デフォルト表紙
市場調査レポート
商品コード
1716411

化学蒸着法市場の2032年までの予測:タイプ別、蒸着材料別、用途別、エンドユーザー別、地域別の世界分析

Chemical Vapor Deposition Market Forecasts to 2032 - Global Analysis By Type (Low-Pressure, Atmospheric Pressure, Metal-Organic, Plasma-Enhanced, and Other Types), Deposition Material, Application, End User and By Geography


出版日
ページ情報
英文 200+ Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=148.90円
化学蒸着法市場の2032年までの予測:タイプ別、蒸着材料別、用途別、エンドユーザー別、地域別の世界分析
出版日: 2025年04月03日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

Stratistics MRCによると、世界の化学蒸着法市場は2025年に275億3,000万米ドルを占め、2032年には571億7,000万米ドルに達すると予測され、予測期間中のCAGRは11.0%で成長する見込みです。

化学蒸着法(CVD)は、気相反応物質を基板上に堆積させて高純度固体材料を製造するプロセスです。CVDでは、前駆体ガスが反応チャンバーに導入され、高温で化学反応や分解が起こり、基板上に薄く均一なコーティングが形成されます。この技術は、その精度と緻密で高性能な膜を作る能力から、半導体、光学、コーティングに広く使われています。

国際再生可能エネルギー機関(IRENA)によると、中国の太陽光発電設備容量は2020年の253.4GWから2021年には約306.4GWに増加しました。さらに、2021年の中国の太陽光発電の輸出額は300億米ドルを超え、過去5年間の中国の貿易黒字のほぼ7%を占めました。

太陽エネルギー需要の増加

太陽エネルギーシステムは、効率的で耐久性のある太陽電池への依存度を高めており、その多くは製造にCVD技術を組み込んでいます。太陽光発電のような再生可能エネルギー源が二酸化炭素排出量の削減に不可欠となるにつれ、革新的なCVD法がより効率的なソーラーパネル生産を可能にしています。また、政府の補助金や環境政策により、世界中で太陽エネルギー技術への投資が加速しています。エネルギー需要が高まり、持続可能性が重視される中、太陽電池技術の進歩におけるCVDプロセスの役割は極めて重要です。拡大する太陽電池市場は、太陽光発電の性能と寿命を向上させるCVDの重要性を強化しています。

高い資本コストと運用コスト

CVDシステムには複雑なインフラが必要なため、多額の初期投資が必要となり、中小メーカーの足かせとなっています。さらに、CVDプロセスの高度な性質により、エネルギー消費とメンテナンスを含む運用コストが増加します。エレクトロニクスや太陽エネルギーなど、大規模な用途向けに生産規模を拡大すると、さらに出費がかさむ可能性があります。このようなコスト障壁は、特に価格に敏感な市場において、産業全体の採用に影響を与えます。メーカーは、こうした経済的ハードルを軽減するため、コスト効率の高いCVD技術や代替材料の研究に積極的に取り組んでいます。

ナノテクノロジーの利用拡大

CVDプロセスは、サイズ、形状、特性を精密に制御したナノスケール材料の製造に役立っています。エレクトロニクス、ヘルスケア、エネルギーなどの産業が、CVD技術によって実現される高度なナノ材料の需要を牽引しています。高性能半導体の製造からドラッグデリバリーシステムの強化まで、ナノテクノロジーの範囲は急速に拡大しています。政府と民間部門はナノテクノロジー研究に多額の投資を行い、革新的なアプリケーションの成長を促進しています。CVDとナノテクノロジーの融合は、材料科学と産業の進歩に新たな道を開きつつあります。

プロセス制御の複雑さ

安定した高品質のCVDコーティングやフィルムを製造するには、温度、圧力、化学濃度など、いくつかのパラメーターを正確に制御する必要があります。特に半導体のような高精度が要求される用途では、プロセスパラメーターが一定でないと、欠陥や性能の問題につながる可能性があります。熟練したオペレーターや高度な装置が必要なため、プロセスの標準化がさらに複雑になり、採用の障壁となっています。さらに、技術の急速な進歩により、競争力を維持するためにCVDプロセスの継続的な更新が必要となります。産業界がより高い精度と効率を求める中、こうした複雑性を克服することは、市場の関連性を維持するために不可欠です。

COVID-19の影響:

