表紙:パワー半導体の世界市場、材料、技術
市場調査レポート
商品コード
1479768

パワー半導体の世界市場、材料、技術

Power Semiconductors: Markets, Materials and Technologies

出版日: | 発行: Information Network | ページ情報: 英文 | 納期: 2~3営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=158.31円
パワー半導体の世界市場、材料、技術
出版日: 2024年05月16日
発行: Information Network
ページ情報: 英文
納期: 2~3営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

イントロダクション

パワー半導体の情勢は、自動車や工業からコンシューマーエレクトロニクスや再生可能エネルギーシステムに至るまで、さまざまな部門におけるエネルギー効率の高いソリューションに対する需要の高まりに後押しされ、大きな変革期を迎えています。世界がより持続可能で電化された未来へと移行する中、パワー半導体の役割は、効率的なエネルギー管理、電力変換、制御を可能にする上で、ますます重要になっています。

動向

ワイドバンドギャップ材料、特にSiCとGaNの登場は、パワー半導体産業における大きなパラダイムシフトを意味します。これらの材料は、従来のシリコン系半導体に比べて、高耐圧、高速スイッチング、熱伝導率の向上など、明確な利点を備えており、高性能でエネルギー効率の高いパワー電子機器の理想的な候補となっています。

炭化ケイ素(SiC)は、シリコンに比べてバンドギャップが広く、臨界電界強度が高いなど、その優れた電気的特性が際立っています。これらの特性により、SiCベースの機器は、効率的な性能を維持しながら、より高い温度と電圧で動作することができます。SiC機器は、オン状態の損失とスイッチング損失が低いため、電気自動車、再生可能エネルギーシステム、産業用電力変換器などのさまざまな用途で効率が向上し、エネルギー消費が削減されます。

同様に、窒化ガリウム(GaN)は、広いバンドギャップと高い電子移動度を含む卓越した電気特性で注目を集めています。GaNベースの機器は、電力密度、スイッチング速度、効率の面で大きな利点を持ち、高周波・大電力用途に適しています。GaN機器はスイッチング損失が低いため、スイッチング周波数の向上とパワーエレクトロニクスシステムの小型軽量化が可能であり、特に自動車や航空宇宙用途での小型軽量設計に有利です。

SiC/GaN材料のパワー半導体機器への採用は、材料成長法、製造プロセス、デバイスアーキテクチャの進歩によって加速しています。生産の増加と製造コストの低下に伴い、SiC/GaN機器は、より広範な用途において、シリコン系の同等品との競争力を高めています。

さらに、SiC/GaN技術の採用をさらに加速するため、機器性能の最適化、信頼性の向上、コスト削減に焦点を当てた研究開発が進められています。これには、ワイドバンドギャップ材料に関連する特有の課題に対処するための機器設計、パッケージング技術、熱管理ソリューションの革新が含まれます。

全体として、SiC/GaN材料の広範な採用は、エネルギー効率の高いパワーエレクトロニクスの新時代の到来を告げるものであり、効率の向上、排出の削減、持続可能なエネルギーソリューションの推進を目指す産業に変革の機会を提供するものです。これらの材料が市場で成熟し勢いを増すにつれ、パワー半導体産業に対する影響は甚大かつ広範囲に及ぶものとなります。

当レポートでは、世界のパワー半導体市場について調査し、市場、材料、技術に関する詳細な分析と知見を提供しています。

目次

第1章 イントロダクション

  • IGBTチップ構造の進化
  • IGBTチップの小型化の影響
  • DMOSFETと比較したトレンチ型SiC MOSFETの抵抗低減
  • 平面型と垂直型(トレンチ型)MOSFET
  • FinFETの回路図
  • MOSFETとスーパージャンクションMOSFETの回路図
  • SiC U MOSFET

