デフォルト表紙
市場調査レポート
商品コード
1428456

自動機械学習(AutoML)の世界市場レポート 2024年

Automated Machine Learning (AutoML) Global Market Report 2024

出版日: 受注後更新 | 発行: The Business Research Company | ページ情報: 英文 175 Pages | 納期: 2~10営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.94円
自動機械学習(AutoML)の世界市場レポート 2024年
出版日: 受注後更新
発行: The Business Research Company
ページ情報: 英文 175 Pages
納期: 2~10営業日
  • 全表示
  • 概要
  • 目次
概要

自動機械学習(AutoML)の市場規模は、今後数年間で急激に成長すると予想されています。 2028年には44.9%の年間複合成長率(CAGR)で73億5,000万米ドルに成長すると予想されます。予測期間中に予想される成長は、さまざまな業界にわたるAIの統合、IoTとビッグデータの普及、エッジコンピューティングの出現、ハイブリッドクラウドとオンプレミスソリューションの採用、規制遵守要件の増加によるものと考えられます。予測期間中に予想される主要動向には、自動特徴量エンジニアリングの進歩、フェデレーテッドラーニングの進歩、説明可能なAIとモデルの解釈可能性の重視、非構造化データへのAutoMLの適用、自動システムへのAutoMLの利用が含まれます。

自動機械学習(AutoML)市場で予想される成長は、高度な不正検出ソリューションに対する需要の高まりによって推進されています。不正検出には、組織またはシステム内での不正な活動や行為の特定と防止が含まれます。 AutoMLは、大規模なデータセットを効率的に処理と分析し、パターンを特定し、潜在的な不正行為を示す異常を検出することにより、不正行為の検出に貢献します。たとえば、米国政府機関である金融犯罪取締ネットワーク(FinCEN)は、2021年に銀行機関が小切手詐欺の疑いを特定するために35万件を超える不審行為報告書(SAR)を送信し、これは2020年と比較して23%増加したと報告しました。 2022年も引き続き増加し、SARは68万件を超え、前年の合計のほぼ2倍となりました。したがって、高度な不正検出ソリューションに対するニーズの高まりが、自動機械学習(AutoML)市場の主要な促進要因となっています。

IoTデバイスの急増は、自動機械学習(AutoML)市場の成長に貢献しようとしています。センサー、ソフトウェア、その他の技術が組み込まれたモノのインターネット(IoT)デバイスは、インターネット経由で他のデバイスまたはシステムとデータを交換します。 IoTデバイスの急激な増加により、貴重な洞察を得るために利用できる膨大な量のデータが生成されます。 AutoMLは、IoTデバイスによって生成されたデータから意味のある情報を抽出するための機械学習モデルの開発を容易にします。チェコ共和国に本拠を置くオンラインメディア企業であるTechJury Officialによると、2022年には約426億2,000万のIoTデバイス、センサー、アクチュエーターが設置され、2021年の358億2,000万、2020年の307億3,000万から大幅に増加しました。 IoTデバイスの増加は、自動機械学習(AutoML)市場の成長を促進します。

目次

第1章 エグゼクティブサマリー

第2章 市場の特徴

第3章 市場動向と戦略

第4章 マクロ経済シナリオ

  • 高インフレが市場に与える影響
  • ウクライナ・ロシア戦争が市場に与える影響
  • COVID-19による市場への影響

第5章 世界市場規模と成長

  • 世界の自動機械学習(AutoML)市場の促進要因と抑制要因
    • 市場促進要因
    • 市場抑制要因
  • 世界の自動機械学習(AutoML)の市場規模実績と成長、2018~2023年
  • 世界の自動機械学習(AutoML)市場規模と成長予測、2023~2028年、2033年