COVID-19の大流行は化学蒸着法市場にさまざまな影響を及ぼし、サプライチェーンを混乱させ、産業全体の生産を停止させました。自動車や家電といった分野からの需要減退は、当初は市場の成長に影響を与えました。しかし、パンデミック後はヘルスケア・アプリケーションや再生可能エネルギーへの注目が高まり、回復の道筋が見えてきました。各国政府はクリーンエネルギー・プロジェクトへの投資を優先し、効率的な太陽電池やエネルギー貯蔵ソリューションの生産におけるCVDの重要性を強調しています。

予測期間中、導電性材料セグメントが最大になる見込み

導電性材料分野は、エレクトロニクスと再生可能エネルギー分野からの需要増加により、予測期間中最大の市場シェアを占めると予想されます。CVDによって製造される導電性コーティングは、半導体や太陽電池の電気的性能を高めるために不可欠です。材料科学の進歩により、特定の用途に合わせたより効率的な導電性材料が可能となっています。さらに、エネルギー貯蔵技術への投資の高まりが、CVDコーティング導電材料の採用をさらに後押ししています。

予測期間中にCAGRが最も高くなると予想される自動車分野

予測期間中、自動車分野は最も高い成長率を示すと予測され、これは自動車における高度な電子部品の採用増加によるものです。軽量材料とCVDベースのコーティングは、自動車用途における燃費と耐久性の向上に不可欠です。電気自動車への移行は、CVD技術によって実現される高性能バッテリーおよび電子部品の需要をさらに加速します。自動車の設計と製造における革新は、精度と性能を最優先しており、いずれも高度なCVDプロセスによって支えられています。

最大シェアの地域:

予測期間中、アジア太平洋地域が最大の市場シェアを占めると予想されます。中国、日本、韓国などの国々は、半導体や太陽光発電の主要生産拠点であり、CVD技術が広く利用されています。再生可能エネルギーと技術革新に対する政府の支援が、同地域における先進的CVDプロセスの採用を後押ししています。その他の特典として、アジア太平洋地域はコスト効率の高い製造と主要な市場企業の存在が挙げられます。

CAGRが最も高い地域:

予測期間中、北米地域が最も高いCAGRを示すと予測されます。これは、技術の進歩と再生可能エネルギーへの注目の高まりによるものです。半導体製造と最先端の研究開発への旺盛な投資が、同地域の市場ポジションを強化しています。太陽光や風力といったクリーンエネルギーへの移行は、エネルギー用途におけるCVDベース材料の需要を増大させています。エネルギー効率と持続可能性をターゲットとした政府の奨励策やイニシアティブが市場成長を後押ししています。

無料カスタマイズサービス:

本レポートをご購読のお客様には、以下の無料カスタマイズオプションのいずれかをご利用いただけます:

  • 企業プロファイル
    • 追加市場企業の包括的プロファイリング(3社まで)
    • 主要企業のSWOT分析(3社まで)
  • 地域セグメンテーション
    • 顧客の関心に応じた主要国の市場推計・予測・CAGR(注:フィージビリティチェックによる)
  • 競合ベンチマーキング
    • 製品ポートフォリオ、地理的プレゼンス、戦略的提携に基づく主要企業のベンチマーキング

目次

第1章 エグゼクティブサマリー

第2章 序文

  • 概要
  • ステークホルダー
  • 調査範囲
  • 調査手法
    • データマイニング
    • データ分析
    • データ検証
    • 調査アプローチ
  • 調査資料
    • 1次調査資料
    • 2次調査情報源
    • 前提条件

第3章 市場動向分析

  • 促進要因
  • 抑制要因
  • 機会
  • 脅威
  • 用途分析
  • エンドユーザー分析
  • 新興市場
  • COVID-19の影響

第4章 ポーターのファイブフォース分析

  • 供給企業の交渉力
  • 買い手の交渉力
  • 代替品の脅威
  • 新規参入業者の脅威
  • 競争企業間の敵対関係

第5章 世界の化学蒸着法市場:タイプ別

  • 低気圧
  • 大気圧
  • 金属有機化合物
  • プラズマ強化
  • その他のタイプ

第6章 世界の化学蒸着法市場:蒸着材料別

  • 導電性材料
  • 断熱材
  • その他の蒸着材料

第7章 世界の化学蒸着法市場:用途別

  • コーティング
  • 太陽電池
  • 光学
  • ナノテクノロジー
  • データストレージ
  • 切削工具
  • その他の用途

第8章 世界の化学蒸着法市場:エンドユーザー別

  • 半導体およびエレクトロニクス
  • 自動車
  • 航空宇宙
  • 太陽エネルギー
  • ヘルスケアとバイオテクノロジー
  • その他のエンドユーザー

