市場調査レポート
商品コード
1530706

パワー半導体の2030年までの市場予測:コンポーネント別、材料別、エンドユーザー別、地域別の世界分析

Power Semiconductor Market Forecasts to 2030 - Global Analysis By Component (Power Discrete, Power Integrated Circuits and Power Modules), Material (Gallium Nitride (GaN), Silicon Carbide (SiC) and Other Materials), End User and By Geography


出版日
ページ情報
英文 200+ Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=154.26円
パワー半導体の2030年までの市場予測:コンポーネント別、材料別、エンドユーザー別、地域別の世界分析
出版日: 2024年08月01日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

Stratistics MRCによると、パワー半導体の世界市場は2024年に762億5,000万米ドルを占め、予測期間中のCAGRは8.5%で、2030年には1,244億1,000万米ドルに達する見込みです。

パワー半導体は、大電流・大電圧を効率的に扱うように設計された電子デバイスです。低電力アプリケーションに使用される小信号半導体とは異なり、パワー半導体は高電圧・高電流定格に最適化されており、多くの場合、相当量の電力をスイッチングまたは調整することができます。各タイプは、スイッチング速度、電圧遮断能力、効率などの要素をバランスさせながら、異なる電力管理ニーズに適した特定の特性を持っています。

Shopifyによると、スマートフォン販売による収入は2021年に4,810億米ドルでピークに達し、2026年には5,000億米ドルを超えると予測されています。中国の新エネルギー自動車産業開拓計画(2021~2035年)によると、EVは2025年までに25%の市場シェアを占める可能性があります。

パワーエレクトロニクス需要の増加

パワーエレクトロニクス需要の増加は、パワー半導体市場を大幅に押し上げています。パワーエレクトロニクスは、再生可能エネルギーシステム、電気自動車、産業機器、民生用電子機器など、さまざまなアプリケーションで電力の変換と管理に重要な役割を果たしています。太陽光発電や風力発電のような持続可能なエネルギー源への世界のシフトは、パワー半導体が不可欠である効率的な電力変換技術を必要とします。さらに、電気自動車の普及により、効率的なエネルギー管理とモーター制御のための高度なパワー半導体ソリューションが必要とされています。

高い初期投資コスト

パワー半導体産業は、高い初期投資コストによる大きな障壁に直面しており、これが技術革新と市場参入を妨げています。これらのコストは主に、研究開発、製造施設(ファブ)、装置など、半導体製造プロセスが複雑で資本集約的であることに起因します。最先端ファブの建設と維持には多額の資金が必要で、その額は数十億米ドルに上ることが多く、新規参入企業や中小企業が業界の既存大手と競争するのは困難です。しかし、こうした資金的障壁は市場参入の高い敷居を生み、中小企業が事業を拡大したり、次世代半導体技術の研究に投資したりすることを阻害しています。

エネルギー効率に対する需要の高まり

エネルギー効率に対する需要の高まりが、パワー半導体の成長を後押ししています。これらの半導体は、電力変換および管理システムの効率を向上させ、エネルギー消費と運用コストを削減する上で重要な役割を果たしています。主な促進要因としては、電気自動車の急速な普及、再生可能エネルギーインフラの拡大、スマートグリッド技術の普及などが挙げられます。パワー半導体は、電力の変換と制御においてより高い効率を可能にし、送電と利用時のエネルギー損失を最小限に抑えます。世界の取り組みが持続可能性とカーボンフットプリントの削減を優先しているため、先進的なパワー半導体技術に対する需要は今後も伸び続けると予想されます。

統合と互換性の問題

パワー半導体における統合と互換性の問題とは、異なる半導体技術や材料を単一チップ上または単一システム内で組み合わせる必要性から生じる課題を指します。MOSFETやIGBTなどのパワー半導体デバイスは、再生可能エネルギー・システムから電気自動車に至るまで、さまざまなアプリケーションにおける効率的な電力変換と制御に不可欠です。しかし、これらのデバイスを集積することは、技術的に大きなハードルとなります。異なる半導体材料や技術間の電気特性、熱特性、製造プロセスの違いにより、互換性の問題が生じる。