第2章 パワー半導体の用途

  • 太陽光発電の予測
  • フルブリッジIGBTトポロジ
  • マイクロコントローラーベースのインバーターのブロック図
  • 世界の風力タービン出荷数
  • 主な風力発電の発電力:国別
  • 一般的な30~50kWインバーターの部品表
  • HEVトラクションドライブシステムの略図
  • プラグインハイブリッド電気自動車(PHEV)のPEEMの複雑な図
  • インバーターの導通とスイッチング損失
  • パワー半導体の単価動向
  • ワイドバンドギャップ半導体のシステムとコンポーネントのコスト
  • 縦型/横型HEMT
  • EVにおけるGaN横型/GaN縦型HEMT
  • LEDビジネスと用途の市場促進要因
  • SSL vs. 従来の技術
  • LEDの性能と従来の光源の比較
  • エネルギー生産と使用の比較
  • 一般的なLED駆動回路
  • TSVを使用したLEDとLEDドライバーの統合
  • シンプルパワーMOSFETモーターコントローラー
  • インバーターの基本動作原理
  • 太陽光発電の予測
  • フルブリッジIGBTトポロジ
  • マイクロコントローラーベースのインバーターのブロック図
  • 世界の風力タービン出荷数
  • 主な風力発電の発電力:国別
  • 一般的な30~50kWインバーターの部品表
  • HEVトラクションドライブシステムの略図
  • プラグインハイブリッド電気自動車(PHEV)のPEEMの複雑な図
  • インバーターの導通とスイッチング損失
  • パワー半導体の単価動向
  • ワイドバンドギャップ半導体のシステムとコンポーネントのコスト

第3章 市場の分析

  • 半導体市場におけるパワー半導体のポジション
  • IGBTとパワーMOSFETの成長可能性
  • IGBT市場
    • IGBT技術の動向
    • IGBTのTAM
    • IGBT市場の成長:用途別
    • IGBTの競合情勢
  • MOSFETのTAM
    • MOSFETのTAMの調査手法
    • MOSFET市場の成長:用途別
    • MOSFETの競合情勢
  • 新たな最終用途市場
    • 電気自動車
  • 5Gインフラ
  • ワイドバンドギャップパワー半導体市場

第4章 次世代パワー半導体

  • シリコンの限界の克服への期待
  • 次世代基板としてのSiCとGaNへの期待
  • ワイドバンドギャップ半導体の利点
  • SiCとGaN
  • SiC機器の製造
  • GaN機器の製造
  • パッケージング

第5章 企業プロファイル

  • パワー半導体企業
    • Infineon
    • Mitsubishi
    • Toshiba
    • STMicroelectronics
    • Vishay
    • Fuji Electric
    • Renesas
    • Semikron
    • NXP Semiconductors
    • Hitachi Power Semiconductor Device
    • X-Rel Semiconductor
    • Advanced Linear Devices
    • Nexperia
    • Rohm
    • Sanken Electric
    • Shindengen Electric 5+
    • Microchip Technology
    • GeneSiC Semiconductor
    • Semisouth Laboratories
    • United Silicon Carbide
    • MicroGaN
    • Powerex
    • Nitronix
    • Transform
    • Allegro Microsystems
    • GaN Systems
    • Navitas Semiconductor
    • Alpha and Omega Semiconductor
    • ON Semiconductor
    • Jilin Sino-Microelectronics
    • BYD Microelectronics
    • Yangzhou Yangjie Electronic Technology
    • StarPower
    • Sino Micro
    • Yangjie
    • Jiejie
    • GoodArk
    • NCE Power
図表

