![]() |
市場調査レポート
商品コード
1569802
リチウムイオン電池カソード市場の2030年までの予測: 電池タイプ別、用途別、地域別分析Lithium-ion Battery Cathode Market Forecasts to 2030 - Global Analysis By Battery Type (Cobalt Oxide Lithium-Ion Batteries, Lithium Iron Phosphate, Nickel Manganese Cobalt Oxide Batteries and Other Battery Types), Application and By Geography |
||||||
カスタマイズ可能
|
リチウムイオン電池カソード市場の2030年までの予測: 電池タイプ別、用途別、地域別分析 |
出版日: 2024年10月10日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、リチウムイオン電池カソードの世界市場は2024年に330億4,000万米ドルを占め、2030年には1,094億7,000万米ドルに達すると予測され、予測期間中のCAGRは22.1%で成長する見込みです。
リチウムイオン電池カソードは、電池の性能と効率に重要な役割を果たす重要な部品です。正極は通常、コバルト酸リチウム、リン酸鉄リチウム、マンガン酸リチウムなどのリチウムベースの化合物で作られています。この材料は電池の正極として機能し、放電サイクル中にリチウムイオンが移動して電気エネルギーを放出します。正極材料の選択は、電池の容量、電圧、熱安定性、そして全体的な寿命に影響します。高エネルギー密度の正極は、高出力でより長持ちするバッテリーに貢献しますが、異なる材料は性能と安全性の間で様々なトレードオフを提供します。
国際自動車工業会(OICA)によると、2021年の世界の自動車生産台数は3%の伸びを示し、前年の7,760万台から8,020万台に達します。
エネルギー貯蔵ニーズの増大
世界のエネルギー需要が増加し、再生可能エネルギー源が拡大するにつれて、高度なエネルギー貯蔵ソリューションの必要性がますます高まっています。すでにさまざまな用途で広く使用されているリチウムイオン電池は、こうしたニーズの高まりに応えるべく進化を続けています。リチウムイオン電池カソードを強化することは、この進歩の中心をなすものです。研究者たちは現在、リン酸鉄リチウム、ニッケル-コバルト-マンガン、高ニッケル組成などの代替材料を探求し、これらの側面を改善しています。これらの技術革新は、エネルギー密度を高め、電池寿命を延ばし、コストを削減することで、リチウムイオン電池をより効率的で手頃なものにすることを目指しています。
市場競争
市場競争は、主に価格圧力と技術革新の要求を通じて、リチウムイオン電池カソード業界に大きな影響を与えています。既存企業や新興企業を含む数多くのプレーヤーが市場に参入しているため、最も先進的で費用対効果の高い正極材を提供するために激しい競争が繰り広げられています。この競争は価格を押し下げ、企業が研究開発に投資しながら収益性を維持することを困難にしています。激しい競争はまた、特許紛争や知的財産の課題の頻発につながり、市場情勢をさらに複雑にしています。
電気自動車の需要拡大
電気自動車の需要が高まるにつれて、メーカーは走行距離の延長と充電時間の短縮というニーズに応えるため、電池の性能、エネルギー密度、寿命の向上に注力しています。高ニッケルやリン酸鉄リチウムの採用など、正極材料の革新は電池の全体的な効率と安定性の向上を目指しています。高ニッケル正極はエネルギー密度を高めて航続距離を延ばし、リン酸鉄リチウムは安全性と寿命を向上させる。この進歩は、消費者の主な懸念に対応することでEVの幅広い普及を支えるだけでなく、二酸化炭素排出量と化石燃料への依存を削減する世界の取り組みとも一致します。
政府支援の欠如
政府支援の欠如は、リチウムイオン電池カソード技術の進歩にとって大きな障壁となっています。正極は、電気自動車や再生可能エネルギー貯蔵において極めて重要なこれらの電池の性能、安全性、コストにとって極めて重要です。しかし、より効率的で費用対効果の高い正極材料の開発には多大な研究と投資が必要であり、民間企業だけでは対応できないことが多いです。研究資金、税制優遇措置、支援政策など、政府の強力なバックアップがなければ、この分野の進展は妨げられます。
COVID-19の大流行は、世界のサプライチェーンの混乱と市場需要の変化を通じて、リチウムイオン電池カソード材産業に大きな影響を与えました。ロックダウンや規制により、特にアジアを中心とした主要製造拠点での生産が停止し、リチウム、コバルト、ニッケルといった重要な原材料の不足につながった。こうした中断は電池の生産を遅らせるだけでなく、コストの上昇や必要不可欠な部品の納入遅延を引き起こしました。しかし、パンデミックの経済波及効果は、新規プロジェクトや研究への投資の減少につながり、技術革新と長期的な産業成長に影響を与えました。
予測期間中、リン酸鉄リチウム(LFP)セグメントが最大となる見込み
リン酸鉄リチウム(LFP)セグメントは、電池正極の大幅な改善を提供することで、予測期間中に最大になると予想されます。LFP電池は正極材料としてリン酸鉄リチウムを使用しており、従来の酸化コバルトリチウムやニッケルマンガンコバルト(NMC)正極に比べていくつかの利点があります。LFP電池は過熱や熱暴走を起こしにくいため、電気自動車やエネルギー貯蔵システムなど、さまざまな用途でより安全な選択肢となります。
予測期間中、民生用電子機器分野が最も高いCAGRが見込まれる
予測期間中、CAGRが最も高くなると予想されるのはコンシューマーエレクトロニクス分野です。材料科学の進歩により、高ニッケルやリン酸鉄リチウム(LiFePO4)材料を組み込んだものなど、新しい正極組成の開発が進んでいます。これらの技術革新は、エネルギー密度を向上させ、デバイスの充電間隔を長くすることを目的としています。改良された正極材料は充放電速度も向上させ、より高速な充電とより効率的な電力使用に貢献します。さらに、熱安定性と安全性を向上させ、過熱と電池劣化の懸念に対処するために、新しい配合が設計されています。
予測期間中、アジア太平洋地域が最大の市場シェアを占めました。都市の拡大と経済活動の急増に伴い、電気自動車(EV)と再生可能エネルギー貯蔵ソリューションの需要が高まっており、いずれも高性能リチウムイオン電池に大きく依存しています。こうした需要に対応するため、当地域ではバッテリー製造のための最新鋭の製造施設や技術革新への投資が進められています。インフラの強化は、正極の生産に不可欠なリチウム、コバルト、ニッケルといった原材料の効率的なサプライチェーンを支えます。さらに、都市開発がより強固な送電網と充電網を育み、EVとエネルギー貯蔵システムの地域的な採用をさらに加速させています。
