![]() |
市場調査レポート
商品コード
1787887
光学材料市場の2032年までの予測: 製品タイプ別、エンドユーザー別、地域別の世界分析Optical Materials Market Forecasts to 2032 - Global Analysis By Product Type (Glass, Quartz, Polymers, Metals, Ceramics, Crystals, Silicone and Other Product Types), End User and By Geography |
||||||
カスタマイズ可能
|
光学材料市場の2032年までの予測: 製品タイプ別、エンドユーザー別、地域別の世界分析 |
出版日: 2025年08月07日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、世界の光学材料市場は2025年に52億3,000万米ドルを占め、2032年には88億5,000万米ドルに達すると予測され、予測期間中のCAGRは7.8%です。
光学材料は、吸収、発光、透過、反射、屈折を通じて光を制御する能力を持つため、特別に設計または選択された物質です。これらの物質は、ディスプレイシステム、レンズ、レーザー、光ファイバーなど、さまざまな技術に不可欠です。高い透明性、特定の屈折率、非線形光学応答など、独自の光学特性を持つ一般的な光学材料には、ガラス、結晶、ポリマー、半導体などがあります。さらに、波長範囲、光学的損失、機械的強度、熱安定性などが光学材料の選択に影響する要因の一部であり、一般的な機器から最先端の科学機器に至るまで、光学材料は極めて重要な役割を担っています。
光学とフォトニクスにおける主要な専門家団体である国際光学光学会(SPIE)のデータによると、光学材料に関連する研究、工学、教育、産業に積極的に従事する会員は世界中で2万人を超えています。
民生用電子機器需要の増加
スマートフォン、タブレット、スマートウォッチ、AR/VR(拡張現実/仮想現実)デバイスの急速な普及により、高性能光学材料へのニーズは劇的に高まっています。レンズ、カメラモジュール、スクリーン、生体認証センサ、保護カバーなどはすべてこれらの材料で作られています。サファイアガラス、光学グレードのポリマー、特殊コーティングを施した薄膜などの材料を使用することで、高解像度、耐久性、光透過性を実現しています。さらに、LiDARベース深度センシング、3D顔認識、ディスプレイ下の指紋リーダーなどの新機能が一般的になるにつれて、先進的光学材料の重要性はますます高まっています。
高価な先端光学物質
サファイア、ゲルマニウム、一部の非線形結晶などの先端材料の製造や入手のコストが高いことは、光学材料市場を制限する主要因の一つです。結晶成長、高温処理、超高純度化学合成など、複雑でエネルギー集約的な製造技術が、これらの材料の製造には頻繁に必要とされます。例えば、ガリウムヒ素や単結晶サファイアの製造には、高価な原料と極度に制御された条件が必要です。さらに、価格圧力により、市場や予算に制約のある産業では最先端の光学材料の使用が制限されることが多く、市場の成長が鈍化しています。
光学材料とライダーと自動車センサとの統合
ADAS(先進運転支援システム)と自律走行車の開発は、光学材料のもう一つの急拡大市場を示しています。LiDARセンサ、ナイトビジョンシステム、ヘッドアップディスプレイ、カメラベースナビゲーションでは、光学部品が不可欠です。これらのデバイスはすべて、熱的に安定で、光学的に透明で、極端な屋外環境条件に強い材料を必要とします。自動車用光学部品で普及しつつある材料には、サファイアウィンドウ、カルコゲナイドガラス、赤外線透過性ポリマーなどがあります。さらに、光学材料メーカーは、規制や消費者の需要によって自動車メーカーがより安全でスマートな自動車を求めるようになるにつれて、自動車のセンシング要件に特化したソリューションを提供する機会があります。
地政学的不確実性と貿易障壁
地政学的不安定は光学材料市場にとって最大のリスクの一つであり、特に重要な原料の供給を支配している国に関してはなおさらです。世界のレアアースサプライチェーンの大部分を占める中国は、レアアース、高純度石英、特殊ガラス添加剤など、多くの高性能光学材料の一次情報源です。政治的紛争、輸出規制、貿易摩擦はすべて、サプライチェーンの混乱を引き起こし、原料の価格を引き上げ、生産スケジュールを延期する可能性があります。さらに、こうしたリスクの影響を受けるのは多国籍大企業だけでなく、戦略的備蓄や多様な調達戦略を持たない中小企業も大きな障害に直面しています。
COVID-19パンデミックは、エレクトロニクス、自動車、航空宇宙などの重要な産業に短期的な不確実性をもたらし、世界のサプライチェーンを混乱させ、製造を遅らせた。操業停止と産業活動の低下により、高純度シリカや希土類元素を含む原料の生産と出荷が減速しました。その結果、材料不足と価格変動が生じた。しかし、パンデミックはデジタルトランスフォーメーションと遠隔通信を促進し、光ファイバーネットワーク、医療用画像システム、AR/VRなどの光学ベース技術に対する需要を増加させました。特にコンシューマーエレクトロニクス、テレコム、ヘルスケア産業では、この変化が景気後退を部分的に相殺するのに役立ちました。
