デフォルト表紙
市場調査レポート
商品コード
1593915

機械学習運用市場:コンポーネント、展開、組織規模、エンドユーザー別-2025-2030年の世界予測

Machine Learning Operations Market by Component (Services, Software), Deployment (Cloud, On-Premise), Organization Size, End-User - Global Forecast 2025-2030


出版日
発行
360iResearch
ページ情報
英文 197 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
機械学習運用市場:コンポーネント、展開、組織規模、エンドユーザー別-2025-2030年の世界予測
出版日: 2024年10月31日
発行: 360iResearch
ページ情報: 英文 197 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

機械学習運用市場の2023年の市場規模は32億4,000万米ドルで、2024年には44億1,000万米ドルに達すると予測され、CAGR 36.22%で成長し、2030年には282億6,000万米ドルに達すると予測されています。

機械学習運用(MLOps)は、機械学習のライフサイクルを合理化するためにDevOpsの原則と機械学習を融合させた、データサイエンスの中で急速に台頭しつつある分野です。その必要性は、本番環境における機械学習モデルのデプロイ、監視、保守の複雑化に起因しています。ヘルスケア、金融、小売などの業界でAIの導入が進む中、MLOpsはMLモデルの運用効率、再現性、スケーラビリティを確保します。MLOpsプラットフォームとツールは、データの取り込み、モデルのトレーニング、検証、デプロイなどのプロセスを自動化することでワークフローを最適化し、ボトルネックを削減します。同市場は主に、企業におけるAI導入の増加、モデル精度の向上の必要性、ビッグデータとクラウドコンピューティングの大幅な成長に伴うスケーラビリティに対する需要の高まりによって活性化しています。産業界が高度なAI技術によって意思決定と予測能力を強化しようとしていることから、注目されるようになると予測されます。しかし、統合の複雑さ、初期コストの高さ、熟練した人材の不足といった課題が、市場の成長を阻害する可能性があります。また、データプライバシーに関するセキュリティ上の懸念やコンプライアンス上の問題も残っており、本格的な導入の障壁となっています。自動化されたML、リアルタイムのモデルモニタリング、既存のIT環境とのシームレスな統合を促進するフレームワークの開発などの分野にチャンスがあります。企業は、MLOpsのメリットを活かすために、ハイブリッドクラウドプラットフォームの開発や、データサイエンティストとITオペレーション間のコラボレーション強化に投資することが推奨されます。イノベーターは、オープンソース・ソリューションの改善と、強固なガバナンス・フレームワークの開発に注力し、さまざまな業界でより広範な採用を推進すべきです。市場は競合情勢にあるが、企業が俊敏性と効率性を優先し、今日のダイナミックな市場情勢において高度なアナリティクスがどのように洞察を提供し、データ主導の意思決定を促進するかを変革する中で、AI運用の近代化が約束されています。

主な市場の統計
基準年[2023] 32億4,000万米ドル
予測年[2024] 44億1,000万米ドル
予測年[2030] 282億6,000万米ドル
CAGR(%) 36.22%

市場力学:急速に進化する機械学習運用市場の主要市場インサイトを公開

機械学習運用市場は、需要と供給のダイナミックな相互作用によって変貌を遂げています。このような市場力学の進化を理解することで、企業は十分な情報に基づいた投資決定、戦略的意思決定、新たなビジネスチャンスの獲得を行うことができます。こうした動向を包括的に把握することで、企業は政治的、地理的、技術的、社会的、経済的な領域にわたる様々なリスクを軽減することができるとともに、消費者行動とそれが製造コストや購買動向に与える影響をより明確に理解することができます。

  • 市場促進要因
    • 製造業における機械学習の利用拡大
    • 生産性向上のためのエンドユーザー部門のデジタル化・自動化に向けた政府の取り組み
    • より良い管理のための機械学習プロセスの標準化への注目の高まり
  • 市場抑制要因
    • 不一致によるデータ管理に関連する問題
  • 市場機会
    • 機械学習運用の継続的な改善と新しいソリューションの開発
    • スマート工場とスマート製造技術への新たな投資
  • 市場の課題
    • 熟練した訓練を受けた専門家の不足