第6章 市場セグメンテーション

  • 世界の自動機械学習(AutoML)市場、製品別セグメンテーション、実績と予測、2018~2023年、2023~2028年、2033年
  • ソリューション
  • サービス
  • 世界の自動機械学習(AutoML)市場、展開別セグメンテーション、実績と予測、2018~2023年、2023~2028年、2033年
  • クラウド
  • オンプレミス
  • 世界の自動機械学習(AutoML)市場、企業別セグメンテーション、実績と予測、2018~2023年、2023~2028年、2033年
  • 中小企業
  • 大企業
  • 世界の自動機械学習(AutoML)市場、用途別セグメンテーション、実績と予測、2018~2023年、2023~2028年、2033年
  • 情報処理
  • 特徴量エンジニアリング
  • モデル選択
  • ハイパーパラメータの最適化とチューニング
  • モデルアンサンブル
  • その他
  • 世界の自動機械学習(AutoML)市場、エンドユーザー別セグメンテーション、実績と予測、2018~2023年、2023~2028年、2033年
  • 銀行、金融サービス、保険(BFSI)
  • 小売とeコマース
  • 医療
  • 製造業
  • その他

第7章 地域と国の分析

  • 世界の自動機械学習(AutoML)市場、地域別、実績と予測、2018~2023年、2023~2028年、2033年
  • 世界の自動機械学習(AutoML)市場、国別、実績と予測、2018~2023年、2023~2028年、2033年

第8章 アジア太平洋市場

第9章 中国市場

第10章 インド市場

第11章 日本市場

第12章 オーストラリア市場

第13章 インドネシア市場

第14章 韓国市場

第15章 西欧市場

第16章 英国市場

第17章 ドイツ市場

第18章 フランス市場

第19章 イタリア市場

第20章 スペイン市場

第21章 東欧市場

第22章 ロシア市場

第23章 北米市場

第24章 米国市場

第25章 カナダ市場

第26章 南米市場

第27章 ブラジル市場

第28章 中東市場

第29章 アフリカ市場

第30章 競合情勢と企業プロファイル

  • 自動機械学習(AutoML)市場の競合情勢
  • 自動機械学習(AutoML)市場の企業プロファイル
    • Google LLC
    • Microsoft Corporation
    • Amazon Web Services Inc.
    • International Business Machines Corporation
    • Oracle Corporation

第31章 その他の大手と革新的な企業

  • Salesforce Inc.
  • Teradata Corporation
  • Alteryx
  • Altair Engineering Inc.
  • EdgeVerve Systems Limited
  • TIBCO Software Inc.
  • DataRobot Inc.
  • Dataiku
  • BigPanda.
  • H2O.ai Inc.
  • KNIME
  • Cognitivescale
  • Anyscale Inc.
  • RapidMiner
  • Squark AI Inc.

第32章 競合ベンチマーキング

第33章 競合ダッシュボード

第34章 主要な合併と買収

第35章 将来の展望と潜在性分析

第36章 付録

目次
Product Code: r14301

Automated machine learning (AutoML) is the application of machine learning to practical problems, automating the selection, composition, and parameterization of machine learning models. AutoML streamlines the machine learning process, making it more user-friendly and often yielding faster and more accurate outputs compared to manually coded algorithms.

The primary offerings in automated machine learning (AutoML) include solutions and services. Solutions involve the implementation of software tools to address specific organizational issues. Automated machine learning solutions enable business users to easily adopt machine learning, allowing data scientists to focus on more complex challenges. These solutions can be deployed in various settings, such as cloud and on-premises, catering to both small and medium enterprises as well as large enterprises. They find applications in data processing, feature engineering, model selection, hyperparameter optimization and tuning, model assembling, and other areas. AutoML is utilized by various end-users, including industries such as banking, financial services, and insurance (BFSI), retail and e-commerce, healthcare, manufacturing, among others.

The automated machine learning (AutoML) market research report is one of a series of new reports from The Business Research Company that provides automated machine learning (AutoML) market statistics, including automated machine learning (AutoML) industry global market size, regional shares, competitors with an automated machine learning (AutoML) market share, detailed automated machine learning (AutoML) market segments, market trends and opportunities, and any further data you may need to thrive in the automated machine learning (AutoML) industry. This automated machine learning (AutoML) market research report delivers a complete perspective of everything you need, with an in-depth analysis of the current and future scenarios of the industry.