アジア太平洋地域は、予測期間中に大幅な成長が見込まれます。スマートフォン、ラップトップ、タブレット、ウェアラブルデバイスが日常生活にますます不可欠になるにつれ、効率的で高性能なバッテリーの必要性が高まっています。高エネルギー密度、軽量、長寿命で知られるリチウムイオン電池は、こうした需要に応える上で極めて重要です。大手電子機器メーカーがあり、消費者基盤が急成長しているアジア太平洋地域では、電池の生産と技術進歩への投資が活発化しています。中国、日本、韓国などの国々は、高度な製造能力と技術的専門知識を活用して、この成長をリードしています。
According to Stratistics MRC, the Global Lithium-ion Battery Cathode Market is accounted for $33.04 billion in 2024 and is expected to reach $109.47 billion by 2030 growing at a CAGR of 22.1% during the forecast period. A lithium-ion battery cathode is a crucial component that plays a significant role in the battery's performance and efficiency. It is typically made from a lithium-based compound, such as lithium cobalt oxide, lithium iron phosphate, or lithium manganese oxide. This material serves as the positive electrode in the battery, where lithium ions migrate to during the discharge cycle, releasing electrical energy. The choice of cathode material affects the battery's capacity, voltage, thermal stability, and overall lifespan. High-energy-density cathodes contribute to longer-lasting batteries with greater power output, while different materials offer various trade-offs between performance and safety.
According to the International Organization of Motor Vehicle Manufacturers (OICA), global vehicle production witnessed a growth of 3% in 2021, reaching 80.2 million units compared to the previous year's production of 77.6 million units.
Increasing energy storage needs
As global energy demands rise and renewable energy sources expand, the need for advanced energy storage solutions becomes increasingly critical. Lithium-ion batteries, already widely used in various applications, are evolving to meet these growing needs. Enhancing the lithium-ion battery cathode is central to this advancement. Researchers are now exploring alternative materials such as lithium iron phosphate, nickel-cobalt-manganese, and high-nickel compositions to improve these aspects. These innovations aim to increase the energy density, extend the battery life, and reduce costs, making lithium-ion batteries more efficient and affordable.
Market competition
Market competition is significantly impacting the Lithium-ion Battery Cathode industry, primarily through price pressure and innovation demands. With numerous players entering the market, including both established companies and new startups, there's intense competition to offer the most advanced and cost-effective cathode materials. This rivalry drives down prices, making it challenging for companies to maintain profitability while investing in research and development. The intense competition also leads to frequent patent disputes and intellectual property challenges, further complicating the market landscape.