ポーターの5つの力:機械学習運用市場をナビゲートする戦略ツール

ポーターの5つの力フレームワークは、市場情勢の競合情勢を理解するための重要なツールです。ポーターのファイブフォース・フレームワークは、企業の競争力を評価し、戦略的機会を探るための明確な手法を提供します。このフレームワークは、企業が市場内の勢力図を評価し、新規事業の収益性を判断するのに役立ちます。これらの洞察により、企業は自社の強みを活かし、弱みに対処し、潜在的な課題を回避することができ、より強靭な市場でのポジショニングを確保することができます。

PESTLE分析:機械学習運用市場における外部からの影響の把握

外部マクロ環境要因は、機械学習運用市場の業績ダイナミクスを形成する上で極めて重要な役割を果たします。政治的、経済的、社会的、技術的、法的、環境的要因の分析は、これらの影響をナビゲートするために必要な情報を提供します。PESTLE要因を調査することで、企業は潜在的なリスクと機会をよりよく理解することができます。この分析により、企業は規制、消費者の嗜好、経済動向の変化を予測し、先を見越した積極的な意思決定を行う準備ができます。

市場シェア分析機械学習運用市場における競合情勢の把握

機械学習運用市場の詳細な市場シェア分析により、ベンダーの業績を包括的に評価することができます。企業は、収益、顧客ベース、成長率などの主要指標を比較することで、競争上のポジショニングを明らかにすることができます。この分析により、市場の集中、断片化、統合の動向が明らかになり、ベンダーは競争が激化する中で自社の地位を高める戦略的な意思決定を行うために必要な知見を得ることができます。

FPNVポジショニング・マトリックス機械学習運用市場におけるベンダーのパフォーマンス評価

FPNVポジショニングマトリックスは、機械学習運用市場においてベンダーを評価するための重要なツールです。このマトリックスにより、ビジネス組織はベンダーのビジネス戦略と製品満足度に基づき評価することで、目標に沿った十分な情報に基づいた意思決定を行うことができます。4つの象限によりベンダーを明確かつ的確にセグメント化し、戦略目標に最適なパートナーやソリューションを特定することができます。

戦略分析と推奨機械学習運用市場における成功への道筋を描く

機械学習運用市場の戦略分析は、世界市場でのプレゼンス強化を目指す企業にとって不可欠です。主要なリソース、能力、業績指標を見直すことで、企業は成長機会を特定し、改善に取り組むことができます。このアプローチにより、競合情勢における課題を克服し、新たなビジネスチャンスを活かして長期的な成功を収めるための体制を整えることができます。

本レポートでは、主要な注目分野を網羅した市場の包括的な分析を提供しています:

1.市場の浸透度:現在の市場環境の詳細なレビュー、主要企業による広範なデータ、市場でのリーチと全体的な影響力の評価。

2.市場の開拓度:新興市場における成長機会を特定し、既存分野における拡大可能性を評価し、将来の成長に向けた戦略的ロードマップを提供します。

3.市場の多様化:最近の製品発売、未開拓の地域、業界の主要な進歩、市場を形成する戦略的投資を分析します。

4.競合の評価と情報:競合情勢を徹底的に分析し、市場シェア、事業戦略、製品ポートフォリオ、認証、規制当局の承認、特許動向、主要企業の技術進歩などを検証します。

5.製品開発およびイノベーション:将来の市場成長を促進すると期待される最先端技術、研究開発活動、製品イノベーションをハイライトしています。

また、利害関係者が十分な情報を得た上で意思決定できるよう、重要な質問にも答えています:

1.現在の市場規模と今後の成長予測は?