The automated machine learning (AutoML) market size has grown exponentially in recent years. It will grow from $1.15 billion in 2023 to $1.67 billion in 2024 at a compound annual growth rate (CAGR) of 44.9%. The historical period's growth can be attributed to factors such as the complexity of machine learning, a shortage of data science talent, the need for rapid solutions, advancements in AI and computing power, and a focus on cost efficiency.

The automated machine learning (AutoML) market size is expected to see exponential growth in the next few years. It will grow to $7.35 billion in 2028 at a compound annual growth rate (CAGR) of 44.9%. The anticipated growth in the forecast period can be ascribed to the integration of AI across various industries, the proliferation of IoT and big data, the emergence of edge computing, the adoption of hybrid cloud and on-premises solutions, and the increasing regulatory compliance requirements. Key trends expected in the forecast period encompass advancements in automated feature engineering, progress in federated learning, the emphasis on explainable AI and model interpretability, the application of AutoML for unstructured data, and the utilization of AutoML for autonomous systems.

The anticipated growth in the automated machine learning (AutoML) market is driven by the escalating demand for advanced fraud detection solutions. Fraud detection involves the identification and prevention of fraudulent activities or behaviors within an organization or system. AutoML contributes to fraud detection by efficiently processing and analyzing large datasets, identifying patterns, and detecting anomalies indicative of potentially fraudulent activities. For example, the Financial Crimes Enforcement Network (FinCEN), a US government agency, reported that banking institutions sent over 350,000 suspicious activity reports (SARs) in 2021 to identify suspected check fraud, representing a 23% increase compared to 2020. This upward trend continued in 2022, with over 680,000 SARs, nearly doubling the previous year's total. Hence, the increasing need for advanced fraud detection solutions is a key driver of the automated machine learning (AutoML) market.

The proliferation of IoT devices is poised to contribute to the growth of the automated machine learning (AutoML) market. Internet of Things (IoT) devices, embedded with sensors, software, and other technologies, exchange data with other devices or systems over the internet. The exponential growth in IoT devices results in a vast amount of data that can be utilized for valuable insights. AutoML facilitates the development of machine learning models to extract meaningful information from the data generated by IoT devices. According to TechJury Official, a Czech Republic-based online media company, there were approximately 42.62 billion installed IoT devices, sensors, and actuators in 2022, marking a significant increase from 35.82 billion in 2021 and 30.73 billion in 2020. Consequently, the growing number of IoT devices is a catalyst for the growth of the automated machine learning (AutoML) market.

The automated machine learning (AutoML) market is witnessing a significant trend in technological innovations, with major companies adopting new advancements to maintain their market positions. For example, in April 2023, AND Solutions Pte Ltd., a fintech company based in Singapore, launched the NIKO AutoML platform-a cutting-edge machine-learning tool designed to simplify and accelerate the creation of prediction models. Offering various tools and functionalities, NIKO AutoML enables users to swiftly create and deploy high-quality machine learning models without the need for coding or data science expertise. The user-friendly interface guides users through each stage of the process, delivering optimal results in a fraction of the time required by traditional methods. NIKO AutoML offers key benefits, including fast and accurate model creation, streamlined workflows, increased productivity, and cost-effectiveness.

Major players in the AutoML market are dedicated to developing innovative solutions, such as an AutoML platform for Arm compilers. AutoML for Arm compiler involves integrating AutoML capabilities with the Arm compiler, which generates machine code for Arm processors. In March 2023, TDK Corporation, a Tokyo-based electronic solutions manufacturer, introduced the 'Qeexo AutoML' platform tailored for lightweight Cortex-M0 to -M4 class processors. This platform supports various machine learning algorithms, excelling in ultra-low latency and power consumption. Qeexo AutoML empowers users to rapidly create and implement machine learning solutions using sensor data, making it ideal for deployment in resource-constrained environments such as industrial, IoT, wearables, automotive, and mobile.

