![]() |
市場調査レポート
商品コード
1383406
クラスター化規則的インタースペース短パリンドローム反復技術の2030年までの世界市場予測: 製品別、用途別、エンドユーザー別、地域別分析Clustered Regularly Interspaced Short Palindromic Repeats Technology Market Forecasts to 2030 - Global Analysis By Product, Application, End User and By Geography |
||||||
カスタマイズ可能
|
クラスター化規則的インタースペース短パリンドローム反復技術の2030年までの世界市場予測: 製品別、用途別、エンドユーザー別、地域別分析 |
出版日: 2023年11月01日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、世界のクラスター化規則的インタースペース短パリンドローム反復(クラスター化規則的インタースペース短パリンドローム反復)技術市場は、2023年に36億米ドルを占め、予測期間中にCAGR 17.6%で成長し、2030年までに113億米ドルに達すると予測されています。
クラスター化規則的インタースペース短パリンドローム反復(Clustered Regularly Interspaced Short Palindromic Repeats)技術は、クラスター化規則的インタースペース短パリンドローム反復ベースのゲノム編集および遺伝子操作技術の利用を取り巻く商業的エコシステムです。クラスター化規則的インタースペース短パリンドローム反復技術は、遺伝子治療、医薬品開発、農業の進歩などの目的で、ヒトを含む様々な生物のDNA配列を正確に改変するために使用されます。クラスター化規則的インタースペース短パリンドローム反復技術の利点は、高い精度、手頃な価格、効率性であり、医療、バイオテクノロジー、科学研究において計り知れない可能性を秘めた遺伝子編集の革命的なツールとなっています。
2019年にマクマスター大学が実施した研究によると、112万人以上の男性が血友病を患っており、そのうち40万人が重度の血友病でした。
これらの臨床試験は、遺伝子疾患、がん、その他のさまざまな疾患に対する新規治療法の開発にクラスター化規則的インタースペース短パリンドローム反復技術を応用することへの関心と投資の高まりを反映しています。臨床試験が進むにつれ、クラスター化規則的インタースペース短パリンドローム反復を用いた治療法の安全性と有効性が検証され、規制当局、投資家、医療プロバイダーの信頼が高まっています。これは、市場承認の可能性に道を開くだけでなく、クラスター化規則的インタースペース短パリンドローム反復の応用範囲を拡大し、医療分野での変革の力となります。臨床試験の多さは、この技術が医療に革命をもたらす可能性を示しており、将来の市場成長を裏付けています。
クラスター化規則的インタースペース短パリンドローム反復の応用に必要な研究、機器、専門的な専門知識への初期投資は法外に高額になる可能性があります。加えて、厳格な品質管理、厳格な試験、規制遵守の必要性がコスト全体を押し上げます。クラスター化規則的インタースペース短パリンドローム反復関連の知的財産に対する高額なライセンシング料は、企業や研究機関の負担をさらに重くします。こうした高額な費用は、特に予算が限られている小規模の研究機関や組織にとっては、クラスター化規則的インタースペース短パリンドローム反復技術へのアクセスを制限し、技術革新と採用のペースを阻害する可能性があります。
官民双方からの資金援助の増加は、クラスター化規則的インタースペース短パリンドローム反復アプリケーションの研究、開発、商業化を促進します。このような資金援助は、技術革新を加速し、応用範囲を拡大し、技術の利用しやすさを向上させる。また、学術機関、バイオテクノロジー企業、製薬企業間のコラボレーションを刺激し、遺伝子治療、農業、創薬などの分野におけるブレークスルーをもたらします。さらに、強固な財政的支援は、規制遵守と倫理的配慮を促進し、クラスター化規則的インタースペース短パリンドローム反復技術の責任ある安全な使用を保証します。
倫理、安全性、知的財産に関する懸念によって特徴づけられる規制状況の進化は、クラスター化規則的インタースペース短パリンドローム反復の用途の開発と商業化を大幅に遅らせる可能性があります。厳しい規制や国によって異なるガイドラインは、クラスター化規則的インタースペース短パリンドローム反復に基づく製品の市場投入を目指す研究者や企業にとって課題となる可能性があります。ヒトにおける遺伝子編集や農業における潜在的な生態学的影響をめぐる倫理的議論は、規制環境をさらに複雑にしています。知的財産権に関する紛争やライセンシングの複雑さも、技術革新や市場参入の妨げとなります。これらの障壁は、クラスター化規則的インタースペース短パリンドローム反復技術の導入のスピードと範囲を制限し、重要な医療のニーズに対応し、農業に革命をもたらし、科学研究を前進させる可能性を遅らせる可能性があります。
COVID-19パンデミックはクラスター化規則的インタースペース短パリンドローム反復技術市場に様々な影響を与えました。一時的にサプライチェーンと実験室研究を混乱させた一方で、迅速で正確なゲノム編集技術の重要性を浮き彫りにしました。クラスター化規則的インタースペース短パリンドローム反復技術の診断検査開発とワクチン研究への可能性が顕著に示されました。さらに、パンデミックによって、クラスター化規則的インタースペース短パリンドローム反復関連研究へのデジタル・コラボレーション・ツールやリモート・アクセスの導入が加速し、科学者たちの研究継続が容易になっています。その結果、クラスター化規則的インタースペース短パリンドローム反復技術はパンデミック以外の用途でも注目され、資金を獲得し、研究、医療、バイオテクノロジーにおける成長と多様化を促進する可能性があります。
クラスター化規則的インタースペース短パリンドローム反復のキット&酵素セグメントは有利な成長が見込まれます。これらの必須ツールは、精密なゲノム編集に必要なコンポーネントを研究者に提供します。クラスター化規則的インタースペース短パリンドローム反復キットには通常、ガイドRNA、Cas9タンパク質、標的DNA改変に必要なその他の試薬が含まれています。Cas9のような酵素は、特定の部位でDNAを切断する役割を担っています。これらの酵素がすぐに利用できることで、クラスター化規則的インタースペース短パリンドローム反復のワークフローが簡素化され、遺伝子治療や創薬から農業の進歩に至るまで、幅広い応用においてより効率的で正確な遺伝子操作が可能になります。これらのキットや酵素の利便性と入手しやすさが、様々な科学・産業分野でのクラスター化規則的インタースペース短パリンドローム反復技術の広範な採用と継続的な成長を後押ししています。
農業分野は予測期間中に最も速いCAGRの成長を示すと予測されます。クラスター化規則的インタースペース短パリンドローム反復技術は、作物改良と家畜育種のための正確で効率的なゲノム編集ツールを提供することにより、農業業界に革命をもたらしています。クラスター化規則的インタースペース短パリンドローム反復技術により、害虫、病気、悪環境条件に対する耐性が強化され、栄養成分が改善された遺伝子組み換え作物の開発が可能になります。この技術革新は、作物の収穫量を増やし、化学農薬の必要性を減らし、食糧安全保障の課題に取り組む可能性を秘めています。農業におけるクラスター化規則的インタースペース短パリンドローム反復の応用は、持続可能でより強靭な食糧生産に大きな期待を寄せており、人口増加と気候変動に直面する世界的課題に対する極めて重要な解決策を提供するものです。
予測期間中、北米市場が引き続き市場シェアの大半を占めると予想されます。この地域は、クラスター化規則的インタースペース短パリンドローム反復の研究と応用のための強固なエコシステムを誇っており、大手バイオテクノロジー企業、学術機関、研究センターが集中していることが特徴です。この地域の高度なインフラ、ライフサイエンスへの多額の投資、支援的な規制環境が、クラスター化規則的インタースペース短パリンドローム反復技術の急速な革新を促進してきました。北米は臨床試験、遺伝子治療の進歩、クラスター化規則的インタースペース短パリンドローム反復に基づく治療法の開発の最前線にあり、バイオテクノロジーのブレークスルーの拠点となっています。民間および公的資金の強力な存在と熟練した人材プールにより、北米はクラスター化規則的インタースペース短パリンドローム反復市場の成長と多様化を推進するリーダーとして位置づけられています。