2.最高の投資機会を提供する製品、セグメント、地域はどこか?

3.市場を形成する主な技術動向と規制の影響とは?

4.主要ベンダーの市場シェアと競合ポジションは?

5.ベンダーの市場参入・撤退戦略の原動力となる収益源と戦略的機会は何か?

目次

第1章 序文

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 市場の概要

第5章 市場洞察

  • 市場力学
    • 促進要因
      • 製造業における機械学習の活用拡大
      • 生産性向上のため、エンドユーザー部門のデジタル化と自動化を推進する政府の取り組み
      • より良い管理のために機械学習プロセスの標準化への注目が高まる
    • 抑制要因
      • 不一致によるデータ管理に関連する問題
    • 機会
      • 機械学習運用の継続的な改善と新しいソリューションの開発
      • スマートファクトリーとスマート製造技術への新たな投資
    • 課題
      • 熟練した訓練を受けた専門家の数が限られている
  • 市場セグメンテーション分析
  • ポーターのファイブフォース分析
  • PESTEL分析
    • 政治的
    • 経済
    • 社交
    • 技術的
    • 法律上
    • 環境

第6章 機械学習運用市場:コンポーネント別

  • サービス
  • ソフトウェア

第7章 機械学習運用市場:展開別

  • クラウド
  • オンプレミス

第8章 機械学習運用市場:組織規模別

  • 大企業
  • 中小企業

第9章 機械学習運用市場:エンドユーザー別

  • 航空宇宙および防衛
  • 自動車・輸送
  • 銀行、金融サービス、保険
  • 建築、建設、不動産
  • 消費財・小売
  • 教育
  • エネルギー・公益事業
  • 政府および公共部門
  • ヘルスケアとライフサイエンス
  • 情報技術と通信
  • 製造業
  • メディアとエンターテイメント
  • 旅行・ホスピタリティ

第10章 南北アメリカの機械学習運用市場

  • アルゼンチン
  • ブラジル
  • カナダ
  • メキシコ
  • 米国

第11章 アジア太平洋地域の機械学習運用市場

  • オーストラリア
  • 中国
  • インド
  • インドネシア
  • 日本
  • マレーシア
  • フィリピン
  • シンガポール
  • 韓国
  • 台湾
  • タイ
  • ベトナム

第12章 欧州・中東・アフリカの機械学習運用市場

  • デンマーク
  • エジプト
  • フィンランド
  • フランス
  • ドイツ
  • イスラエル
  • イタリア
  • オランダ
  • ナイジェリア
  • ノルウェー
  • ポーランド
  • カタール
  • ロシア
  • サウジアラビア
  • 南アフリカ
  • スペイン
  • スウェーデン
  • スイス
  • トルコ
  • アラブ首長国連邦
  • 英国

第13章 競合情勢

  • 市場シェア分析2023
  • FPNVポジショニングマトリックス, 2023
  • 競合シナリオ分析
  • 戦略分析と提言

企業一覧

  • Addepto Sp. z o. o.
  • Alibaba Cloud International
  • Allegro Artificial Intelligence Ltd.
  • Amazon Web Services, Inc.
  • Anyscale, Inc.
  • BigML Inc.
  • Canonical Ltd.
  • Dataiku
  • DataRobot, Inc.
  • Domino Data Lab, Inc.
  • Gathr Data Inc.
  • Google LLC by Alphabet Inc.
  • Grid Dynamics Holdings, Inc.
  • H2O.ai, Inc.
  • Hewlett Packard Enterprise Company
  • Iguazio Ltd. by McKinsey & Company
  • International Business Machines Corporation
  • Microsoft Corporation
  • Neal Analytics
  • Neptune Labs, Inc.
  • Neuro Inc.
  • Oracle Corporation
  • Runai Labs Ltd.
  • SAP SE
  • SAS Institute Inc.
  • Tredence Analytics Solutions Pvt. Ltd.
  • understandAI GmbH
  • Valohai
  • Virtusa Corporation
  • Weights and Biases, Inc.
図表