COVID-19の影響:

COVID-19の大流行はパワー半導体業界に大きな影響を与えました。当初、世界のサプライチェーンの混乱により半導体の製造と流通に遅れが生じ、供給不足と価格変動につながった。メーカーが労働力不足や物流の課題に苦戦したため、工場の操業停止や生産能力の低下によって、この状況はさらに悪化しました。パワー半導体分野の企業は、デジタルトランスフォーメーションの取り組みを加速し、リモートワーク政策を実施し、将来のリスクを軽減するためにサプライチェーンソースを多様化することで適応しなければならなかった。

予測期間中、パワー集積回路分野が最大になる見込み

電力集積回路分野は、複数の機能を1つのチップに統合することで、様々なアプリケーションの効率と性能を向上させ、予測期間中に最大となる見込みです。ダイオードやトランジスタのようなディスクリート・パワー・コンポーネントとは異なり、パワーICは制御、駆動、保護回路をMOSFETやIGBTのようなパワー・スイッチング・デバイスと統合しています。パワーICはまた、最適化された回路設計と相互接続の削減により、より優れた熱管理と高い信頼性を実現します。エネルギー効率の高いコンパクトな電子機器への需要が高まる中、パワーICは、幅広い電子製品やシステムにおいて、フォームファクタの小型化、エネルギー効率の改善、性能の向上を実現する上で重要な役割を果たしています。

予測期間中、炭化ケイ素(SiC)セグメントのCAGRが最も高くなる見込み

炭化ケイ素(SiC)セグメントは、従来のシリコンと比較して優れた材料特性を持つため、予測期間中のCAGRが最も高くなると予想されます。SiCデバイスは絶縁破壊電界強度が高く、効率を維持しながらより高い電圧と温度で動作できます。この特性により伝導損失が減少し、パワーエレクトロニクス・システムの小型化、高効率化が可能になります。さらに、SiCは熱伝導率が高いため放熱性が向上し、大電力動作時の信頼性と性能がさらに向上します。メーカーが生産プロセスの改良とコスト削減を続ける中、SiC半導体の普及は加速し、パワーエレクトロニクスの技術革新を促進し、よりエネルギー効率の高い技術への移行に貢献すると予想されます。

最大のシェアを占める地域

アジア太平洋地域が外挿期間で最大の市場シェアを占めました。都市の拡大と近代化に伴い、スマートグリッド、電気自動車、産業オートメーションなど、さまざまなアプリケーションで効率的な電力管理ソリューションに対するニーズが急増しています。パワー半導体は、この地域全体で都市のエネルギー需要が増加する中、エネルギー効率を高め、二酸化炭素排出量を削減し、信頼性の高い電力供給を確保する上で重要な役割を果たしています。さらに、都市インフラにおけるモノのインターネット(IoT)や人工知能(AI)のような先進技術の統合は、この地域全体で複雑なデータ処理やリアルタイムの意思決定を処理できる堅牢な半導体デバイスへの要求をさらに増幅しています。

CAGRが最も高い地域:

予測期間中、欧州地域は有利な成長を示すと推定されます。より厳しい環境基準と野心的な気候目標が、パワー半導体を含むエネルギー効率の高い技術の地域的な採用を奨励し義務付けるよう政府を後押ししています。これらの規制は、より効率的で持続可能な半導体ソリューションの開発における技術革新と投資を促進します。さらに、政府が提供する財政支援や研究助成金は、業界関係者と研究機関の協力を促し、地域全体の技術進歩のための強固なエコシステムを育成しています。

無料のカスタマイズ提供:

本レポートをご購読のお客様には、以下の無料カスタマイズオプションのいずれかをご利用いただけます:

  • 企業プロファイル
    • 追加市場プレイヤーの包括的プロファイリング(3社まで)
    • 主要企業のSWOT分析(3社まで)
  • 地域セグメンテーション
    • 顧客の関心に応じた主要国の市場推計・予測・CAGR(注:フィージビリティチェックによる)
  • 競合ベンチマーキング
    • 製品ポートフォリオ、地理的プレゼンス、戦略的提携に基づく主要企業のベンチマーキング

