![]() |
市場調査レポート
商品コード
1494835
グリーンアンモニアの世界市場:分析 - 生産技術別、エンドユーザー別、地域別、予測(~2030年)Green Ammonia Market Forecasts to 2030 - Global Analysis By Production Technology (Alkaline Water Electrolysis, Solid Oxide Electrolysis, Proton Exchange Membrane and Other Production Technologies), End User and By Geography |
||||||
カスタマイズ可能
|
グリーンアンモニアの世界市場:分析 - 生産技術別、エンドユーザー別、地域別、予測(~2030年) |
出版日: 2024年06月06日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
世界のグリーンアンモニアの市場規模は、2024年に6億6,000万米ドルに達し、予測期間中にCAGR 118.7%で成長し、2030年には717億9,000万米ドルに達すると予測されています。
グリーンアンモニアとは、炭素排出と環境への影響を最小限に抑えるプロセスで生産されたアンモニアを指します。従来のアンモニア生産は化石燃料、特に天然ガスに大きく依存しており、温室効果ガスの排出が著しいです。対照的に、グリーンアンモニアは、風力、太陽光、水力発電などの再生可能エネルギーを使って合成され、水を電気分解して水素にし、これをHaber-Boschプロセスで空気から取り出した窒素と結合させてアンモニアを製造します。グリーンアンモニアは、肥料生産、燃料電池、大型車や船舶のディーゼルの代替となる可能性など、さまざまな用途で再生可能エネルギーを貯蔵・輸送できるクリーンエネルギーキャリアとして有望視されています。
国連食糧農業機関によると、2021~2022年までの総肥料消費量は前年比5.4%増となりました。Statistical Review of World Energy 2022によると、2021年のバイオ燃料総消費量は世界で1日当たり石油換算183万7,000バレルでした。
気候変動に対する意識の高まり
世界が温室効果ガス排出削減の緊急課題に取り組む中、産産業は従来のエネルギー源に代わるよりクリーンな代替エネルギーを模索しています。風力発電や太陽光発電などの再生可能エネルギーを使って生産されるグリーンアンモニアは、有望な解決策を提示しています。加えて、その生産は二酸化炭素を排出しないため、化石燃料に大きく依存する従来のアンモニア生産方法に代わる、環境に優しい選択肢となります。
技術の成熟度
Haber-Boschプロセスで再生可能エネルギーを使って生産されるグリーンアンモニアのコンセプトは、農業や輸送を含むさまざまな分野の脱炭素化に大きな可能性を秘めているが、その普及は技術的限界によって妨げられています。現在の製造方法には多大なエネルギー投入が必要であり、従来のアンモニア製造と比較してコスト競争力の妨げとなっています。再生可能エネルギー源のスケールアップや、効率と費用対効果を高めるための生産プロセスの最適化には課題がつきまとう。その結果、グリーンアンモニア産業は、規模の経済を達成し、大規模展開のための十分な投資を集めるのに苦労しています。
高まるバイオ燃料需要
バイオ燃料の生産では、アンモニア合成の主要成分である窒素を豊富に含む廃棄物が発生することが多く、グリーンアンモニア生産の理想的な原料となっています。持続可能性と二酸化炭素排出量の削減を重視する産産業は、アンモニアの代替供給源を求めるようになり、再生可能資源由来のグリーンアンモニアへの関心が高まっています。さらに、バイオ燃料を使用することで、統合バイオリファイナリーにおいて相乗効果を生み出すことができ、アンモニアをバイオ燃料と同時に生産することで、資源の利用を最適化し、全体的な効率を高めることができます。
グリーンアンモニアに関する化学メーカーの情報不足
持続可能なエネルギーシステムの重要な構成要素であるグリーンアンモニアは、炭素排出を削減する計り知れない可能性を秘めています。その普及を妨げているのは、製造業者の間でグリーンアンモニアの生産と利用に関する知識や認識が乏しいことです。この情報不足は、効率的なグリーンアンモニア合成に必要な技術的進歩、生産プロセスの経済性、産業全般にわたる潜在的用途など、さまざまな側面を包含しています。しかし、こうした情報の包括的な理解と普及がなければ、化学メーカーはグリーンアンモニア生産への投資をためらい、その利用可能性と拡張性を制限したままです。
当初、世界のサプライチェーンの混乱と経済活動の鈍化が市場の成長を妨げました。封鎖措置や渡航制限が建設プロジェクトの遅れにつながり、グリーンアンモニア生産インフラへの投資が妨げられました。アンモニアの主要なエンドユーザーである肥料や工業用化学品の需要減退は、市場の見通しをさらに悪化させました。しかし、パンデミックはまた、持続可能性と回復力の重要性を浮き彫りにし、政府と産産業がより環境に優しいエネルギー源への移行を加速させる原動力となった。
予測期間中、固体酸化物電解(SOE)分野が最大になる見込み
固体酸化物電解(SOE)分野は、アンモニア生産に持続可能な経路を提供することで、予測期間中に最大となる見込みです。SOE技術は、電気を利用して水を水素と酸素に分解し、その後水素を利用してHaber-Boschプロセスでアンモニアを合成します。化石燃料に依存する従来のアンモニア製造方法とは異なり、SOEに基づく製造は、太陽光や風力などの再生可能エネルギー源で電力を供給できるため、より環境に優しい代替手段を提供します。このアプローチは、アンモニア生産に伴う炭素排出を大幅に削減し、気候変動と闘うための世界の取り組みと一致します。
産業用原料セグメントは予測期間中最も高いCAGRが見込まれる
産業用原料セグメントは、予測期間中にCAGRが最も高くなると予想されます。従来、アンモニアの生産は化石燃料に大きく依存しており、温室効果ガスの排出と環境悪化の原因となっていました。持続可能性と気候変動緩和への注目が高まるにつれ、環境に優しい代替物への需要が高まっています。風力や太陽光のような再生可能エネルギー源を動力源とする電気分解から得られる再生可能水素のような工業用原料は、グリーンアンモニアの生産に利用されています。このアプローチは、二酸化炭素排出量を削減するだけでなく、より環境に優しい生産プロセスを保証します。
アジア太平洋は、農業生産と環境意識が同時に高まっていることから、推定期間中、市場で最大のシェアを占めています。人口増加による地域的な需要を満たすために農業活動が拡大するにつれて、持続可能性と環境への影響に対する関心も並行して高まっています。再生可能なエネルギー源と炭素排出を最小限に抑えるプロセスを通じて生産されるグリーンアンモニアは、この地域全体で説得力のある解決策を提示しています。
アジア太平洋は、予測期間中、収益性の高い成長を維持する見込みです。同地域では、気候変動との闘いと炭素排出量の削減に努めているため、各国政府はクリーンエネルギーの導入を促進することを目的とした厳しい規制と政策を実施しています。こうした規制には、補助金、減税、再生可能エネルギー使用の義務化などのインセンティブが含まれることが多く、地域全体でグリーンアンモニア生産への移行を産産業に促しています。さらに、各国政府はグリーン技術やインフラを推進するための研究開発イニシアチブに積極的に投資しており、アジア太平洋全体で技術革新と市場競争力を促進しています。