LIST OF FIGURES

  • FIGURE 1. MACHINE LEARNING OPERATIONS MARKET RESEARCH PROCESS
  • FIGURE 2. MACHINE LEARNING OPERATIONS MARKET SIZE, 2023 VS 2030
  • FIGURE 3. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, 2018-2030 (USD MILLION)
  • FIGURE 4. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY REGION, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 5. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 6. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2023 VS 2030 (%)
  • FIGURE 7. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 8. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2023 VS 2030 (%)
  • FIGURE 9. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 10. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2023 VS 2030 (%)
  • FIGURE 11. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 12. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2023 VS 2030 (%)
  • FIGURE 13. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 14. AMERICAS MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 15. AMERICAS MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 16. UNITED STATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY STATE, 2023 VS 2030 (%)
  • FIGURE 17. UNITED STATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY STATE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 18. ASIA-PACIFIC MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 19. ASIA-PACIFIC MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 20. EUROPE, MIDDLE EAST & AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 21. EUROPE, MIDDLE EAST & AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 22. MACHINE LEARNING OPERATIONS MARKET SHARE, BY KEY PLAYER, 2023
  • FIGURE 23. MACHINE LEARNING OPERATIONS MARKET, FPNV POSITIONING MATRIX, 2023

LIST OF TABLES

  • TABLE 1. MACHINE LEARNING OPERATIONS MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2023
  • TABLE 3. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, 2018-2030 (USD MILLION)
  • TABLE 4. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 5. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 6. MACHINE LEARNING OPERATIONS MARKET DYNAMICS
  • TABLE 7. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 8. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY SERVICES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 9. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY SOFTWARE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 10. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 11. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY CLOUD, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 12. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY ON-PREMISE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 13. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 14. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY LARGE ENTERPRISES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 15. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY SMES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 16. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 17. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY AEROSPACE & DEFENSE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 18. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY AUTOMOTIVE & TRANSPORTATION, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 19. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY BANKING, FINANCIAL SERVICES & INSURANCE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 20. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY BUILDING, CONSTRUCTION & REAL ESTATE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 21. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY CONSUMER GOODS & RETAIL, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 22. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY EDUCATION, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 23. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY ENERGY & UTILITIES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 24. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY GOVERNMENT & PUBLIC SECTOR, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 25. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY HEALTHCARE & LIFE SCIENCES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 26. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY INFORMATION TECHNOLOGY & TELECOMMUNICATION, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 27. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY MANUFACTURING, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 28. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY MEDIA & ENTERTAINMENT, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 29. GLOBAL MACHINE LEARNING OPERATIONS MARKET SIZE, BY TRAVEL & HOSPITALITY, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 30. AMERICAS MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 31. AMERICAS MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 32. AMERICAS MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 33. AMERICAS MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 34. AMERICAS MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 35. ARGENTINA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 36. ARGENTINA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 37. ARGENTINA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 38. ARGENTINA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 39. BRAZIL MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 40. BRAZIL MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 41. BRAZIL MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 42. BRAZIL MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 43. CANADA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 44. CANADA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 45. CANADA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 46. CANADA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 47. MEXICO MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 48. MEXICO MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 49. MEXICO MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 50. MEXICO MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 51. UNITED STATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 52. UNITED STATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 53. UNITED STATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 54. UNITED STATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 55. UNITED STATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY STATE, 2018-2030 (USD MILLION)
  • TABLE 56. ASIA-PACIFIC MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 57. ASIA-PACIFIC MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 58. ASIA-PACIFIC MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 59. ASIA-PACIFIC MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 60. ASIA-PACIFIC MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 61. AUSTRALIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 62. AUSTRALIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 63. AUSTRALIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 64. AUSTRALIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 65. CHINA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 66. CHINA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 67. CHINA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 68. CHINA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 69. INDIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 70. INDIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 71. INDIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 72. INDIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 73. INDONESIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 74. INDONESIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 75. INDONESIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 76. INDONESIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 77. JAPAN MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 78. JAPAN MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 79. JAPAN MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 80. JAPAN MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 81. MALAYSIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 82. MALAYSIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 83. MALAYSIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 84. MALAYSIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 85. PHILIPPINES MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 86. PHILIPPINES MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 87. PHILIPPINES MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 88. PHILIPPINES MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 89. SINGAPORE MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 90. SINGAPORE MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 91. SINGAPORE MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 92. SINGAPORE MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 93. SOUTH KOREA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 94. SOUTH KOREA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 95. SOUTH KOREA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 96. SOUTH KOREA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 97. TAIWAN MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 98. TAIWAN MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 99. TAIWAN MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 100. TAIWAN MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 101. THAILAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 102. THAILAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 103. THAILAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 104. THAILAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 105. VIETNAM MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 106. VIETNAM MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 107. VIETNAM MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 108. VIETNAM MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 109. EUROPE, MIDDLE EAST & AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 110. EUROPE, MIDDLE EAST & AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 111. EUROPE, MIDDLE EAST & AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 112. EUROPE, MIDDLE EAST & AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 113. EUROPE, MIDDLE EAST & AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 114. DENMARK MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 115. DENMARK MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 116. DENMARK MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 117. DENMARK MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 118. EGYPT MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 119. EGYPT MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 120. EGYPT MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 121. EGYPT MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 122. FINLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 123. FINLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 124. FINLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 125. FINLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 126. FRANCE MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 127. FRANCE MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 128. FRANCE MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 129. FRANCE MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 130. GERMANY MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 131. GERMANY MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 132. GERMANY MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 133. GERMANY MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 134. ISRAEL MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 135. ISRAEL MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 136. ISRAEL MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 137. ISRAEL MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 138. ITALY MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 139. ITALY MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 140. ITALY MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 141. ITALY MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 142. NETHERLANDS MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 143. NETHERLANDS MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 144. NETHERLANDS MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 145. NETHERLANDS MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 146. NIGERIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 147. NIGERIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 148. NIGERIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 149. NIGERIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 150. NORWAY MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 151. NORWAY MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 152. NORWAY MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 153. NORWAY MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 154. POLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 155. POLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 156. POLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 157. POLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 158. QATAR MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 159. QATAR MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 160. QATAR MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 161. QATAR MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 162. RUSSIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 163. RUSSIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 164. RUSSIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 165. RUSSIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 166. SAUDI ARABIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 167. SAUDI ARABIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 168. SAUDI ARABIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 169. SAUDI ARABIA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 170. SOUTH AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 171. SOUTH AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 172. SOUTH AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 173. SOUTH AFRICA MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 174. SPAIN MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 175. SPAIN MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 176. SPAIN MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 177. SPAIN MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 178. SWEDEN MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 179. SWEDEN MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 180. SWEDEN MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 181. SWEDEN MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 182. SWITZERLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 183. SWITZERLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 184. SWITZERLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 185. SWITZERLAND MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 186. TURKEY MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 187. TURKEY MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 188. TURKEY MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 189. TURKEY MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 190. UNITED ARAB EMIRATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 191. UNITED ARAB EMIRATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 192. UNITED ARAB EMIRATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 193. UNITED ARAB EMIRATES MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 194. UNITED KINGDOM MACHINE LEARNING OPERATIONS MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 195. UNITED KINGDOM MACHINE LEARNING OPERATIONS MARKET SIZE, BY DEPLOYMENT, 2018-2030 (USD MILLION)
  • TABLE 196. UNITED KINGDOM MACHINE LEARNING OPERATIONS MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 197. UNITED KINGDOM MACHINE LEARNING OPERATIONS MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 198. MACHINE LEARNING OPERATIONS MARKET SHARE, BY KEY PLAYER, 2023
  • TABLE 199. MACHINE LEARNING OPERATIONS MARKET, FPNV POSITIONING MATRIX, 2023
目次
Product Code: MRR-961BA04A2E4E

The Machine Learning Operations Market was valued at USD 3.24 billion in 2023, expected to reach USD 4.41 billion in 2024, and is projected to grow at a CAGR of 36.22%, to USD 28.26 billion by 2030.