目次

第1章 エグゼクティブサマリー

第2章 序文

  • 概要
  • ステークホルダー
  • 調査範囲
  • 調査手法
    • データマイニング
    • データ分析
    • データ検証
    • 調査アプローチ
  • 調査情報源
    • 1次調査情報源
    • 2次調査情報源
    • 前提条件

第3章 市場動向分析

  • 促進要因
  • 抑制要因
  • 機会
  • 脅威
  • エンドユーザー分析
  • 新興市場
  • COVID-19の影響

第4章 ポーターのファイブフォース分析

  • 供給企業の交渉力
  • 買い手の交渉力
  • 代替品の脅威
  • 新規参入業者の脅威
  • 競争企業間の敵対関係

第5章 世界のパワー半導体市場:コンポーネント別

  • パワーディスクリート
  • パワー集積回路
  • パワーモジュール

第6章 世界のパワー半導体市場:材料別

  • 窒化ガリウム(GaN)
  • シリコンカーバイド(SiC)
  • その他の材料

第7章 世界のパワー半導体市場:エンドユーザー別

  • 航空宇宙および防衛
  • 自動車
  • 家電
  • ヘルスケア
  • その他のエンドユーザー

第8章 世界のパワー半導体市場:地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン
    • その他欧州
  • アジア太平洋
    • 日本
    • 中国
    • インド
    • オーストラリア
    • ニュージーランド
    • 韓国
    • その他アジア太平洋地域
  • 南米
    • アルゼンチン
    • ブラジル
    • チリ
    • その他南米
  • 中東・アフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • カタール
    • 南アフリカ
    • その他中東とアフリカ

第9章 主な発展

  • 契約、パートナーシップ、コラボレーション、合弁事業
  • 買収と合併
  • 新製品発売
  • 事業拡大
  • その他の主要戦略

第10章 企業プロファイリング

  • Analog Devices, Inc
  • Fairchild Semiconductor International, Inc
  • Fuji Electric Co., Ltd
  • Infineon Technologies AG
  • Magnachip Semiconductor Corporation
  • Mitsubishi Electric Corporation
  • NXP Semiconductors N.V.
  • Renesas Electronics Corporation
  • Semikron International GmbH
  • Silicon Laboratories Inc
  • STMicroelectronics N.V.
  • Toshiba Corporation
図表