第9章 世界の化学蒸着法市場:地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン
    • その他欧州
  • アジア太平洋
    • 日本
    • 中国
    • インド
    • オーストラリア
    • ニュージーランド
    • 韓国
    • その他アジア太平洋地域
  • 南米
    • アルゼンチン
    • ブラジル
    • チリ
    • その他南米
  • 中東・アフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • カタール
    • 南アフリカ
    • その他中東とアフリカ

第10章 主な発展

  • 契約、パートナーシップ、コラボレーション、ジョイントベンチャー
  • 買収と合併
  • 新製品発売
  • 事業拡大
  • その他の主要戦略

第11章 企業プロファイリング

  • Chiheng Group
  • Veeco Instruments Inc.
  • SULZER Ltd.
  • Lam Research Corporation
  • Oxford Instruments Plc
  • Applied Materials, Inc.
  • Kokusai Electric Corporation
  • Tokyo Electron Limited
  • ULVAC, Inc.
  • Fujitsu Limited
  • Chiheng Group
  • First Nano
  • HeFei Kejing Materials Technology Co., Ltd.
  • Tegal Corporation
  • ASM International N.V.
図表

List of Tables

  • Table 1 Global Chemical Vapor Deposition Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Chemical Vapor Deposition Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Chemical Vapor Deposition Market Outlook, By Low-Pressure (2024-2032) ($MN)
  • Table 4 Global Chemical Vapor Deposition Market Outlook, By Atmospheric Pressure (2024-2032) ($MN)
  • Table 5 Global Chemical Vapor Deposition Market Outlook, By Metal-Organic (2024-2032) ($MN)
  • Table 6 Global Chemical Vapor Deposition Market Outlook, By Plasma-Enhanced (2024-2032) ($MN)
  • Table 7 Global Chemical Vapor Deposition Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 8 Global Chemical Vapor Deposition Market Outlook, By Deposition Material (2024-2032) ($MN)
  • Table 9 Global Chemical Vapor Deposition Market Outlook, By Conductive Materials (2024-2032) ($MN)
  • Table 10 Global Chemical Vapor Deposition Market Outlook, By Insulating Materials (2024-2032) ($MN)
  • Table 11 Global Chemical Vapor Deposition Market Outlook, By Other Materials (2024-2032) ($MN)
  • Table 12 Global Chemical Vapor Deposition Market Outlook, By Application (2024-2032) ($MN)
  • Table 13 Global Chemical Vapor Deposition Market Outlook, By Coating (2024-2032) ($MN)
  • Table 14 Global Chemical Vapor Deposition Market Outlook, By Solar Cells (2024-2032) ($MN)
  • Table 15 Global Chemical Vapor Deposition Market Outlook, By Optics (2024-2032) ($MN)
  • Table 16 Global Chemical Vapor Deposition Market Outlook, By Nanotechnology (2024-2032) ($MN)
  • Table 17 Global Chemical Vapor Deposition Market Outlook, By Data Storage (2024-2032) ($MN)
  • Table 18 Global Chemical Vapor Deposition Market Outlook, By Cutting Tools (2024-2032) ($MN)
  • Table 19 Global Chemical Vapor Deposition Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 20 Global Chemical Vapor Deposition Market Outlook, By End User (2024-2032) ($MN)
  • Table 21 Global Chemical Vapor Deposition Market Outlook, By Semiconductor & Electronics (2024-2032) ($MN)
  • Table 22 Global Chemical Vapor Deposition Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 23 Global Chemical Vapor Deposition Market Outlook, By Aerospace (2024-2032) ($MN)
  • Table 24 Global Chemical Vapor Deposition Market Outlook, By Solar Energy (2024-2032) ($MN)
  • Table 25 Global Chemical Vapor Deposition Market Outlook, By Healthcare & Biotech (2024-2032) ($MN)
  • Table 26 Global Chemical Vapor Deposition Market Outlook, By Other End Users (2024-2032) ($MN)
  • Table 27 North America Chemical Vapor Deposition Market Outlook, By Country (2024-2032) ($MN)
  • Table 28 North America Chemical Vapor Deposition Market Outlook, By Type (2024-2032) ($MN)
  • Table 29 North America Chemical Vapor Deposition Market Outlook, By Low-Pressure (2024-2032) ($MN)
  • Table 30 North America Chemical Vapor Deposition Market Outlook, By Atmospheric Pressure (2024-2032) ($MN)
  • Table 31 North America Chemical Vapor Deposition Market Outlook, By Metal-Organic (2024-2032) ($MN)
  • Table 32 North America Chemical Vapor Deposition Market Outlook, By Plasma-Enhanced (2024-2032) ($MN)
  • Table 33 North America Chemical Vapor Deposition Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 34 North America Chemical Vapor Deposition Market Outlook, By Deposition Material (2024-2032) ($MN)