In September 2021, Qlik Tech International AB, a US-based software company specializing in data analytics and business intelligence solutions, acquired Big Squid Inc. for an undisclosed amount. This acquisition aims to leverage advanced augmented analytics capabilities, enhancing the industry's most robust augmented analytics suite for cloud analytics. Big Squid Inc. is a US-based software company providing no-code automated machine learning (AutoML).

Major companies operating in the automated machine learning (automl) market report are Google LLC, Microsoft Corporation, Amazon Web Services Inc., International Business Machines Corporation, Oracle Corporation, Salesforce Inc., Teradata Corporation, Alteryx, Altair Engineering Inc., EdgeVerve Systems Limited, TIBCO Software Inc., DataRobot Inc., Dataiku, BigPanda., H2O.ai Inc., KNIME, Cognitivescale, Anyscale Inc., RapidMiner, Squark AI Inc., Auger.AI, DotData Inc., BigML Inc., Valohai, DarwinAI, Aible Inc., SigOpt, Zerion, Xpanse AI, Neptune Labs

North America was the largest region in the automated machine learning (AutoML) market in 2023. Asia-Pacific is expected to be the fastest-growing region in the forecast period. The regions covered in the automated machine learning (automl) market report are Asia-Pacific, Western Europe, Eastern Europe, North America, South America, Middle East, Africa

The countries covered in the automated machine learning (automl) market report are Australia, Brazil, China, France, Germany, India, Indonesia, Japan, Russia, South Korea, UK, USA, Italy, Spain, Canada.

The automated machine learning (AutoML) market includes revenues earned by entities by providing data visualization, deployment of technology, monitoring and problem cracking, fraud detection, neural architecture search*(NAS), and workflow optimization. The market value includes the value of related goods sold by the service provider or included within the service offering. Only goods and services traded between entities or sold to end consumers are included.

The market value is defined as the revenues that enterprises gain from the sale of goods and/or services within the specified market and geography through sales, grants, or donations in terms of the currency (in USD, unless otherwise specified).

The revenues for a specified geography are consumption values that are revenues generated by organizations in the specified geography within the market, irrespective of where they are produced. It does not include revenues from resales along the supply chain, either further along the supply chain or as part of other products.

Automated Machine Learning (AutoML) Global Market Report 2024 from The Business Research Company provides strategists, marketers and senior management with the critical information they need to assess the market.

This report focuses on automated machine learning (automl) market which is experiencing strong growth. The report gives a guide to the trends which will be shaping the market over the next ten years and beyond.

Reasons to Purchase

  • Gain a truly global perspective with the most comprehensive report available on this market covering 50+ geographies.
  • Understand how the market has been affected by the coronavirus and how it is responding as the impact of the virus abates.
  • Assess the Russia - Ukraine war's impact on agriculture, energy and mineral commodity supply and its direct and indirect impact on the market.
  • Measure the impact of high global inflation on market growth.
  • Create regional and country strategies on the basis of local data and analysis.
  • Identify growth segments for investment.
  • Outperform competitors using forecast data and the drivers and trends shaping the market.
  • Understand customers based on the latest market shares.
  • Benchmark performance against key competitors.
  • Suitable for supporting your internal and external presentations with reliable high quality data and analysis
  • Report will be updated with the latest data and delivered to you within 3-5 working days of order along with an Excel data sheet for easy data extraction and analysis.
  • All data from the report will also be delivered in an excel dashboard format.

Where is the largest and fastest growing market for automated machine learning (automl) ? How does the market relate to the overall economy, demography and other similar markets? What forces will shape the market going forward? The automated machine learning (automl) market global report from the Business Research Company answers all these questions and many more.

The report covers market characteristics, size and growth, segmentation, regional and country breakdowns, competitive landscape, market shares, trends and strategies for this market. It traces the market's historic and forecast market growth by geography.