List of Tables

  • Table 1 Global Power Semiconductor Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Power Semiconductor Market Outlook, By Component (2022-2030) ($MN)
  • Table 3 Global Power Semiconductor Market Outlook, By Power Discrete (2022-2030) ($MN)
  • Table 4 Global Power Semiconductor Market Outlook, By Power Integrated Circuits (2022-2030) ($MN)
  • Table 5 Global Power Semiconductor Market Outlook, By Power Modules (2022-2030) ($MN)
  • Table 6 Global Power Semiconductor Market Outlook, By Material (2022-2030) ($MN)
  • Table 7 Global Power Semiconductor Market Outlook, By Gallium Nitride (GaN) (2022-2030) ($MN)
  • Table 8 Global Power Semiconductor Market Outlook, By Silicon Carbide (SiC) (2022-2030) ($MN)
  • Table 9 Global Power Semiconductor Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 10 Global Power Semiconductor Market Outlook, By End User (2022-2030) ($MN)
  • Table 11 Global Power Semiconductor Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 12 Global Power Semiconductor Market Outlook, By Automotives (2022-2030) ($MN)
  • Table 13 Global Power Semiconductor Market Outlook, By Consumer Electronics (2022-2030) ($MN)
  • Table 14 Global Power Semiconductor Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 15 Global Power Semiconductor Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 16 North America Power Semiconductor Market Outlook, By Country (2022-2030) ($MN)
  • Table 17 North America Power Semiconductor Market Outlook, By Component (2022-2030) ($MN)
  • Table 18 North America Power Semiconductor Market Outlook, By Power Discrete (2022-2030) ($MN)
  • Table 19 North America Power Semiconductor Market Outlook, By Power Integrated Circuits (2022-2030) ($MN)
  • Table 20 North America Power Semiconductor Market Outlook, By Power Modules (2022-2030) ($MN)
  • Table 21 North America Power Semiconductor Market Outlook, By Material (2022-2030) ($MN)
  • Table 22 North America Power Semiconductor Market Outlook, By Gallium Nitride (GaN) (2022-2030) ($MN)
  • Table 23 North America Power Semiconductor Market Outlook, By Silicon Carbide (SiC) (2022-2030) ($MN)
  • Table 24 North America Power Semiconductor Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 25 North America Power Semiconductor Market Outlook, By End User (2022-2030) ($MN)
  • Table 26 North America Power Semiconductor Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 27 North America Power Semiconductor Market Outlook, By Automotives (2022-2030) ($MN)
  • Table 28 North America Power Semiconductor Market Outlook, By Consumer Electronics (2022-2030) ($MN)
  • Table 29 North America Power Semiconductor Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 30 North America Power Semiconductor Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 31 Europe Power Semiconductor Market Outlook, By Country (2022-2030) ($MN)
  • Table 32 Europe Power Semiconductor Market Outlook, By Component (2022-2030) ($MN)
  • Table 33 Europe Power Semiconductor Market Outlook, By Power Discrete (2022-2030) ($MN)
  • Table 34 Europe Power Semiconductor Market Outlook, By Power Integrated Circuits (2022-2030) ($MN)
  • Table 35 Europe Power Semiconductor Market Outlook, By Power Modules (2022-2030) ($MN)
  • Table 36 Europe Power Semiconductor Market Outlook, By Material (2022-2030) ($MN)
  • Table 37 Europe Power Semiconductor Market Outlook, By Gallium Nitride (GaN) (2022-2030) ($MN)
  • Table 38 Europe Power Semiconductor Market Outlook, By Silicon Carbide (SiC) (2022-2030) ($MN)
  • Table 39 Europe Power Semiconductor Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 40 Europe Power Semiconductor Market Outlook, By End User (2022-2030) ($MN)
  • Table 41 Europe Power Semiconductor Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 42 Europe Power Semiconductor Market Outlook, By Automotives (2022-2030) ($MN)
  • Table 43 Europe Power Semiconductor Market Outlook, By Consumer Electronics (2022-2030) ($MN)
  • Table 44 Europe Power Semiconductor Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 45 Europe Power Semiconductor Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 46 Asia Pacific Power Semiconductor Market Outlook, By Country (2022-2030) ($MN)
  • Table 47 Asia Pacific Power Semiconductor Market Outlook, By Component (2022-2030) ($MN)