  • Table 35 North America Chemical Vapor Deposition Market Outlook, By Conductive Materials (2024-2032) ($MN)
  • Table 36 North America Chemical Vapor Deposition Market Outlook, By Insulating Materials (2024-2032) ($MN)
  • Table 37 North America Chemical Vapor Deposition Market Outlook, By Other Materials (2024-2032) ($MN)
  • Table 38 North America Chemical Vapor Deposition Market Outlook, By Application (2024-2032) ($MN)
  • Table 39 North America Chemical Vapor Deposition Market Outlook, By Coating (2024-2032) ($MN)
  • Table 40 North America Chemical Vapor Deposition Market Outlook, By Solar Cells (2024-2032) ($MN)
  • Table 41 North America Chemical Vapor Deposition Market Outlook, By Optics (2024-2032) ($MN)
  • Table 42 North America Chemical Vapor Deposition Market Outlook, By Nanotechnology (2024-2032) ($MN)
  • Table 43 North America Chemical Vapor Deposition Market Outlook, By Data Storage (2024-2032) ($MN)
  • Table 44 North America Chemical Vapor Deposition Market Outlook, By Cutting Tools (2024-2032) ($MN)
  • Table 45 North America Chemical Vapor Deposition Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 46 North America Chemical Vapor Deposition Market Outlook, By End User (2024-2032) ($MN)
  • Table 47 North America Chemical Vapor Deposition Market Outlook, By Semiconductor & Electronics (2024-2032) ($MN)
  • Table 48 North America Chemical Vapor Deposition Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 49 North America Chemical Vapor Deposition Market Outlook, By Aerospace (2024-2032) ($MN)
  • Table 50 North America Chemical Vapor Deposition Market Outlook, By Solar Energy (2024-2032) ($MN)
  • Table 51 North America Chemical Vapor Deposition Market Outlook, By Healthcare & Biotech (2024-2032) ($MN)
  • Table 52 North America Chemical Vapor Deposition Market Outlook, By Other End Users (2024-2032) ($MN)
  • Table 53 Europe Chemical Vapor Deposition Market Outlook, By Country (2024-2032) ($MN)
  • Table 54 Europe Chemical Vapor Deposition Market Outlook, By Type (2024-2032) ($MN)
  • Table 55 Europe Chemical Vapor Deposition Market Outlook, By Low-Pressure (2024-2032) ($MN)
  • Table 56 Europe Chemical Vapor Deposition Market Outlook, By Atmospheric Pressure (2024-2032) ($MN)
  • Table 57 Europe Chemical Vapor Deposition Market Outlook, By Metal-Organic (2024-2032) ($MN)
  • Table 58 Europe Chemical Vapor Deposition Market Outlook, By Plasma-Enhanced (2024-2032) ($MN)
  • Table 59 Europe Chemical Vapor Deposition Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 60 Europe Chemical Vapor Deposition Market Outlook, By Deposition Material (2024-2032) ($MN)
  • Table 61 Europe Chemical Vapor Deposition Market Outlook, By Conductive Materials (2024-2032) ($MN)
  • Table 62 Europe Chemical Vapor Deposition Market Outlook, By Insulating Materials (2024-2032) ($MN)
  • Table 63 Europe Chemical Vapor Deposition Market Outlook, By Other Materials (2024-2032) ($MN)
  • Table 64 Europe Chemical Vapor Deposition Market Outlook, By Application (2024-2032) ($MN)
  • Table 65 Europe Chemical Vapor Deposition Market Outlook, By Coating (2024-2032) ($MN)
  • Table 66 Europe Chemical Vapor Deposition Market Outlook, By Solar Cells (2024-2032) ($MN)
  • Table 67 Europe Chemical Vapor Deposition Market Outlook, By Optics (2024-2032) ($MN)
  • Table 68 Europe Chemical Vapor Deposition Market Outlook, By Nanotechnology (2024-2032) ($MN)
  • Table 69 Europe Chemical Vapor Deposition Market Outlook, By Data Storage (2024-2032) ($MN)
  • Table 70 Europe Chemical Vapor Deposition Market Outlook, By Cutting Tools (2024-2032) ($MN)
  • Table 71 Europe Chemical Vapor Deposition Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 72 Europe Chemical Vapor Deposition Market Outlook, By End User (2024-2032) ($MN)
  • Table 73 Europe Chemical Vapor Deposition Market Outlook, By Semiconductor & Electronics (2024-2032) ($MN)
  • Table 74 Europe Chemical Vapor Deposition Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 75 Europe Chemical Vapor Deposition Market Outlook, By Aerospace (2024-2032) ($MN)