According to Stratistics MRC, the Global Green Ammonia Market is accounted for $0.66 billion in 2024 and is expected to reach $71.79 billion by 2030 growing at a CAGR of 118.7% during the forecast period. Green ammonia refers to ammonia produced through a process that minimizes carbon emissions and environmental impact. Traditional ammonia production relies heavily on fossil fuels, particularly natural gas, which generates significant greenhouse gas emissions. In contrast, green ammonia is synthesized using renewable energy sources, such as wind, solar, or hydroelectric power, to electrolyze water into hydrogen, which is then combined with nitrogen extracted from the air through the Haber-Bosch process to produce ammonia. Green ammonia holds promise as a clean energy carrier, capable of storing and transporting renewable energy for various applications, including fertilizer production, fuel cells, and as a potential replacement for diesel in heavy-duty vehicles and ships.
According to the Food and Agriculture Organization, total fertilizer consumption from 2021 to 2022 grew by 5.4% year-on-year. According to Statistical Review of World Energy 2022, the total biofuel consumption in 2021 was 1,837 thousand barrels of oil equivalent per day worldwide.
Growing awareness about climate change
As the world grapples with the urgent need to reduce greenhouse gas emissions, industries are seeking cleaner alternatives to traditional energy sources. Green ammonia, produced using renewable energy sources such as wind and solar power, presents a promising solution. Additionally, its production emits zero carbon dioxide, making it an environmentally friendly alternative to conventional ammonia production methods, which rely heavily on fossil fuels.
Technology maturity
While the concept of green ammonia, produced using renewable energy in the Haber-Bosch process, holds immense promise for decarbonizing various sectors, including agriculture and transportation, its widespread adoption is impeded by technological limitations. Current production methods require significant energy input, hindering cost competitiveness compared to conventional ammonia production. Challenges persist in scaling up renewable energy sources and optimizing production processes for efficiency and cost-effectiveness. As a result, the green ammonia industry struggles to achieve economies of scale and attract sufficient investment for large-scale deployment.
Growing demand for biofuels
Biofuel production often generates waste streams rich in nitrogen, a key component in ammonia synthesis, making it an ideal feedstock for green ammonia production. The emphasis on sustainability and reducing carbon emissions has prompted industries to seek alternative sources of ammonia, leading to increased interest in green ammonia derived from renewable sources. Furthermore, the use of biofuels can create synergies in integrated biorefineries, where ammonia can be produced alongside biofuels, optimizing resource utilization and enhancing overall efficiency.