  • Table 48 Asia Pacific Power Semiconductor Market Outlook, By Power Discrete (2022-2030) ($MN)
  • Table 49 Asia Pacific Power Semiconductor Market Outlook, By Power Integrated Circuits (2022-2030) ($MN)
  • Table 50 Asia Pacific Power Semiconductor Market Outlook, By Power Modules (2022-2030) ($MN)
  • Table 51 Asia Pacific Power Semiconductor Market Outlook, By Material (2022-2030) ($MN)
  • Table 52 Asia Pacific Power Semiconductor Market Outlook, By Gallium Nitride (GaN) (2022-2030) ($MN)
  • Table 53 Asia Pacific Power Semiconductor Market Outlook, By Silicon Carbide (SiC) (2022-2030) ($MN)
  • Table 54 Asia Pacific Power Semiconductor Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 55 Asia Pacific Power Semiconductor Market Outlook, By End User (2022-2030) ($MN)
  • Table 56 Asia Pacific Power Semiconductor Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 57 Asia Pacific Power Semiconductor Market Outlook, By Automotives (2022-2030) ($MN)
  • Table 58 Asia Pacific Power Semiconductor Market Outlook, By Consumer Electronics (2022-2030) ($MN)
  • Table 59 Asia Pacific Power Semiconductor Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 60 Asia Pacific Power Semiconductor Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 61 South America Power Semiconductor Market Outlook, By Country (2022-2030) ($MN)
  • Table 62 South America Power Semiconductor Market Outlook, By Component (2022-2030) ($MN)
  • Table 63 South America Power Semiconductor Market Outlook, By Power Discrete (2022-2030) ($MN)
  • Table 64 South America Power Semiconductor Market Outlook, By Power Integrated Circuits (2022-2030) ($MN)
  • Table 65 South America Power Semiconductor Market Outlook, By Power Modules (2022-2030) ($MN)
  • Table 66 South America Power Semiconductor Market Outlook, By Material (2022-2030) ($MN)
  • Table 67 South America Power Semiconductor Market Outlook, By Gallium Nitride (GaN) (2022-2030) ($MN)
  • Table 68 South America Power Semiconductor Market Outlook, By Silicon Carbide (SiC) (2022-2030) ($MN)
  • Table 69 South America Power Semiconductor Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 70 South America Power Semiconductor Market Outlook, By End User (2022-2030) ($MN)
  • Table 71 South America Power Semiconductor Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 72 South America Power Semiconductor Market Outlook, By Automotives (2022-2030) ($MN)
  • Table 73 South America Power Semiconductor Market Outlook, By Consumer Electronics (2022-2030) ($MN)
  • Table 74 South America Power Semiconductor Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 75 South America Power Semiconductor Market Outlook, By Other End Users (2022-2030) ($MN)
  • Table 76 Middle East & Africa Power Semiconductor Market Outlook, By Country (2022-2030) ($MN)
  • Table 77 Middle East & Africa Power Semiconductor Market Outlook, By Component (2022-2030) ($MN)
  • Table 78 Middle East & Africa Power Semiconductor Market Outlook, By Power Discrete (2022-2030) ($MN)
  • Table 79 Middle East & Africa Power Semiconductor Market Outlook, By Power Integrated Circuits (2022-2030) ($MN)
  • Table 80 Middle East & Africa Power Semiconductor Market Outlook, By Power Modules (2022-2030) ($MN)
  • Table 81 Middle East & Africa Power Semiconductor Market Outlook, By Material (2022-2030) ($MN)
  • Table 82 Middle East & Africa Power Semiconductor Market Outlook, By Gallium Nitride (GaN) (2022-2030) ($MN)
  • Table 83 Middle East & Africa Power Semiconductor Market Outlook, By Silicon Carbide (SiC) (2022-2030) ($MN)
  • Table 84 Middle East & Africa Power Semiconductor Market Outlook, By Other Materials (2022-2030) ($MN)
  • Table 85 Middle East & Africa Power Semiconductor Market Outlook, By End User (2022-2030) ($MN)
  • Table 86 Middle East & Africa Power Semiconductor Market Outlook, By Aerospace & Defense (2022-2030) ($MN)
  • Table 87 Middle East & Africa Power Semiconductor Market Outlook, By Automotives (2022-2030) ($MN)
  • Table 88 Middle East & Africa Power Semiconductor Market Outlook, By Consumer Electronics (2022-2030) ($MN)
  • Table 89 Middle East & Africa Power Semiconductor Market Outlook, By Healthcare (2022-2030) ($MN)
  • Table 90 Middle East & Africa Power Semiconductor Market Outlook, By Other End Users (2022-2030) ($MN)
目次
Product Code: SMRC26818