  • Table 76 Europe Chemical Vapor Deposition Market Outlook, By Solar Energy (2024-2032) ($MN)
  • Table 77 Europe Chemical Vapor Deposition Market Outlook, By Healthcare & Biotech (2024-2032) ($MN)
  • Table 78 Europe Chemical Vapor Deposition Market Outlook, By Other End Users (2024-2032) ($MN)
  • Table 79 Asia Pacific Chemical Vapor Deposition Market Outlook, By Country (2024-2032) ($MN)
  • Table 80 Asia Pacific Chemical Vapor Deposition Market Outlook, By Type (2024-2032) ($MN)
  • Table 81 Asia Pacific Chemical Vapor Deposition Market Outlook, By Low-Pressure (2024-2032) ($MN)
  • Table 82 Asia Pacific Chemical Vapor Deposition Market Outlook, By Atmospheric Pressure (2024-2032) ($MN)
  • Table 83 Asia Pacific Chemical Vapor Deposition Market Outlook, By Metal-Organic (2024-2032) ($MN)
  • Table 84 Asia Pacific Chemical Vapor Deposition Market Outlook, By Plasma-Enhanced (2024-2032) ($MN)
  • Table 85 Asia Pacific Chemical Vapor Deposition Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 86 Asia Pacific Chemical Vapor Deposition Market Outlook, By Deposition Material (2024-2032) ($MN)
  • Table 87 Asia Pacific Chemical Vapor Deposition Market Outlook, By Conductive Materials (2024-2032) ($MN)
  • Table 88 Asia Pacific Chemical Vapor Deposition Market Outlook, By Insulating Materials (2024-2032) ($MN)
  • Table 89 Asia Pacific Chemical Vapor Deposition Market Outlook, By Other Materials (2024-2032) ($MN)
  • Table 90 Asia Pacific Chemical Vapor Deposition Market Outlook, By Application (2024-2032) ($MN)
  • Table 91 Asia Pacific Chemical Vapor Deposition Market Outlook, By Coating (2024-2032) ($MN)
  • Table 92 Asia Pacific Chemical Vapor Deposition Market Outlook, By Solar Cells (2024-2032) ($MN)
  • Table 93 Asia Pacific Chemical Vapor Deposition Market Outlook, By Optics (2024-2032) ($MN)
  • Table 94 Asia Pacific Chemical Vapor Deposition Market Outlook, By Nanotechnology (2024-2032) ($MN)
  • Table 95 Asia Pacific Chemical Vapor Deposition Market Outlook, By Data Storage (2024-2032) ($MN)
  • Table 96 Asia Pacific Chemical Vapor Deposition Market Outlook, By Cutting Tools (2024-2032) ($MN)
  • Table 97 Asia Pacific Chemical Vapor Deposition Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 98 Asia Pacific Chemical Vapor Deposition Market Outlook, By End User (2024-2032) ($MN)
  • Table 99 Asia Pacific Chemical Vapor Deposition Market Outlook, By Semiconductor & Electronics (2024-2032) ($MN)
  • Table 100 Asia Pacific Chemical Vapor Deposition Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 101 Asia Pacific Chemical Vapor Deposition Market Outlook, By Aerospace (2024-2032) ($MN)
  • Table 102 Asia Pacific Chemical Vapor Deposition Market Outlook, By Solar Energy (2024-2032) ($MN)
  • Table 103 Asia Pacific Chemical Vapor Deposition Market Outlook, By Healthcare & Biotech (2024-2032) ($MN)
  • Table 104 Asia Pacific Chemical Vapor Deposition Market Outlook, By Other End Users (2024-2032) ($MN)
  • Table 105 South America Chemical Vapor Deposition Market Outlook, By Country (2024-2032) ($MN)
  • Table 106 South America Chemical Vapor Deposition Market Outlook, By Type (2024-2032) ($MN)
  • Table 107 South America Chemical Vapor Deposition Market Outlook, By Low-Pressure (2024-2032) ($MN)
  • Table 108 South America Chemical Vapor Deposition Market Outlook, By Atmospheric Pressure (2024-2032) ($MN)
  • Table 109 South America Chemical Vapor Deposition Market Outlook, By Metal-Organic (2024-2032) ($MN)
  • Table 110 South America Chemical Vapor Deposition Market Outlook, By Plasma-Enhanced (2024-2032) ($MN)
  • Table 111 South America Chemical Vapor Deposition Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 112 South America Chemical Vapor Deposition Market Outlook, By Deposition Material (2024-2032) ($MN)
  • Table 113 South America Chemical Vapor Deposition Market Outlook, By Conductive Materials (2024-2032) ($MN)
  • Table 114 South America Chemical Vapor Deposition Market Outlook, By Insulating Materials (2024-2032) ($MN)
  • Table 115 South America Chemical Vapor Deposition Market Outlook, By Other Materials (2024-2032) ($MN)
