7.2.3. By Deployment
        • 8.3.7.2.4. By End-Use

9. Europe Machine Learning Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Enterprises Size
    • 9.2.3. By Deployment
    • 9.2.4. By End-Use
    • 9.2.5. By Country
  • 9.3. Europe: Country Analysis
    • 9.3.1. Germany Machine Learning Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Enterprises Size
        • 9.3.1.2.3. By Deployment
        • 9.3.1.2.4. By End-Use
    • 9.3.2. United Kingdom Machine Learning Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Enterprises Size
        • 9.3.2.2.3. By Deployment
        • 9.3.2.2.4. By End-Use
    • 9.3.3. France Machine Learning Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Enterprises Size
        • 9.3.3.2.3. By Deployment
        • 9.3.3.2.4. By End-Use
    • 9.3.4. Russia Machine Learning Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Component
        • 9.3.4.2.2. By Enterprises Size
        • 9.3.4.2.3. By Deployment
        • 9.3.4.2.4. By End-Use
    • 9.3.5. Spain Machine Learning Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Component
        • 9.3.5.2.2. By Enterprises Size
        • 9.3.5.2.3. By Deployment
        • 9.3.5.2.4. By End-Use
    • 9.3.6. Poland Machine Learning Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Component
        • 9.3.6.2.2. By Enterprises Size
        • 9.3.6.2.3. By Deployment
        • 9.3.6.2.4. By End-Use
    • 9.3.7. Italy Machine Learning Market Outlook
      • 9.3.7.1. Market Size & Forecast
        • 9.3.7.1.1. By Value
      • 9.3.7.2. Market Share & Forecast
        • 9.3.7.2.1. By Component
        • 9.3.7.2.2. By Enterprises Size
        • 9.3.7.2.3. By Deployment
        • 9.3.7.2.4. By End-Use
    • 9.3.8. Denmark Machine Learning Market Outlook
      • 9.3.8.1. Market Size & Forecast
        • 9.3.8.1.1. By Value
      • 9.3.8.2. Market Share & Forecast
        • 9.3.8.2.1. By Component
        • 9.3.8.2.2. By Enterprises Size
        • 9.3.8.2.3. By Deployment
        • 9.3.8.2.4. By End-Use

10. South America Machine Learning Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Enterprises Size
    • 10.2.3. By Deployment
    • 10.2.4. By End-Use
    • 10.2.5. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Machine Learning Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Enterprises Size
        • 10.3.1.2.3. By Deployment
        • 10.3.1.2.4. By End-Use
    • 10.3.2. Argentina Machine Learning Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Enterprises Size
        • 10.3.2.2.3. By Deployment
        • 10.3.2.2.4. By End-Use
    • 10.3.3. Colombia Machine Learning Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Enterprises Size
        • 10.3.3.2.3. By Deployment
        • 10.3.3.2.4. By End-Use
    • 10.3.4. Peru Machine Learning Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Component
        • 10.3.4.2.2. By Enterprises Size
        • 10.3.4.2.3. By Deployment
        • 10.3.4.2.4. By End-Use
    • 10.3.5. Chile Machine Learning Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Component
        • 10.3.5.2.2. By Enterprises Size
        • 10.3.5.2.3. By Deployment
        • 10.3.5.2.4. By End-Use

11. Middle East & Africa Machine Learning Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Component
    • 11.2.2. By Enterprises Size
    • 11.2.3. By Deployment
    • 11.2.4. By End-Use
    • 11.2.5. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Machine Learning Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Component
        • 11.3.1.2.2. By Enterprises Size
        • 11.3.1.2.3. By Deployment
        • 11.3.1.2.4. By End-Use
    • 11.3.2. South Africa Machine Learning Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Component
        • 11.3.2.2.2. By Enterprises Size
        • 11.3.2.2.3. By Deployment
        • 11.3.2.2.4. By End-Use
    • 11.3.3. UAE Machine Learning Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Component
        • 11.3.3.2.2. By Enterprises Size
        • 11.3.3.2.3. By Deployment
        • 11.3.3.2.4. By End-Use
    • 11.3.4. Israel Machine Learning Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Component
        • 11.3.4.2.2. By Enterprises Size
        • 11.3.4.2.3. By Deployment
        • 11.3.4.2.4. By End-Use
    • 11.3.5. Turkey Machine Learning Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Component
        • 11.3.5.2.2. By Enterprises Size
        • 11.3.5.2.3. By Deployment
        • 11.3.5.2.4. By End-Use

12. Market Dynamics

  • 12.1. Drivers
  • 12.2. Challenges

13. Market Trends & Developments

14. Company Profiles

  • 14.1. Amazon Web Services, Inc.
    • 14.1.1. Business Overview
    • 14.1.2. Key Revenue and Financials
    • 14.1.3. Recent Developments
    • 14.1.4. Key Personnel
    • 14.1.5. Key Product/Services
  • 14.2. Baidu, Inc.
    • 14.2.1. Business Overview
    • 14.2.2. Key Revenue and Financials
    • 14.2.3. Recent Developments
    • 14.2.4. Key Personnel
    • 14.2.5. Key Product/Services
  • 14.3. Domino Data Lab, Inc.
    • 14.3.1. Business Overview
    • 14.3.2. Key Revenue and Financials
    • 14.3.3. Recent Developments
    • 14.3.4. Key Personnel
    • 14.3.5. Key Product/Services
  • 14.4. Microsoft Corporation
    • 14.4.1. Business Overview
    • 14.4.2. Key Revenue and Financials
    • 14.4.3. Recent Developments
    • 14.4.4. Key Personnel
    • 14.4.5. Key Product/Services
  • 14.5. Google, Inc.
    • 14.5.1. Business Overview
    • 14.5.2. Key Revenue and Financials
    • 14.5.3. Recent Developments
    • 14.5.4. Key Personnel
    • 14.5.5. Key Product/Services
  • 14.6. Alpine Data
    • 14.6.1. Business Overview
    • 14.6.2. Key Revenue and Financials
    • 14.6.3. Recent Developments
    • 14.6.4. Key Personnel
    • 14.6.5. Key Product/Services
  • 14.7. IBM Corporation
    • 14.7.1. Business Overview
    • 14.7.2. Key Revenue and Financials
    • 14.7.3. Recent Developments
    • 14.7.4. Key Personnel
    • 14.7.5. Key Product/Services
  • 14.8. SAP SE
    • 14.8.1. Business Overview
    • 14.8.2. Key Revenue and Financials
    • 14.8.3. Recent Developments
    • 14.8.4. Key Personnel
    • 14.8.5. Key Product/Services
  • 14.9. Intel Corporation
    • 14.9.1. Business Overview
    • 14.9.2. Key Revenue and Financials
    • 14.9.3. Recent Developments
    • 14.9.4. Key Personnel
    • 14.9.5. Key Product/Services
  • 14.10. SAS Institute Inc.
    • 14.10.1. Business Overview
    • 14.10.2. Key Revenue and Financials
    • 14.10.3. Recent Developments
    • 14.10.4. Key Personnel
    • 14.10.5. Key Product/Services

15. Strategic Recommendations

16. About Us & Disclaimer