According to Stratistics MRC, the Global Power Semiconductor Market is accounted for $76.25 billion in 2024 and is expected to reach $124.41 billion by 2030 growing at a CAGR of 8.5% during the forecast period. Power semiconductors are electronic devices designed to handle large electrical currents and voltages efficiently. Unlike small-signal semiconductors used in low-power applications, power semiconductors are optimized for high voltage and current ratings, often capable of switching or regulating substantial amounts of electrical power. Each type has specific characteristics suited for different power management needs, balancing factors like switching speed, voltage blocking capability, and efficiency.

According to Shopify, income from smartphone sales peaked at USD 481 billion in 2021 and is predicted to surpass USD 500 billion by 2026. According to China's Development Plan for the New Energy Automobile Industry (2021-2035), EVs could include a 25% market share by 2025.

Market Dynamics:

Driver:

Rise in demand for power electronics

The increasing demand for power electronics is substantially boosting the power semiconductor market. Power electronics play a crucial role in converting and managing electrical power in various applications, including renewable energy systems, electric vehicles, industrial equipment and consumer electronics. The global shift towards sustainable energy sources such as solar and wind power requires efficient power conversion technologies, where power semiconductors are integral. Additionally, the proliferation of electric vehicles necessitates advanced power semiconductor solutions for efficient energy management and motor control.

Restraint:

High initial investment costs

The power semiconductor industry faces significant barriers due to high initial investment costs, which impede innovation and market entry. These costs primarily stem from the complex and capital-intensive nature of semiconductor manufacturing processes, including research and development, fabrication facilities (fabs), and equipment. Building and maintaining cutting-edge fabs require substantial financial resources, often in the billions of dollars, making it difficult for new players or smaller companies to compete with established giants in the industry. However, these financial barriers create a high threshold for entry into the market and inhibit smaller firms from scaling up operations or investing in research for next-generation semiconductor technologies.

Opportunity:

Increasing demand for energy efficiency

The increasing demand for energy efficiency has propelled the growth of power semiconductors. These semiconductors play a crucial role in improving the efficiency of power conversion and management systems, thereby reducing energy consumption and operational costs. Key drivers include the rapid adoption of electric vehicles, the expansion of renewable energy infrastructure, and the proliferation of smart grid technologies. Power semiconductors enable higher efficiency in converting and controlling electrical power, minimizing energy losses during transmission and utilization. As global initiatives prioritize sustainability and carbon footprint reduction, the demand for advanced power semiconductor technologies is expected to continue growing.

Threat:

Integration and compatibility issues

Integration and compatibility issues in power semiconductors refer to challenges arising from the need to combine different semiconductor technologies or materials on a single chip or within a single system. Power semiconductor devices, such as MOSFETs and IGBTs, are crucial for efficient power conversion and control in various applications from renewable energy systems to electric vehicles. However, integrating these devices poses significant technical hurdles. Compatibility issues arise due to differences in electrical characteristics, thermal properties, and manufacturing processes between different semiconductor materials and technologies.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted the power semiconductor industry. Initially, disruptions in the global supply chain caused delays in manufacturing and distribution of semiconductors, leading to shortages and price fluctuations. This was exacerbated by factory shutdowns and reduced production capacities as manufacturers struggled with labor shortages and logistical challenges. Companies in the power semiconductor sector had to adapt by accelerating digital transformation efforts, implementing remote work policies, and diversifying supply chain sources to mitigate future risks.

The Power Integrated Circuits segment is expected to be the largest during the forecast period

Power Integrated Circuits segment is expected to be the largest during the forecast period by combining multiple functionalities onto a single chip to enhance efficiency and performance in various applications. Unlike discrete power components, such as diodes and transistors, Power ICs integrate control, drive, and protection circuitry with power switching devices like MOSFETs or IGBTs. Power ICs also facilitate better thermal management and higher reliability due to optimized circuit design and reduced interconnects. As the demand for energy-efficient and compact electronic devices grows, Power ICs play a crucial role in enabling smaller form factors, improved energy efficiency, and enhanced performance across a wide range of electronic products and systems.

The Silicon Carbide (SiC) segment is expected to have the highest CAGR during the forecast period

Silicon Carbide (SiC) segment is expected to have the highest CAGR during the forecast period due to its superior material properties compared to traditional silicon. SiC devices offer higher breakdown electric field strength, enabling them to operate at higher voltages and temperatures while maintaining efficiency. This characteristic results in reduced conduction losses, allowing for smaller, more efficient power electronic systems. Additionally, SiC's higher thermal conductivity enhances heat dissipation, further improving reliability and performance under high-power operation. As manufacturers continue to refine production processes and reduce costs, the widespread adoption of SiC semiconductors is expected to accelerate, driving innovation in power electronics and contributing to the transition towards more energy-efficient technologies.