  • Table 116 South America Chemical Vapor Deposition Market Outlook, By Application (2024-2032) ($MN)
  • Table 117 South America Chemical Vapor Deposition Market Outlook, By Coating (2024-2032) ($MN)
  • Table 118 South America Chemical Vapor Deposition Market Outlook, By Solar Cells (2024-2032) ($MN)
  • Table 119 South America Chemical Vapor Deposition Market Outlook, By Optics (2024-2032) ($MN)
  • Table 120 South America Chemical Vapor Deposition Market Outlook, By Nanotechnology (2024-2032) ($MN)
  • Table 121 South America Chemical Vapor Deposition Market Outlook, By Data Storage (2024-2032) ($MN)
  • Table 122 South America Chemical Vapor Deposition Market Outlook, By Cutting Tools (2024-2032) ($MN)
  • Table 123 South America Chemical Vapor Deposition Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 124 South America Chemical Vapor Deposition Market Outlook, By End User (2024-2032) ($MN)
  • Table 125 South America Chemical Vapor Deposition Market Outlook, By Semiconductor & Electronics (2024-2032) ($MN)
  • Table 126 South America Chemical Vapor Deposition Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 127 South America Chemical Vapor Deposition Market Outlook, By Aerospace (2024-2032) ($MN)
  • Table 128 South America Chemical Vapor Deposition Market Outlook, By Solar Energy (2024-2032) ($MN)
  • Table 129 South America Chemical Vapor Deposition Market Outlook, By Healthcare & Biotech (2024-2032) ($MN)
  • Table 130 South America Chemical Vapor Deposition Market Outlook, By Other End Users (2024-2032) ($MN)
  • Table 131 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Country (2024-2032) ($MN)
  • Table 132 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Type (2024-2032) ($MN)
  • Table 133 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Low-Pressure (2024-2032) ($MN)
  • Table 134 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Atmospheric Pressure (2024-2032) ($MN)
  • Table 135 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Metal-Organic (2024-2032) ($MN)
  • Table 136 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Plasma-Enhanced (2024-2032) ($MN)
  • Table 137 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 138 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Deposition Material (2024-2032) ($MN)
  • Table 139 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Conductive Materials (2024-2032) ($MN)
  • Table 140 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Insulating Materials (2024-2032) ($MN)
  • Table 141 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Other Materials (2024-2032) ($MN)
  • Table 142 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Application (2024-2032) ($MN)
  • Table 143 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Coating (2024-2032) ($MN)
  • Table 144 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Solar Cells (2024-2032) ($MN)
  • Table 145 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Optics (2024-2032) ($MN)
  • Table 146 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Nanotechnology (2024-2032) ($MN)
  • Table 147 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Data Storage (2024-2032) ($MN)
  • Table 148 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Cutting Tools (2024-2032) ($MN)
  • Table 149 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 150 Middle East & Africa Chemical Vapor Deposition Market Outlook, By End User (2024-2032) ($MN)
  • Table 151 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Semiconductor & Electronics (2024-2032) ($MN)
  • Table 152 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 153 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Aerospace (2024-2032) ($MN)
  • Table 154 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Solar Energy (2024-2032) ($MN)
  • Table 155 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Healthcare & Biotech (2024-2032) ($MN)
  • Table 156 Middle East & Africa Chemical Vapor Deposition Market Outlook, By Other End Users (2024-2032) ($MN)
目次
Product Code: SMRC29222