  • The market characteristics section of the report defines and explains the market.
  • The market size section gives the market size ($b) covering both the historic growth of the market, and forecasting its development.
  • The forecasts are made after considering the major factors currently impacting the market. These include:

The impact of sanctions, supply chain disruptions, and altered demand for goods and services due to the Russian Ukraine war, impacting various macro-economic factors and parameters in the Eastern European region and its subsequent effect on global markets.

The impact of higher inflation in many countries and the resulting spike in interest rates.

The continued but declining impact of covid 19 on supply chains and consumption patterns.

  • Market segmentations break down the market into sub markets.
  • The regional and country breakdowns section gives an analysis of the market in each geography and the size of the market by geography and compares their historic and forecast growth. It covers the growth trajectory of COVID-19 for all regions, key developed countries and major emerging markets.
  • The competitive landscape chapter gives a description of the competitive nature of the market, market shares, and a description of the leading companies. Key financial deals which have shaped the market in recent years are identified.
  • The trends and strategies section analyses the shape of the market as it emerges from the crisis and suggests how companies can grow as the market recovers.

Scope

Markets Covered:

  • 1) By Offering: Solutions; Services
  • 2) By Deployment: Cloud; On-Premises
  • 3) By Enterprise: Small And Medium Enterprise; Large Enterprise
  • 4) By Application: Data Processing; Feature Engineering; Model Selection; Hyperparameter Optimization And Tuning; Model Assembling; Other Applications
  • 5) By End User: Banking, Financial Services And Insurance (BFSI); Retail And E-Commerce; Healthcare; Manufacturing; Other End Users
  • Companies Mentioned: Google LLC; Microsoft Corporation; Amazon Web Services Inc.; International Business Machines Corporation; Oracle Corporation
  • Countries: Australia; Brazil; China; France; Germany; India; Indonesia; Japan; Russia; South Korea; UK; USA; Canada; Italy; Spain
  • Regions: Asia-Pacific; Western Europe; Eastern Europe; North America; South America; Middle East; Africa
  • Time series: Five years historic and ten years forecast.
  • Data: Ratios of market size and growth to related markets, GDP proportions, expenditure per capita,
  • Data segmentations: country and regional historic and forecast data, market share of competitors, market segments.
  • Sourcing and Referencing: Data and analysis throughout the report is sourced using end notes.
  • Delivery format: PDF, Word and Excel Data Dashboard.

Table of Contents

1. Executive Summary

2. Automated Machine Learning (AutoML) Market Characteristics

3. Automated Machine Learning (AutoML) Market Trends And Strategies

4. Automated Machine Learning (AutoML) Market - Macro Economic Scenario

  • 4.1. Impact Of High Inflation On The Market
  • 4.2. Ukraine-Russia War Impact On The Market
  • 4.3. COVID-19 Impact On The Market

5. Global Automated Machine Learning (AutoML) Market Size and Growth

  • 5.1. Global Automated Machine Learning (AutoML) Market Drivers and Restraints
    • 5.1.1. Drivers Of The Market
    • 5.1.2. Restraints Of The Market
  • 5.2. Global Automated Machine Learning (AutoML) Historic Market Size and Growth, 2018 - 2023, Value ($ Billion)
  • 5.3. Global Automated Machine Learning (AutoML) Forecast Market Size and Growth, 2023 - 2028, 2033F, Value ($ Billion)

6. Automated Machine Learning (AutoML) Market Segmentation

  • 6.1. Global Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • Solutions
  • Services
  • 6.2. Global Automated Machine Learning (AutoML) Market, Segmentation By Deployment, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • Cloud
  • On-Premises
  • 6.3. Global Automated Machine Learning (AutoML) Market, Segmentation By Enterprise, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • Small And Medium Enterprise
  • Large Enterprise
  • 6.4. Global Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • Data Processing
  • Feature Engineering
  • Model Selection
  • Hyperparameter Optimization And Tuning
  • Model Ensembling
  • Other Applications
  • 6.5. Global Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • Banking, Financial Services And Insurance (BFSI)
  • Retail And E-Commerce
  • Healthcare
  • Manufacturing
  • Other End Users