Growing demand for electric vehicles
As the demand for EVs rises, manufacturers are focusing on enhancing the performance, energy density, and longevity of these batteries to meet the needs of longer driving ranges and quicker charging times. Innovations in cathode materials, such as the incorporation of high-nickel or lithium iron phosphate, aim to improve the overall efficiency and stability of the batteries. High-nickel cathodes increase energy density, which extends vehicle range, while lithium iron phosphate offers greater safety and longevity. This progress not only supports the broader adoption of EVs by addressing key consumer concerns but also aligns with global efforts to reduce carbon emissions and dependence on fossil fuels.
Lack of government support
The lack of government support is a significant barrier to advancing Lithium-ion battery cathode technology. Cathodes are crucial for the performance, safety, and cost of these batteries, which are pivotal in electric vehicles and renewable energy storage. However, the development of more efficient and cost-effective cathode materials requires substantial research and investment, often beyond the capacity of private enterprises alone. Without robust government backing, including funding for research, tax incentives, and supportive policies, progress in this field is hampered.
The COVID-19 pandemic significantly impacted the lithium-ion battery cathode industry through disruptions in global supply chains and shifts in market demand. Lockdowns and restrictions halted production in key manufacturing hubs, particularly in Asia, leading to shortages of critical raw materials like lithium, cobalt, and nickel. These interruptions not only slowed down battery production but also increased costs and caused delays in the delivery of essential components. However, the pandemic's economic ripple effects led to a decline in investments in new projects and research, affecting innovation and long-term industry growth.
The Lithium Iron Phosphate (LFP) segment is expected to be the largest during the forecast period
Lithium Iron Phosphate (LFP) segment is expected to be the largest during the forecast period by offering a significant improvement in battery cathodes. LFP batteries use lithium iron phosphate as the cathode material, which provides several advantages over traditional lithium cobalt oxide or nickel manganese cobalt (NMC) cathodes. LFP batteries are less prone to overheating and thermal runaway, making them a safer choice for various applications, including electric vehicles and energy storage systems.
The Consumer Electronics segment is expected to have the highest CAGR during the forecast period
Consumer Electronics segment is expected to have the highest CAGR during the forecast period. Advances in materials science are leading to the development of new cathode compositions, such as those incorporating high-nickel or lithium iron phosphate (LiFePO4) materials. These innovations aim to increase energy density, allowing devices to operate longer between charges. Improved cathode materials also enhance charge and discharge rates, contributing to faster charging and more efficient power usage. Additionally, new formulations are being designed to improve thermal stability and safety, addressing concerns about overheating and battery degradation.
Asia Pacific region commanded the largest market share over the projected period. As cities expand and economic activities surge, there's a growing demand for electric vehicles (EVs) and renewable energy storage solutions, both of which rely heavily on high-performance lithium-ion batteries. To meet this demand, the region is investing in state-of-the-art manufacturing facilities and technological innovations for battery production. Enhanced infrastructure supports the efficient supply chain of raw materials like lithium, cobalt, and nickel, crucial for cathode production. Additionally, urban development fosters a more robust grid and charging network, further accelerating the regional adoption of EVs and energy storage systems.
Asia Pacific region is estimated to witness substantial growth during the extrapolated period. As smartphones, laptops, tablets, and wearable devices become increasingly integral to daily life, the need for efficient, high-performance batteries is escalating. Lithium-ion batteries, known for their high energy density, lightweight nature, and long life cycle, are critical in meeting these demands. Asia Pacific, home to major electronics manufacturers and a burgeoning consumer base, is experiencing heightened investment in battery production and technology advancements. Countries like China, Japan, and South Korea are leading this growth, leveraging their advanced manufacturing capabilities and technological expertise.
Key players in the market
Some of the key players in Lithium-ion Battery Cathode market include BASF SE, Contemporary Amperex Technology Co. Limited, Energizer Holdings, Exide Technologies, Fujitsu Limited, LG Chem Ltd, NEI Corporation, Sumitomo Chemical Co., Ltd and Toshiba Corporation.
In June 2024, Metso will introduce the Metso pCAM plant, a smart manufacturing solution that is certified as Planet Positive. This facility will produce precursor cathode active material, a crucial component in the construction of lithium-ion batteries. Metso's pCAM plant is built around a highly efficient pCAM reactor, PSI 1000 particle size analyzer, and pCAM process control.
In January 2023, Allox Advance Materials Pvt Ltd announced to development of multi-GW lithium cathode manufacturing facility in Telangana, India with capacity of 3GWH/PA.