List of Figures

  • 1.1. Evolution Of IGBT Chip Structure
  • 1.2. Effects Of Miniaturization Of IGBT Chip
  • 1.3. SiC Trench-Type MOSFET And Resistance Reduction As Compared With DMOSFET
  • 1.4. Planar And Vertical (Trench) MOSFET
  • 1.5. Schematic Of A FinFET
  • 1.6. Schematic Of A MOSFET And Super Junction MOSFET
  • 1.7. Process Flow For Super Junction MOSFET
  • 2.1. Forecast Of Solar Power
  • 2.2. Full Bridge IGBT Topology
  • 2.3. PV Inverter Market Distribution
  • 2.4. Block Diagram Of Microcontroller-Based Inverter
  • 2.5. Worldwide Wind Turbine Shipments
  • 2.6. Top Wind Power Capacity by Country
  • 2.7. Bill Of Materials For A Typical 30-50kw Inverter
  • 2.8. A Simple Diagram Of A HEV Traction Drive System.
  • 2.9. A More Complex Diagram Of PEEM In A Plug-In Hybrid Electric Vehicle (PHEV)
  • 2.10. Conducting And Switching Loses For Inverter
  • 2.11. Unit Pricing Trends In Power Semiconductors
  • 2.12. HEV/EV Shipment Forecast
  • 2.13. System And Component Costs For Wide Bandgap Semiconductors
  • 2.14. Vertical And Lateral HEMY
  • 2.15. GaN Lateral And GaN Vertical HEMTs In EVs
  • 2.16. Market Drivers For LED Biz And Applications
  • 2.17. SSL Vs. Classical Technologies
  • 2.18. LED Performance Vs. Traditional Light Sources
  • 2.19. Energy Production And Use Comparison
  • 2.20. Typical LED Drive Circuit
  • 2.21. Integration Of LED And LED Driver Using TSV
  • 2.22. Simple Power MOSFET Motor Controller
  • 2.23. Basic Operating Principle Of Inverter
  • 2.24. System Block Diagram Of An Air Conditioner
  • 3.1. Mitsubishi's IGBT (Insulated Gate Bipolar Transistor) Generations
  • 3.2. Infineon's MOSFET Generations
  • 3.3. Intel's FinFET Design
  • 3.4. Fuji's MOSFET versus Super Junction MOSFET
  • 3.5. NEC's GaN-on-Si Power Transistor
  • 3.6. Fujitsu's GaN-on-SiC HEMT Transistor
  • 3.7. Power Semiconductor Market Forecast
  • 3.8. Power Semiconductor Market Shares
  • 3.9. Market Forecast For Super Junction MOSFET
  • 3.10. SJ MOSFETs as an Interim Solution
  • 3.11. Global IGBT Shares By Application
  • 3.12. China IGBT Shares By Application
  • 3.13. Global And China Automotive IGBT Forecast
  • 3.14. Global And China Power Generation IGBT Forecast
  • 3.15. Global And China Consumer IGBT Forecast
  • 3.16. Global And China Industrial IGBT Forecast
  • 3.17. Global And China Industrial IGBT Forecast
  • 3.18. Global And China EV Charging IGBT Forecast
  • 3.19. Global IGBT Module Market Shares
  • 3.20. Global IGBT Discrete Market Shares
  • 3.21. Global MOSFET Shares By Application
  • 3.22. China MOSFET Shares By Application
  • 3.23. Global And China Automotive MOSFET Forecast
  • 3.24. Global And China EV Charging MOSFET Forecast
  • 3.25. Global And China Industrial MOSFET Forecast
  • 3.26. Global And China Consumer MOSFET Forecast
  • 3.27. Global And China Telecom MOSFET Forecast
  • 3.28. Global And China Telecom MOSFET Forecast
  • 3.29. MOSFET Market Shares
  • 3.30. Power Demands For ICE And EV
  • 3.31 5G Demand for Power Semiconductors
  • 3.32. Forecast of Wide Bandgap Semiconductor Market
  • 4.1. Silicon-Based Devices Reaching Maturity
  • 4.2. Enhancement Mode GaN On Si Transistor
  • 4.3. AlGaN/GaN HEMT, GaN MOSFET, MOS-HEMT
  • 4.4. GaN HEMT Material Structure On Si Substrate
  • 4.5. Power Package Integration Roadmap

List of Tables

  • 2.1. Product Families And The Principal End Uses Of Power Products
  • 2.2. Forecast Of On-Grid Inverters By Type
  • 2.3. EV Shipment Forecast
  • 2.4. Advantages And Disadvantages Of GaN Lateral HEMTs
  • 2.5. Light Source Comparison
  • 2.6. Forecast Of GaN And SiC Power Devices By End Applications
  • 3.1. Power Semiconductor Forecast for Electric Vehicles
  • 3.2. 5G Semiconductor Total Available Market Forecast
  • 4.1. Physical Properties Of Select Semiconductor Materials
  • 4.2. Wide Bandgap Material Properties
  • 4.3. Lattice Constant And CTE Of Semiconductor Starting Material
  • 4.4. GaN FET Vs Si MOSFET Characteristics
  • 4.5. Standard Chemical Solution For Surface Preparation Of SiC Substrates
  • 4.6. Interface Trap Densities For 4H-SiC Under Different Process Conditions
目次

Introduction

The landscape of power semiconductors is undergoing a profound transformation driven by the escalating demand for energy-efficient solutions across various sectors, ranging from automotive and industrial to consumer electronics and renewable energy systems. As the world transitions towards a more sustainable and electrified future, the role of power semiconductors becomes increasingly pivotal in enabling efficient energy management, power conversion, and control.

The "Power Semiconductors: Markets, Materials, Technologies" report provides a comprehensive analysis of the dynamic power semiconductor market, delving into key trends, emerging materials, and cutting-edge technologies shaping the industry's trajectory. With a focus on market dynamics, material innovations, and technological advancements, the report offers valuable insights into the evolving landscape of power semiconductor devices and their applications across diverse sectors.