According to Stratistics MRC, the Global Chemical Vapor Deposition Market is accounted for $27.53 billion in 2025 and is expected to reach $57.17 billion by 2032 growing at a CAGR of 11.0% during the forecast period. Chemical Vapor Deposition (CVD) is a process used to produce high-purity solid materials by depositing vapor-phase reactants onto a substrate. In CVD, precursor gases are introduced into a reaction chamber, where they undergo chemical reactions or decomposition at elevated temperatures, forming a thin, uniform coating on the substrate. This technique is widely used in semiconductors, optics, and coatings due to its precision and ability to create dense, high-performance films.

According to the International Renewable Energy Agency (IRENA), the installed solar PV capacity was around 306.4 GW in 2021, up from 253.4 GW in 2020 in China. Additionally, in 2021, the value of China's solar PV exports was over USD 30 billion, almost 7% of China's trade surplus over the last five years.

Market Dynamics:

Driver:

Rise in demand for solar energy

Solar energy systems increasingly rely on efficient, durable photovoltaic cells, many of which incorporate CVD technologies in their production. As renewable energy sources like solar become critical for reducing carbon emissions, innovative CVD methods are enabling more efficient solar panel production. Additionally, government subsidies and environmental policies are accelerating investments in solar energy technologies worldwide. With growing energy needs and emphasis on sustainability, the role of CVD processes in advancing solar technology is pivotal. The expanding solar market reinforces the significance of CVD in boosting photovoltaic performance and longevity.

Restraint:

High capital and operational costs

The complex infrastructure required for CVD systems demands significant initial investment, deterring smaller manufacturers. Moreover, the sophisticated nature of CVD processes increases operational costs, including energy consumption and maintenance. Scaling production for large applications, such as electronics or solar energy, can further inflate expenditure. These cost barriers impact adoption across industries, particularly in price-sensitive markets. Manufacturers are actively researching cost-efficient CVD techniques and alternative materials to mitigate these financial hurdles.

Opportunity:

Increasing use of nanotechnology

CVD processes are instrumental in fabricating nanoscale materials with precise control over size, shape, and properties. Industries like electronics, healthcare, and energy are driving demand for advanced nanomaterials enabled by CVD technology. From creating high-performance semiconductors to enhancing drug delivery systems, the scope of nanotechnology is expanding rapidly. Governments and private sectors are heavily investing in nanotech research, fostering the growth of innovative applications. The convergence of CVD and nanotechnology is opening new avenues for material science and industrial advancements.

Threat:

Complexity in process control

Controlling several parameters, including temperature, pressure, and chemical concentrations, precisely is necessary to produce CVD coatings and films of consistently high quality. Inconsistent process parameters can lead to defects or performance issues, particularly in applications demanding high precision, like semiconductors. The need for skilled operators and advanced equipment further complicates process standardization, creating barriers for adoption. Additionally, rapid advancements in technology necessitate continuous updates in CVD processes to stay competitive. As industries demand higher precision and efficiency, overcoming these complexities is essential to maintain market relevance.

Covid-19 Impact:

The COVID-19 pandemic had a mixed impact on the Chemical Vapor Deposition Market, disrupting supply chains and halting production across industries. Reduced demand from sectors like automotive and consumer electronics initially affected market growth. However, increased focus on healthcare applications and renewable energy post-pandemic offered a recovery pathway. Governments prioritized investments in clean energy projects, highlighting the importance of CVD in producing efficient solar cells and energy storage solutions.

The conductive materials segment is expected to be the largest during the forecast period

The conductive materials segment is expected to account for the largest market share during the forecast period, driven by increasing demand from electronics and renewable energy sectors. Conductive coatings produced through CVD are critical for enhancing electrical performance in semiconductors and solar cells. Advancements in material science are enabling more efficient conductive materials tailored to specific applications. Additionally, rising investments in energy storage technologies further boost the adoption of CVD-coated conductive materials.