Machine Learning Operations (MLOps) is a rapidly emerging discipline within data science that blends the principles of DevOps with machine learning to streamline the machine learning lifecycle. Its necessity stems from the growing complexities of deploying, monitoring, and maintaining machine learning models in production. With the rising implementation of AI across industries like healthcare, finance, and retail, MLOps ensures operational efficiency, reproducibility, and scalability of ML models. MLOps platforms and tools optimize workflows and reduce bottlenecks by automating processes such as data ingestion, model training, validation, and deployment, leading to faster model updates and better performance. The market is primarily fueled by increasing AI adoption in businesses, the necessity for improving model accuracy, and greater demand for scalability aligning with substantial growth in big data and cloud computing. It's projected to gain notably as industries seek to enhance decision-making and predictive capabilities through advanced AI technologies. However, challenges such as integration complexity, high initial costs, and the lack of skilled personnel can impede market growth. Security concerns and compliance issues related to data privacy also linger, presenting barriers to full-scale adoption. Opportunities lie in sectors like automated ML, real-time model monitoring, and the development of frameworks that facilitate seamless integration with existing IT environments. Firms are advised to invest in developing hybrid cloud platforms and enhancing collaboration between data scientists and IT operations to capitalize on MLOps benefits. Innovators should focus on improving open-source solutions and developing robust governance frameworks to drive broader adoption across different industries. The market is competitive yet promises modernization of AI operations, as businesses prioritize agility and efficiency, transforming how advanced analytics deliver insights and foster data-driven decision-making in today's dynamic market landscape.

KEY MARKET STATISTICS
Base Year [2023] USD 3.24 billion
Estimated Year [2024] USD 4.41 billion
Forecast Year [2030] USD 28.26 billion
CAGR (%) 36.22%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Machine Learning Operations Market

The Machine Learning Operations Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing utilization of machine learning in the manufacturing sector
    • Government initiatives to digitalize and automate end-user sectors to boost productivity
    • Growing focus on standardization of machine learning processes for better management
  • Market Restraints
    • Issues associated with data management due to discrepancies
  • Market Opportunities
    • Continuous improvements in machine learning operations and development of new solutions
    • New investments in smart factory and smart manufacturing technologies
  • Market Challenges
    • Limited availability of skilled and trained professionals

Porter's Five Forces: A Strategic Tool for Navigating the Machine Learning Operations Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Machine Learning Operations Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Machine Learning Operations Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Machine Learning Operations Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Machine Learning Operations Market

A detailed market share analysis in the Machine Learning Operations Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Machine Learning Operations Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Machine Learning Operations Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Machine Learning Operations Market

A strategic analysis of the Machine Learning Operations Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Machine Learning Operations Market, highlighting leading vendors and their innovative profiles. These include Addepto Sp. z o. o., Alibaba Cloud International, Allegro Artificial Intelligence Ltd., Amazon Web Services, Inc., Anyscale, Inc., BigML Inc., Canonical Ltd., Dataiku, DataRobot, Inc., Domino Data Lab, Inc., Gathr Data Inc., Google LLC by Alphabet Inc., Grid Dynamics Holdings, Inc., H2O.ai, Inc., Hewlett Packard Enterprise Company, Iguazio Ltd. by McKinsey & Company, International Business Machines Corporation, Microsoft Corporation, Neal Analytics, Neptune Labs, Inc., Neuro Inc., Oracle Corporation, Runai Labs Ltd., SAP SE, SAS Institute Inc., Tredence Analytics Solutions Pvt. Ltd., understandAI GmbH, Valohai, Virtusa Corporation, and Weights and Biases, Inc..