予測期間中、ガラスセグメントが最大となる見込み
予測期間中、ガラスセグメントが最大の市場シェアを占めると予想されます。ガラスは、その卓越した耐久性、高い屈折精度、光学的透明性により、光学材料産業の基盤であり続けています。光ファイバーシステム、光学窓、プリズム、精密レンズなど、数多くの重要な用途でガラスが幅広く利用されています。低分散で熱安定性が高いため、ガラス材料は科学機器、通信部品、高解像度画像機器に最適です。さらに、超薄型、軟質、反射防止コーティングガラスは、AR/VRデバイスやスマートフォンのカメラのような最先端の民生用電子機器での用途を拡大した最近の動向の一例です。
予測期間中、航空宇宙・防衛セグメントが最も高いCAGRが見込まれる
予測期間中、航空宇宙・防衛セグメントが最も高い成長率を示すと予測されています。この拡大には、宇宙開発、防衛技術、先進的モニタリングシステムに対する国際投資の増加が寄与しています。赤外線イメージング、高精度レーザ照準、ミサイル誘導、衛星光学、ドローンベースセンサは、光学材料に大きく依存するアプリケーションのほんの一部です。これらのシステムには、サファイア、カルコゲナイドガラス、特殊コーティングなど、卓越した機械的耐久性、さまざまな波長での透明性、優れた耐熱性を備えた材料が必要です。さらに、地政学的緊張が高まり、航空宇宙ミッションが複雑化するにつれて、高性能光学部品の需要はますます高まっています。
予測期間中、アジア太平洋が最大の市場シェアを占めると予想されます。その主要理由は、民生用電子機器の生産拠点の強固な存在、新技術の迅速な導入、通信網の拡大です。半導体デバイス、光ファイバー部品、スマートフォン、ディスプレイパネルの生産における世界的リーダーには、中国、日本、韓国、台湾が含まれます。これらの産業は主に、ガラス、ポリマー、フォトニック基板といった最先端の光学材料に依存しています。地域の需要は、スマートシティ、再生可能エネルギー技術、5Gの展開に対する大規模な政府投資によってさらに増加しています。さらに、アジア太平洋は、原料、熟練労働者、確立されたサプライチェーンが利用可能であることから、光学材料の生産と消費の主要地域となっています。
予測期間中、中東・アフリカが最高のCAGRを示すと予測されています。この急拡大は、スマートシティプロジェクト、インフラ開発、再生可能エネルギー、通信、防衛における最先端技術利用への投資増が後押ししています。高性能光コンポーネントの需要は、サウジアラビアやアラブ首長国連邦のような国々が防衛システムの近代化を積極的に進め、5Gネットワークを成長させています。さらに、最先端の光学材料に依存する太陽エネルギープロジェクトやヘルスケア診断もこの地域で拡大しています。市場情勢は、産業基盤の拡大と戦略的投資により、現在の市場の絶対的規模が小さいにもかかわらず、光学材料情勢において最も急成長している地域となっています。
According to Stratistics MRC, the Global Optical Materials Market is accounted for $5.23 billion in 2025 and is expected to reach $8.85 billion by 2032 growing at a CAGR of 7.8% during the forecast period. Optical materials are substances that have been specially designed or chosen because of their capacity to control light through absorption, emission, transmission, reflection, and refraction. These substances are essential to many different technologies, such as display systems, lenses, lasers, and optical fibers. With their own optical characteristics, such as high transparency, particular refractive indices, or nonlinear optical responses, common optical materials include glasses, crystals, polymers, and semiconductors. Moreover, wavelength range, optical loss, mechanical strength, and thermal stability are some of the factors that influence the selection of an optical material, which makes them crucial parts of both commonplace devices and cutting-edge scientific instruments.