Amidst the evolving energy landscape and the imperative for energy conservation, the demand for power semiconductors continues to soar, driven by the need for high-performance, energyefficient solutions. From advanced silicon-based devices to emerging wide-bandgap materials such as silicon carbide (SiC) and gallium nitride (GaN), the report explores the evolving material landscape and its impact on the performance and efficiency of power semiconductor devices.

Moreover, the report examines the latest technological developments and innovations in power semiconductor design, packaging, and integration techniques. From discrete circuits to integrated modules and advanced packaging solutions, the report elucidates the technological trends driving efficiency enhancements, miniaturization, and reliability improvements in power semiconductor devices.

In addition to analyzing market trends and technological advancements, the report also provides insights into the competitive landscape of the power semiconductor industry, profiling key players, their strategies, and market positioning. Furthermore, it assesses regional dynamics, regulatory frameworks, and emerging market opportunities, offering stakeholders a comprehensive understanding of the global power semiconductor ecosystem.

Trends

The emergence of wide-bandgap materials, particularly SiC and GaN, represents a significant paradigm shift in the power semiconductor industry. These materials offer distinct advantages over traditional silicon-based semiconductors, including higher breakdown voltages, faster switching speeds, and improved thermal conductivity, making them ideal candidates for highperformance and energy-efficient power electronic devices.

Silicon carbide (SiC) stands out for its superior electrical properties, including a wider bandgap and higher critical electric field strength compared to silicon. These properties enable SiC-based devices to operate at higher temperatures and voltages while maintaining efficient performance. SiC devices exhibit lower on-state losses and switching losses, translating into higher efficiency and reduced energy consumption in various applications, such as electric vehicles, renewable energy systems, and industrial power converters.

Similarly, gallium nitride (GaN) has garnered attention for its exceptional electrical characteristics, including a wide bandgap and high electron mobility. GaN-based devices offer significant advantages in terms of power density, switching speed, and efficiency, making them well-suited for high-frequency and high-power applications. GaN devices exhibit lower switching losses, enabling higher switching frequencies and reduced size and weight of power electronic systems, which is particularly beneficial for compact and lightweight designs in automotive and aerospace applications.

The adoption of SiC and GaN materials in power semiconductor devices is accelerating, driven by advancements in material growth techniques, manufacturing processes, and device architectures. As production volumes increase and manufacturing costs decline, SiC and GaN devices are becoming increasingly competitive with silicon-based counterparts across a wide range of applications.

Furthermore, ongoing research and development efforts are focused on optimizing device performance, enhancing reliability, and reducing costs to further accelerate the adoption of SiC and GaN technology. This includes innovations in device design, packaging technologies, and thermal management solutions to address the unique challenges associated with wide-bandgap materials.

Overall, the widespread adoption of SiC and GaN materials heralds a new era of energyefficient power electronics, offering transformative opportunities for industries seeking to improve efficiency, reduce emissions, and advance sustainable energy solutions. As these materials continue to mature and gain traction in the market, their impact on the power semiconductor industry is poised to be profound and far-reaching.

About This Report

This comprehensive report delves into various aspects of the power semiconductor industry, providing in-depth analysis and insights into markets, materials, and technologies shaping the landscape. Here's an expanded overview of what the report covers:

Market Analysis: The report offers a detailed examination of the global power semiconductor market, including historical trends, current market dynamics, and future growth prospects. It assesses market size, revenue forecasts, and key drivers and challenges influencing market growth. Additionally, the report provides insights into market segmentation by product type, end-user industry, and geographic region.

Material Trends: It explores the latest advancements and trends in semiconductor materials, with a particular focus on wide-bandgap materials such as silicon carbide (SiC) and gallium nitride (GaN). The report discusses the properties and benefits of these materials, their applications across various industries, and their impact on the performance and efficiency of power semiconductor devices.

Technology Insights: The report delves into emerging technologies and innovations in power semiconductor devices, including silicon-based and wide-bandgap devices. It covers developments in device architectures, manufacturing processes, packaging technologies, and thermal management solutions aimed at enhancing device performance, reliability, and costeffectiveness.

Market Segmentation: An in-depth analysis of the power semiconductor market segmentation is provided, highlighting key product categories such as discrete circuits, module circuits, and power integrated circuits (ICs). The report examines market trends and growth opportunities across different end-user industries, including automotive, consumer electronics, industrial, and power distribution.