7. Automated Machine Learning (AutoML) Market Regional And Country Analysis

  • 7.1. Global Automated Machine Learning (AutoML) Market, Split By Region, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 7.2. Global Automated Machine Learning (AutoML) Market, Split By Country, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

8. Asia-Pacific Automated Machine Learning (AutoML) Market

  • 8.1. Asia-Pacific Automated Machine Learning (AutoML) Market Overview
  • Region Information, Impact Of COVID-19, Market Information, Background Information, Government Initiatives, Regulations, Regulatory Bodies, Major Associations, Taxes Levied, Corporate Tax Structure, Investments, Major Companies
  • 8.2. Asia-Pacific Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 8.3. Asia-Pacific Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 8.4. Asia-Pacific Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

9. China Automated Machine Learning (AutoML) Market

  • 9.1. China Automated Machine Learning (AutoML) Market Overview
  • 9.2. China Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F,$ Billion
  • 9.3. China Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F,$ Billion
  • 9.4. China Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F,$ Billion

10. India Automated Machine Learning (AutoML) Market

  • 10.1. India Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 10.2. India Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 10.3. India Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

11. Japan Automated Machine Learning (AutoML) Market

  • 11.1. Japan Automated Machine Learning (AutoML) Market Overview
  • 11.2. Japan Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 11.3. Japan Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 11.4. Japan Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

12. Australia Automated Machine Learning (AutoML) Market

  • 12.1. Australia Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 12.2. Australia Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 12.3. Australia Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

13. Indonesia Automated Machine Learning (AutoML) Market

  • 13.1. Indonesia Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 13.2. Indonesia Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 13.3. Indonesia Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

14. South Korea Automated Machine Learning (AutoML) Market

  • 14.1. South Korea Automated Machine Learning (AutoML) Market Overview
  • 14.2. South Korea Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 14.3. South Korea Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 14.4. South Korea Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

15. Western Europe Automated Machine Learning (AutoML) Market

  • 15.1. Western Europe Automated Machine Learning (AutoML) Market Overview
  • 15.2. Western Europe Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 15.3. Western Europe Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 15.4. Western Europe Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

16. UK Automated Machine Learning (AutoML) Market

  • 16.1. UK Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 16.2. UK Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 16.3. UK Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

17. Germany Automated Machine Learning (AutoML) Market

  • 17.1. Germany Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 17.2. Germany Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 17.3. Germany Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

18. France Automated Machine Learning (AutoML) Market

  • 18.1. France Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 18.2. France Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 18.3. France Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

19. Italy Automated Machine Learning (AutoML) Market

  • 19.1. Italy Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 19.2. Italy Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 19.3. Italy Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

20. Spain Automated Machine Learning (AutoML) Market

  • 20.1. Spain Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 20.2. Spain Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 20.3. Spain Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

21. Eastern Europe Automated Machine Learning (AutoML) Market

  • 21.1. Eastern Europe Automated Machine Learning (AutoML) Market Overview
  • 21.2. Eastern Europe Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 21.3. Eastern Europe Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 21.4. Eastern Europe Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

22. Russia Automated Machine Learning (AutoML) Market

  • 22.1. Russia Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 22.2. Russia Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 22.3. Russia Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

23. North America Automated Machine Learning (AutoML) Market

  • 23.1. North America Automated Machine Learning (AutoML) Market Overview
  • 23.2. North America Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 23.3. North America Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 23.4. North America Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

24. USA Automated Machine Learning (AutoML) Market

  • 24.1. USA Automated Machine Learning (AutoML) Market Overview
  • 24.2. USA Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 24.3. USA Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 24.4. USA Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

25. Canada Automated Machine Learning (AutoML) Market

  • 25.1. Canada Automated Machine Learning (AutoML) Market Overview
  • 25.2. Canada Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 25.3. Canada Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 25.4. Canada Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

26. South America Automated Machine Learning (AutoML) Market

  • 26.1. South America Automated Machine Learning (AutoML) Market Overview
  • 26.2. South America Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 26.3. South America Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 26.4. South America Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