Market Segmentation & Coverage

This research report categorizes the Machine Learning Operations Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Services and Software.
  • Based on Deployment, market is studied across Cloud and On-Premise.
  • Based on Organization Size, market is studied across Large Enterprises and SMEs.
  • Based on End-User, market is studied across Aerospace & Defense, Automotive & Transportation, Banking, Financial Services & Insurance, Building, Construction & Real Estate, Consumer Goods & Retail, Education, Energy & Utilities, Government & Public Sector, Healthcare & Life Sciences, Information Technology & Telecommunication, Manufacturing, Media & Entertainment, and Travel & Hospitality.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing utilization of machine learning in the manufacturing sector
      • 5.1.1.2. Government initiatives to digitalize and automate end-user sectors to boost productivity
      • 5.1.1.3. Growing focus on standardization of machine learning processes for better management
    • 5.1.2. Restraints
      • 5.1.2.1. Issues associated with data management due to discrepancies
    • 5.1.3. Opportunities
      • 5.1.3.1. Continuous improvements in machine learning operations and development of new solutions
      • 5.1.3.2. New investments in smart factory and smart manufacturing technologies
    • 5.1.4. Challenges
      • 5.1.4.1. Limited availability of skilled and trained professionals
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Machine Learning Operations Market, by Component

  • 6.1. Introduction
  • 6.2. Services
  • 6.3. Software

7. Machine Learning Operations Market, by Deployment

  • 7.1. Introduction
  • 7.2. Cloud
  • 7.3. On-Premise

8. Machine Learning Operations Market, by Organization Size

  • 8.1. Introduction
  • 8.2. Large Enterprises
  • 8.3. SMEs

9. Machine Learning Operations Market, by End-User

  • 9.1. Introduction
  • 9.2. Aerospace & Defense
  • 9.3. Automotive & Transportation
  • 9.4. Banking, Financial Services & Insurance
  • 9.5. Building, Construction & Real Estate
  • 9.6. Consumer Goods & Retail
  • 9.7. Education
  • 9.8. Energy & Utilities
  • 9.9. Government & Public Sector
  • 9.10. Healthcare & Life Sciences
  • 9.11. Information Technology & Telecommunication
  • 9.12. Manufacturing
  • 9.13. Media & Entertainment
  • 9.14. Travel & Hospitality

10. Americas Machine Learning Operations Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Machine Learning Operations Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Machine Learning Operations Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Addepto Sp. z o. o.
  • 2. Alibaba Cloud International
  • 3. Allegro Artificial Intelligence Ltd.
  • 4. Amazon Web Services, Inc.
  • 5. Anyscale, Inc.
  • 6. BigML Inc.
  • 7. Canonical Ltd.
  • 8. Dataiku
  • 9. DataRobot, Inc.
  • 10. Domino Data Lab, Inc.
  • 11. Gathr Data Inc.
  • 12. Google LLC by Alphabet Inc.
  • 13. Grid Dynamics Holdings, Inc.
  • 14. H2O.ai, Inc.
  • 15. Hewlett Packard Enterprise Company
  • 16. Iguazio Ltd. by McKinsey & Company
  • 17. International Business Machines Corporation
  • 18. Microsoft Corporation
  • 19. Neal Analytics
  • 20. Neptune Labs, Inc.
  • 21. Neuro Inc.
  • 22. Oracle Corporation
  • 23. Runai Labs Ltd.
  • 24. SAP SE
  • 25. SAS Institute Inc.
  • 26. Tredence Analytics Solutions Pvt. Ltd.
  • 27. understandAI GmbH
  • 28. Valohai
  • 29. Virtusa Corporation
  • 30. Weights and Biases, Inc.