Regional Analysis: It offers a comprehensive assessment of the power semiconductor market across major geographic regions, including North America, Europe, and Asia including China. The report analyzes regional market trends, competitive landscapes, and regulatory frameworks shaping the industry landscape in each region.

Competitive Landscape: The report profiles leading companies and key players in the power semiconductor industry, providing insights into their market share, product portfolios, strategic initiatives, and competitive strategies. It assesses the competitive intensity and market positioning of major players, along with their strengths, weaknesses, opportunities, and threats.

Market Opportunities and Challenges: The report identifies and analyzes emerging market opportunities, growth prospects, and challenges facing the power semiconductor industry. It explores factors such as technological advancements, regulatory trends, investment opportunities, and competitive dynamics shaping the market landscape.

Regional Analysis: It offers a comprehensive assessment of the power semiconductor market across major geographic regions, including North America, Europe, and Asia including China. The report analyzes regional market trends, competitive landscapes, and regulatory frameworks shaping the industry landscape in each region.

Competitive Landscape: The report profiles leading companies and key players in the power semiconductor industry, providing insights into their market share, product portfolios, strategic initiatives, and competitive strategies. It assesses the competitive intensity and market positioning of major players, along with their strengths, weaknesses, opportunities, and threats.

Market Opportunities and Challenges: The report identifies and analyzes emerging market opportunities, growth prospects, and challenges facing the power semiconductor industry. It explores factors such as technological advancements, regulatory trends, investment opportunities, and competitive dynamics shaping the market landscape.

Table of Contents

Chapter 1. Introduction

  • 1.1. Evolution Of IGBT Chip Structure
  • 1.2. Effects Of Miniaturization Of IGBT Chip
  • 1.3. SiC Trench-Type MOSFET And Resistance Reduction As Compared With DMOSFET
  • 1.4. Planar And Vertical (Trench) MOSFET
  • 1.5. Schematic Of A FinFET
  • 1.6. Schematic Of A MOSFET And Super Junction MOSFET
  • 1.7. SiC U MOSFET

Chapter 2. Applications of Power Semiconductors

  • 2.1. Forecast Of Solar Power
  • 2.2. Full Bridge IGBT Topology
  • 2.3. Block Diagram Of Microcontroller-Based Inverter
  • 2.4. Worldwide Wind Turbine Shipments
  • 2.5. Top Wind Power Capacity by Country
  • 2.6. Bill Of Materials For A Typical 30-50kw Inverter
  • 2.7. A Simple Diagram Of A HEV Traction Drive System.
  • 2.8. A More Complex Diagram Of PEEM In A Plug-In Hybrid Electric Vehicle (PHEV)
  • 2.9. Conducting And Switching Loses For Inverter
  • 2.10. Unit Pricing Trends In Power Semiconductors
  • 2.11. System And Component Costs For Wide Bandgap Semiconductors
  • 2.12. Vertical And Lateral HEMT
  • 2.13. GaN Lateral And GaN Vertical HEMTs In EVs
  • 2.14. Market Drivers For LED Biz And Applications
  • 2.15. SSL Vs. Classical Technologies
  • 2.16. LED Performance Vs. Traditional Light Sources
  • 2.17. Energy Production And Use Comparison
  • 2.18. Typical LED Drive Circuit
  • 2.19. Integration Of LED And LED Driver Using TSV
  • 2.20. Simple Power MOSFET Motor Controller
  • 2.21. Basic Operating Principle Of Inverter
  • 2.1. Forecast Of Solar Power
  • 2.2. Full Bridge IGBT Topology
  • 2.3. Block Diagram Of Microcontroller-Based Inverter
  • 2.4. Worldwide Wind Turbine Shipments
  • 2.5. Top Wind Power Capacity by Country
  • 2.6. Bill Of Materials For A Typical 30-50kw Inverter
  • 2.7. A Simple Diagram Of A HEV Traction Drive System
  • 2.8. A More Complex Diagram Of PEEM In A Plug-In Hybrid Electric Vehicle (PHEV)
  • 2.9. Conducting And Switching Loses For Inverter
  • 2.10. Unit Pricing Trends In Power Semiconductors
  • 2.11. System And Component Costs For Wide Bandgap Semiconductors