Lack of information among chemical manufacturers regarding green ammonia
Green ammonia, a crucial component in sustainable energy systems, holds immense potential for reducing carbon emissions. Its widespread adoption is impeded by a dearth of knowledge and awareness among manufacturers regarding its production and utilization. This lack of information encompasses various aspects, including the technological advancements required for efficient green ammonia synthesis, the economic viability of production processes, and the potential applications across industries. However, without comprehensive understanding and dissemination of this information, chemical manufacturers remain hesitant to invest in green ammonia production, limiting its availability and scalability.
Initially, disruptions in global supply chains and a slowdown in economic activities hindered the growth of the market. Lockdown measures and travel restrictions led to delays in construction projects and hindered investments in green ammonia production infrastructure. Reduced demand for fertilizers and industrial chemicals, which are major end-users of ammonia, further dampened market prospects. However, the pandemic also highlighted the importance of sustainability and resilience, driving governments and industries to accelerate their transition towards greener energy sources.
The Solid Oxide Electrolysis (SOE) segment is expected to be the largest during the forecast period
Solid Oxide Electrolysis (SOE) segment is expected to be the largest during the forecast period by offering a sustainable pathway for ammonia production. SOE technology utilizes electricity to split water into hydrogen and oxygen, subsequently utilizing the hydrogen to synthesize ammonia via the Haber-Bosch process. Unlike conventional ammonia production methods reliant on fossil fuels, SOE-based production offers a greener alternative, as it can be powered by renewable energy sources like solar or wind. This approach significantly reduces carbon emissions associated with ammonia production, aligning with global efforts to combat climate change.
The Industrial Feedstock segment is expected to have the highest CAGR during the forecast period
Industrial Feedstock segment is expected to have the highest CAGR during the forecast period. Traditionally, ammonia production relies heavily on fossil fuels, contributing to greenhouse gas emissions and environmental degradation. With the increasing focus on sustainability and climate change mitigation, there's a growing demand for green alternatives. Industrial feedstocks such as renewable hydrogen derived from electrolysis powered by renewable energy sources like wind and solar are being utilized to produce green ammonia. This approach not only reduces carbon emissions but also ensures a more environmentally friendly production process.
Asia Pacific region commanded the largest share of the market over the extrapolated period due to the simultaneous rise in agricultural production and environmental consciousness. As agricultural activities escalate to meet the regional demands of a growing population, there's a parallel concern for sustainability and environmental impact. Green ammonia, produced through renewable energy sources and processes that minimize carbon emissions, presents a compelling solution across the region.
Asia Pacific region is poised to hold profitable growth over the projection period. As the region strives to combat climate change and reduce carbon emissions, governments are implementing stringent regulations and policies aimed at promoting the adoption of clean energy alternatives. These regulations often include incentives such as subsidies, tax breaks, and mandates for renewable energy use, which encourage industries to transition towards green ammonia production across the region. Moreover, governments are actively investing in research and development initiatives to advance green technology and infrastructure, fostering innovation and market competitiveness throughout the Asia Pacific region.
Key players in the market
Some of the key players in Green Ammonia market include ACME Group, Air Liquide S.A., Ammonia Energy Association, BASF SE, CF Industries Holdings, Inc, Exxon Mobil Corporation, Greenfield Nitrogen LLC, Honeywell International Inc, Hydrogenics Corporation, Kawasaki Heavy Industries, Ltd, Mitsubishi Heavy Industries, Ltd, NextEra Energy, Inc, Siemens AG, TotalEnergies SE and Yara International ASA.
In April 2023, Yara Clean Ammonia (Yara), a fertilizer and chemical company owned by Yara International ASA, and VNG, a gas company based in Leipzig, intend to collaborate closely in the field of clean ammonia, actively supporting the ambitious implementation plans outlined in the German Hydrogen Strategy.
In February 2023, Hyphen Hydrogen Energy signed an MoU with South Korea-based hydrogen producer Approtium and another major chemical company for its 1 million mt/year green ammonia plant in development in Namibia.
In November 2022, an industrial-scale ammonia cracker prototype, intended to combat climate change and lower carbon emissions, was developed by Siemens Energy in collaboration with Fortescue Future Industries, a manufacturer of green hydrogen, and GeoPura, a provider of renewable energy, electric vehicle charging, and emission-free electricity. 200 kg of hydrogen per day, or enough to power five to ten hydrogen fuel cell electric buses, would be delivered by the prototype using ammonia.
In October 2022, Greenko signed an agreement to supply 250,000 tons green ammonia to Germany-based Uniper. Greenko is the first India-based company to start exports from 2025 to jointly explore green ammonia and renewable energy opportunities to cater to the growing demand for low carbon energy in India, Singapore, and globally.