Region with largest share:

Asia Pacific region commanded the largest market share over the extrapolated period. As cities expand and modernize, there is a burgeoning need for efficient power management solutions in various applications such as smart grids, electric vehicles, and industrial automation. Power semiconductors play a crucial role in enhancing energy efficiency, reducing carbon footprints, and ensuring reliable power delivery amidst increasing urban energy demands throughout the region. Moreover, the integration of advanced technologies like Internet of Things (IoT) and artificial intelligence (AI) in urban infrastructure further amplifies the requirement for robust semiconductor devices capable of handling complex data processing and real-time decision-making across the region.

Region with highest CAGR:

During the projected time frame, Europe region is estimated to witness lucrative growth. Stricter environmental standards and ambitious climate goals have pushed governments to incentivize and mandate the regional adoption of energy-efficient technologies, including power semiconductors. These regulations drive innovation and investment in the development of more efficient and sustainable semiconductor solutions. Moreover, financial support and research grants provided by governments encourage collaboration between industry players and research institutions, fostering a robust ecosystem for technological advancement across the region.

Key players in the market

Some of the key players in Power Semiconductor market include Analog Devices, Inc, Fairchild Semiconductor International, Inc, Fuji Electric Co., Ltd, Infineon Technologies AG, Magnachip Semiconductor Corporation, Mitsubishi Electric Corporation, NXP Semiconductors N.V., Renesas Electronics Corporation, Semikron International GmbH, Silicon Laboratories Inc, STMicroelectronics N.V. and Toshiba Corporation.

Key Developments:

In October 2023, Kia Corporation and Hyundai Motor Company announced a deliberate collaboration with Infineon Technologies AG, a universal semiconductor lead, in order to secure power semiconductors in support of the rising electric vehicle demand across the globe. As per the deal, Kia and Hyundai will buy core power semiconductors for automobiles, such as insulated-gate bipolar transistor (IGBT), diode, and silicon carbide (SiC) power modules.

In June 2023, Mitsubishi Electric Corporation announced that the company would begin shipping samples of its new NX-type full-SiC (silicon carbide) power semiconductor module for industrial equipment.

In May 2023, Toshiba Electronics Europe launched a new 150V N-channel power MOSFET based upon their latest generation U-MOS X-H Trench process. The TPH9R00CQ5 is specifically designed for high-performance switching power supplies such as those used in communication base stations and other industrial applications.

Components Covered:

  • Power Discrete
  • Power Integrated Circuits
  • Power Modules

Materials Covered:

  • Gallium Nitride (GaN)
  • Silicon Carbide (SiC)
  • Other Materials

End Users Covered:

  • Aerospace & Defense
  • Automotives
  • Consumer Electronics
  • Healthcare
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Power Semiconductor Market, By Component

  • 5.1 Introduction
  • 5.2 Power Discrete
  • 5.3 Power Integrated Circuits
  • 5.4 Power Modules

6 Global Power Semiconductor Market, By Material

  • 6.1 Introduction
  • 6.2 Gallium Nitride (GaN)
  • 6.3 Silicon Carbide (SiC)
  • 6.4 Other Materials

7 Global Power Semiconductor Market, By End User

  • 7.1 Introduction
  • 7.2 Aerospace & Defense
  • 7.3 Automotives
  • 7.4 Consumer Electronics
  • 7.5 Healthcare
  • 7.6 Other End Users

8 Global Power Semiconductor Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Analog Devices, Inc
  • 10.2 Fairchild Semiconductor International, Inc
  • 10.3 Fuji Electric Co., Ltd
  • 10.4 Infineon Technologies AG
  • 10.5 Magnachip Semiconductor Corporation
  • 10.6 Mitsubishi Electric Corporation
  • 10.7 NXP Semiconductors N.V.
  • 10.8 Renesas Electronics Corporation
  • 10.9 Semikron International GmbH
  • 10.10 Silicon Laboratories Inc
  • 10.11 STMicroelectronics N.V.
  • 10.12 Toshiba Corporation