The automotive segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the automotive segment is predicted to witness the highest growth rate, fuelled by increasing adoption of advanced electronic components in vehicles. Lightweight materials and CVD-based coatings are crucial for improving fuel efficiency and durability in automotive applications. The transition toward electric vehicles further accelerates demand for high-performance battery and electronic components enabled by CVD technology. Innovations in automotive design and manufacturing prioritize precision and performance, both of which are supported by advanced CVD processes.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, owing to its leadership in electronics manufacturing and solar energy adoption. Countries like China, Japan, and South Korea are major hubs for semiconductor and photovoltaic production, where CVD technologies are widely utilized. Government support for renewable energy and technological innovation drives the adoption of advanced CVD processes in the region. Additionally, Asia Pacific benefits from cost-effective manufacturing and the presence of key market players.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, due to advancements in technology and increasing focus on renewable energy. Robust investments in semiconductor manufacturing and cutting-edge R&D strengthen the region's market position. The transition toward clean energy solutions, such as solar and wind, amplifies the demand for CVD-based materials in energy applications. Government incentives and initiatives targeting energy efficiency and sustainability fuel market growth.

Key players in the market

Some of the key players in Chemical Vapor Deposition Market include Chiheng Group, Veeco Instruments Inc., SULZER Ltd., Lam Research Corporation, Oxford Instruments Plc, Applied Materials, Inc., Kokusai Electric Corporation, Tokyo Electron Limited, ULVAC, Inc., Fujitsu Limited, Chiheng Group, First Nano, HeFei Kejing Materials Technology Co., Ltd., Tegal Corporation, and ASM International N.V.

Key Developments:

In March 2025, Oxford Instruments NanoScience introduces its low temperature, superconducting magnet measurement system for fundamental materials physics, TeslatronPT Plus. The system promises simpler access to high performance measurement capabilities, allowing users to spend more time on the measurement rather than the set-up, while gaining a flexible, scalable and secure system.

In August 2024, Veeco Instruments Inc. announced that IBM selected the WaferStorm(R) Wet Processing System for Advanced Packaging applications and has entered into a joint development agreement to explore advanced packaging applications using multiple wet processing technologies from Veeco.

Types Covered:

  • Low-Pressure
  • Atmospheric Pressure
  • Metal-Organic
  • Plasma-Enhanced
  • Other Types

Deposition Materials Covered:

  • Conductive Materials
  • Insulating Materials
  • Other Materials

Applications Covered:

  • Coating
  • Solar Cells
  • Optics
  • Nanotechnology
  • Data Storage
  • Cutting Tools
  • Other Applications

End Users Covered:

  • Semiconductor & Electronics
  • Automotive
  • Aerospace
  • Solar Energy
  • Healthcare & Biotech
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Chemical Vapor Deposition Market, By Type

  • 5.1 Introduction
  • 5.2 Low-Pressure
  • 5.3 Atmospheric Pressure
  • 5.4 Metal-Organic
  • 5.5 Plasma-Enhanced
  • 5.6 Other Types

6 Global Chemical Vapor Deposition Market, By Deposition Material

  • 6.1 Introduction
  • 6.2 Conductive Materials
  • 6.3 Insulating Materials
  • 6.4 Other Materials

7 Global Chemical Vapor Deposition Market, By Application

  • 7.1 Introduction
  • 7.2 Coating
  • 7.3 Solar Cells
  • 7.4 Optics
  • 7.5 Nanotechnology
  • 7.6 Data Storage
  • 7.7 Cutting Tools
  • 7.8 Other Applications

8 Global Chemical Vapor Deposition Market, By End User

  • 8.1 Introduction
  • 8.2 Semiconductor & Electronics
  • 8.3 Automotive
  • 8.4 Aerospace
  • 8.5 Solar Energy
  • 8.6 Healthcare & Biotech
  • 8.7 Other End Users

9 Global Chemical Vapor Deposition Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Chiheng Group
  • 11.2 Veeco Instruments Inc.
  • 11.3 SULZER Ltd.
  • 11.4 Lam Research Corporation
  • 11.5 Oxford Instruments Plc
  • 11.6 Applied Materials, Inc.
  • 11.7 Kokusai Electric Corporation
  • 11.8 Tokyo Electron Limited
  • 11.9 ULVAC, Inc.
  • 11.10 Fujitsu Limited
  • 11.11 Chiheng Group
  • 11.12 First Nano
  • 11.13 HeFei Kejing Materials Technology Co., Ltd.
  • 11.14 Tegal Corporation
  • 11.15 ASM International N.V.