27. Brazil Automated Machine Learning (AutoML) Market

  • 27.1. Brazil Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 27.2. Brazil Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 27.3. Brazil Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

28. Middle East Automated Machine Learning (AutoML) Market

  • 28.1. Middle East Automated Machine Learning (AutoML) Market Overview
  • 28.2. Middle East Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 28.3. Middle East Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 28.4. Middle East Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

29. Africa Automated Machine Learning (AutoML) Market

  • 29.1. Africa Automated Machine Learning (AutoML) Market Overview
  • 29.2. Africa Automated Machine Learning (AutoML) Market, Segmentation By Offering, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 29.3. Africa Automated Machine Learning (AutoML) Market, Segmentation By Application, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion
  • 29.4. Africa Automated Machine Learning (AutoML) Market, Segmentation By End User, Historic and Forecast, 2018-2023, 2023-2028F, 2033F, $ Billion

30. Automated Machine Learning (AutoML) Market Competitive Landscape And Company Profiles

  • 30.1. Automated Machine Learning (AutoML) Market Competitive Landscape
  • 30.2. Automated Machine Learning (AutoML) Market Company Profiles
    • 30.2.1. Google LLC
      • 30.2.1.1. Overview
      • 30.2.1.2. Products and Services
      • 30.2.1.3. Strategy
      • 30.2.1.4. Financial Performance
    • 30.2.2. Microsoft Corporation
      • 30.2.2.1. Overview
      • 30.2.2.2. Products and Services
      • 30.2.2.3. Strategy
      • 30.2.2.4. Financial Performance
    • 30.2.3. Amazon Web Services Inc.
      • 30.2.3.1. Overview
      • 30.2.3.2. Products and Services
      • 30.2.3.3. Strategy
      • 30.2.3.4. Financial Performance
    • 30.2.4. International Business Machines Corporation
      • 30.2.4.1. Overview
      • 30.2.4.2. Products and Services
      • 30.2.4.3. Strategy
      • 30.2.4.4. Financial Performance
    • 30.2.5. Oracle Corporation
      • 30.2.5.1. Overview
      • 30.2.5.2. Products and Services
      • 30.2.5.3. Strategy
      • 30.2.5.4. Financial Performance

31. Automated Machine Learning (AutoML) Market Other Major And Innovative Companies

  • 31.1. Salesforce Inc.
  • 31.2. Teradata Corporation
  • 31.3. Alteryx
  • 31.4. Altair Engineering Inc.
  • 31.5. EdgeVerve Systems Limited
  • 31.6. TIBCO Software Inc.
  • 31.7. DataRobot Inc.
  • 31.8. Dataiku
  • 31.9. BigPanda.
  • 31.10. H2O.ai Inc.
  • 31.11. KNIME
  • 31.12. Cognitivescale
  • 31.13. Anyscale Inc.
  • 31.14. RapidMiner
  • 31.15. Squark AI Inc.

32. Global Automated Machine Learning (AutoML) Market Competitive Benchmarking

33. Global Automated Machine Learning (AutoML) Market Competitive Dashboard

34. Key Mergers And Acquisitions In The Automated Machine Learning (AutoML) Market

35. Automated Machine Learning (AutoML) Market Future Outlook and Potential Analysis

  • 35.1 Automated Machine Learning (AutoML) Market In 2028 - Countries Offering Most New Opportunities
  • 35.2 Automated Machine Learning (AutoML) Market In 2028 - Segments Offering Most New Opportunities
  • 35.3 Automated Machine Learning (AutoML) Market In 2028 - Growth Strategies
    • 35.3.1 Market Trend Based Strategies
    • 35.3.2 Competitor Strategies

36. Appendix

  • 36.1. Abbreviations
  • 36.2. Currencies
  • 36.3. Historic And Forecast Inflation Rates
  • 36.4. Research Inquiries
  • 36.5. The Business Research Company
  • 36.6. Copyright And Disclaimer