According to data from the International Society for Optics and Photonics (SPIE)-a leading professional association in optics and photonics-there are over 20,000 members worldwide actively engaged in research, engineering, education, and industry related to optical materials.
Increased consumer electronics demand
The need for high-performance optical materials has grown dramatically as a result of the quick spread of smartphones, tablets, smart watches, and augmented/virtual reality (AR/VR) devices. Lenses, camera modules, screens, biometric sensors, and protective covers are all made with these materials. High resolution, durability, and light transmission are achieved by using materials such as sapphire glass, optical-grade polymers, and specially coated thin films. Additionally, advanced optical materials are becoming more and more important as new features like LiDAR-based depth sensing, 3D facial recognition, and under-display fingerprint readers become commonplace.
Expensive advanced optical substances
The high cost of producing and acquiring advanced materials such as sapphire, germanium, and some nonlinear crystals is one of the main factors limiting the market for optical materials. Complex and energy-intensive fabrication techniques like crystal growth, high-temperature processing, or ultra-pure chemical synthesis are frequently needed to create these materials. For example, the production of gallium arsenide or single-crystal sapphire requires costly raw materials and extremely controlled conditions. Furthermore, pricing pressure frequently restricts the use of cutting-edge optical materials in developing or budget-constrained industries, which slows market growth.
Optical material integration with lidar and automotive sensors
Advanced driver assistance systems (ADAS) and autonomous vehicle development represent yet another rapidly expanding market for optical materials. In LiDAR sensors, night vision systems, head-up displays, and camera-based navigation, optical components are essential. These devices all need materials that are thermally stable, optically transparent, and resilient to extreme outdoor environment conditions. Materials that are becoming more popular in automotive optics include sapphire windows, chalcogenide glass, and IR-transparent polymers. Moreover, optical material manufacturers have the chance to provide specialized solutions for automotive sensing requirements as regulations and consumer demand drive automakers toward safer, smarter vehicles.
Geopolitical uncertainty and trade barriers
Geopolitical instability is one of the biggest risks to the market for optical materials, especially when it comes to nations that control the supply of vital raw materials. China, which holds a sizable portion of the global rare-earth supply chain, is the primary source of many high-performance optical materials, including rare-earth elements, high-purity quartz, and specialty glass additives. Political disputes, export restrictions, and trade tensions can all cause supply chain disruptions, raise the price of raw materials, and postpone production schedules. Additionally, large multinational corporations are not the only businesses affected by these risks; smaller businesses without strategic stockpiles or diversified sourcing strategies face significant obstacles.
The COVID-19 pandemic caused short-term uncertainty in important industries like electronics, automotive, and aerospace; disrupted global supply chains; and delayed manufacturing, all of which had a mixed but significant effect on the market for optical materials. Lockdowns and decreased industrial activity caused raw material production and shipments, including high-purity silica and rare-earth elements, to slow down. This resulted in material shortages and price volatility. The pandemic did, however, also hasten digital transformation and remote communication, increasing demand for optically based technologies such as fiber-optic networks, medical imaging systems, and AR/VR. Particularly in the consumer electronics, telecom, and healthcare industries, this change helped partially offset the downturn.