Chapter 3. Market Analysis

  • 3.1. Position of Power Semiconductors in Semiconductor Market
  • 3.2. Growth Potential of IGBTs and Power MOSFETs
  • 3.3. IGBT Market
    • 3.3.1. IGBT Technology Trends
    • 3.3.2. IGBT TAM
    • 3.3.3. IGBT Market Growth By Applications
      • 3.3.3.1. Automotive
      • 3.3.3.2. Power Generation And Grid
      • 3.3.3.3. Consumer Electronics
      • 3.3.3.4. Industrial Controls
      • 3.3.3.5. Railway/Train
      • 3.3.3.6. EV Charging Systems
    • 3.3.4. IGBT Competitive Landscape
      • 3.3.4.1. Global And China Market Share
      • 3.3.4.2. IGBT Business Model
      • 3.3.4.3. Technology Gap Between China And Global Players
  • 3.4. MOSFET TAM
    • 3.4.1. MOSFET TAM Methodology
    • 3.4.2. MOSFET Market Growth By Applications
      • 3.4.2.1. Automotive
      • 3.4.2.2. EV Charging
      • 3.4.2.3. Industrial And Medical
      • 3.4.2.4. Consumer
      • 3.4.2.5. Telecom Network
      • 3.4.3.6. Computing
    • 3.4.4. MOSFET Competitive Landscape
      • 3.4.4.1. Global And China Market Share
      • 3.4.4.2. China Suppliers' Technology/Product Gaps Vs Global Peers
  • 3.5. Emerging End Application Markets
    • 3.5.1. Electric Vehicles
  • 3.5.2 5G Infrastructure
  • 3.4. Wide Bandgap Power Semiconductor Market

Chapter 4. Next-Generation Power Semiconductors

  • 4.1. Expectations for Overcoming Silicon's Limitations
  • 4.2. Expectations Of SiC and GaN as Next-Generation Substrates
  • 4.3. Benefits of Wide Band Gap Semiconductors
  • 4.4. SiC versus GaN
    • 4.4.1. Material Properties
    • 4.4.2. Material Quality
    • 4.4.3. SiC Lateral Devices:
    • 4.4.4. SiC Vertical Devices
    • 4.4.5. GaN Lateral Devices
  • 4.5. Fabrication of SiC devices
    • 4.5.1. Bulk and Epitaxial Growth of SiC
      • 4.5.1.1. Bulk Growth
      • 4.5.1.2. Epitaxial Growth
      • 4.5.1.3. Defects
    • 4.5.2. Surface Preparation
    • 4.5.3. Etching
    • 4.5.4. Lithography
    • 4.5.5. Ion Implantation
    • 4.5.6. Surface Passivation
    • 4.5.7. Metallization
  • 4.6. Fabrication of GaN devices
    • 4.6.1. GaN Challenges
      • 4.6.1.1. Costs
      • 4.6.1.2. Reliability
      • 4.6.1.3. Component Packaging and Thermal Reliability
      • 4.6.1.4. Control
      • 4.6.1.5. Device Modeling
  • 4.7. Packaging

Chapter 5. Company Profiles

  • 5.1. Power Semiconductor Companies
    • 5.1.1. Infineon
    • 5.1.2. Mitsubishi
    • 5.1.3. Toshiba
    • 5.1.4. STMicroelectronics
    • 5.1.5. Vishay
    • 5.1.6. Fuji Electric
    • 5.1.7. Renesas
    • 5.1.8. Semikron
    • 5.1.9. NXP Semiconductors
    • 5.1.10. Hitachi Power Semiconductor Device
    • 5.1.11. X-Rel Semiconductor
    • 5.1.12. Advanced Linear Devices
    • 5.1.13. Nexperia
    • 5.1.14. Rohm
    • 5.1.15. Sanken Electric
    • 5.1.16. Shindengen Electric 5+
    • 5.1.17. Microchip Technology
    • 5.1.18. GeneSiC Semiconductor
    • 5.1.19. Semisouth Laboratories
    • 5.1.20. United Silicon Carbide
    • 5.1.21. MicroGaN
    • 5.1.22. Powerex
    • 5.1.23. Nitronix
    • 5.1.24. Transform
    • 5.1.25. Allegro Microsystems
    • 5.1.26. GaN Systems
    • 5.1.27. Navitas Semiconductor
    • 5.1.28. Alpha and Omega Semiconductor
    • 5.1.29. ON Semiconductor
    • 5.1.30. Jilin Sino-Microelectronics
    • 5.1.31. BYD Microelectronics
    • 5.1.32. Yangzhou Yangjie Electronic Technology
    • 5.1.33. StarPower
    • 5.1.34. Sino Micro
    • 5.1.35. Yangjie
    • 5.1.36. Jiejie
    • 5.1.37. GoodArk
    • 5.1.38. NCE Power