The glass segment is expected to be the largest during the forecast period
The glass segment is expected to account for the largest market share during the forecast period. Glass continues to be the foundation of the optical materials industry because of its exceptional durability, high refractive precision, and optical clarity. Numerous crucial applications, including fiber-optic systems, optical windows, prisms, and precision lenses, make extensive use of it. Because of their low dispersion and thermal stability, glass materials are perfect for scientific equipment, telecommunications parts, and high-resolution imaging devices. Moreover, ultra-thin, flexible, and anti-reflective coated glass is examples of recent developments that have expanded their use in cutting-edge consumer electronics like AR/VR devices and smartphone cameras.
The aerospace & defense segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the aerospace & defense segment is predicted to witness the highest growth rate. This expansion is fueled by rising international investment in space exploration, defense technologies, and sophisticated surveillance systems. Infrared imaging, high-precision laser targeting, missile guidance, satellite optics, and drone-based sensors are just a few of the applications that depend heavily on optical materials. These systems need materials like sapphire, chalcogenide glass, and specialty coatings that have exceptional mechanical durability, clarity at various wavelengths, and superior heat resistance. Additionally, high-performance optical components are becoming more and more in demand as geopolitical tensions increase and aerospace missions become more complex.
During the forecast period, the Asia-Pacific region is expected to hold the largest market share, mainly due to the robust presence of centers for the production of consumer electronics, the quick uptake of new technologies, and the growing telecommunications network. Global leaders in the production of semiconductor devices, fiber-optic components, smartphones, and display panels include China, Japan, South Korea, and Taiwan. These industries mainly rely on cutting-edge optical materials like glass, polymers, and photonic substrates. Regional demand is further increased by large government investments in smart cities, renewable energy technologies, and the rollout of 5G. Furthermore, Asia-Pacific is the leading region in the production and consumption of optical materials due to the availability of raw materials, skilled labor, and established supply chains.
Over the forecast period, the Middle East & Africa (MEA) region is anticipated to exhibit the highest CAGR. This quick expansion is being fueled by rising investments in smart city projects, infrastructure development, and the use of cutting-edge technologies in renewable energy, telecommunications, and defense. Demand for high-performance optical components is being driven by nations like Saudi Arabia and the United Arab Emirates actively modernizing their defense systems and growing 5G networks. Moreover, solar energy projects and healthcare diagnostics-both of which depend on cutting-edge optical materials-are expanding in the area. MEA's growing industrial base and strategic investments make it the fastest-growing region in the optical materials landscape, despite the market's current smaller absolute size.
Key players in the market
Some of the key players in Optical Materials Market include Corning Incorporated, 3M Company, Schott AG, Fujifilm Holdings Corporation, Carl Zeiss AG, Nikon Corporation, Saint-Gobain S.A., AGC Inc., Dow Chemical Company, LG Chem, Mitsubishi Chemical Corporation, Sumitomo Chemical Co., Ltd., Canon Inc., Thorlabs, Inc. and Merck KGaA (Merck Group).
In June 2025, Dow has announced an agreement to sell its 50% stake in DowAksa Advanced Composites Holdings BV to joint venture partner Aksa Akrilik Kimya Sanayii A.S. for $125 million. The transaction reflects an enterprise value of approximately 10x the estimated 2025 operating EBITDA. The joint venture, established in 2012, is being divested as part of Dow's strategy to focus on core, high-value downstream businesses. The sale proceeds will support Dow's balanced capital allocation approach.
In May 2025, 3M has reached an agreement that resolves all legacy claims related to the Chambers Works site in Salem County, New Jersey, currently owned by The Chemours Company and, before that, by DuPont. In addition, the settlement extends to PFAS-related claims that the State of New Jersey and its departments have, or may in the future have, against 3M.
In April 2025, Nikon Corporation has announced the signing of a sponsored research agreement with Advanced Powders and Coatings Inc. (AP&C) and the University of Waterloo, Ontario, Canada. This agreement focuses on innovative repair capabilities for high-value aerospace components using titanium alloys.