予測期間中、アジア太平洋のCAGRが最も高いと予測されます。この地域の人口急増、医療投資の増加、バイオテクノロジー研究への注目の高まりがクラスター化規則的インタースペース短パリンドローム反復技術の採用を促進しています。同地域は、農業、医療、バイオテクノロジーを横断する革新的用途の温床となりつつあり、ゲノミクスと精密医療に重点が置かれています。さらに、中国やインドを含むアジア太平洋の数カ国は、クラスター化規則的インタースペース短パリンドローム反復関連の研究開発に多額の投資を行っており、この技術の拡大と商業化を促進しています。
According to Stratistics MRC, the Global Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Technology Market is accounted for $3.6 billion in 2023 and is expected to reach $11.3 billion by 2030 growing at a CAGR of 17.6% during the forecast period. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Technology is the commercial ecosystem surrounding the utilization of CRISPR-based genome editing and gene manipulation techniques. CRISPR technology is used to precisely modify DNA sequences in various organisms, including humans, for purposes such as gene therapy, drug development, and agricultural advancements. Its advantages include its high precision, affordability, and efficiency, making it a revolutionary tool for gene editing with immense potential in healthcare, biotechnology, and scientific research.
According to a study conducted by McMaster University in 2019, over 1.12 million men had haemophilia, and of these 0.4 million had severe haemophilia.
These trials reflect the growing interest and investment in applying CRISPR technology to develop novel therapies for genetic disorders, cancer, and a range of other diseases. As more trials progress, they validate the safety and efficacy of CRISPR-based treatments, driving confidence among regulators, investors, and healthcare providers. This not only paves the way for potential market approvals but also expands the applications of CRISPR, making it a transformative force in the healthcare sector. The abundance of clinical trials signifies the technology's potential to revolutionize medical treatment and underscores its future market growth.
The initial investment in research, equipment, and specialized expertise required for CRISPR applications can be prohibitively expensive. Additionally, the need for stringent quality control, rigorous testing, and regulatory compliance adds to the overall cost. High licensing fees for CRISPR-related intellectual property can further burden companies and institutions. These elevated expenses can limit the accessibility of CRISPR technology, especially for smaller research entities and organizations with limited budgets, potentially impeding the pace of innovation and adoption.
Increased financial support from both public and private sectors fosters research, development, and commercialization of CRISPR applications. This funding accelerates innovation, expands the range of applications, and enhances the technology's accessibility. It also stimulates collaboration between academic institutions, biotech companies, and pharmaceutical firms, leading to breakthroughs in areas like gene therapy, agriculture, and drug discovery. Moreover, robust financial backing promotes regulatory compliance and ethical considerations, ensuring the responsible and safe use of CRISPR technology, which is crucial for its long-term success and societal acceptance.
The evolving regulatory landscape, characterized by ethical, safety, and intellectual property concerns, can significantly slow down the development and commercialization of CRISPR applications. Stringent regulations and varying guidelines across different countries may create challenges for researchers and companies seeking to bring CRISPR-based products to market. Ethical debates surrounding gene editing in humans and potential ecological impacts in agriculture further complicate the regulatory environment. Intellectual property disputes and licensing complexities can also hinder innovation and market entry. These barriers may limit the speed and scope of CRISPR technology adoption, delaying its potential to address critical healthcare needs, revolutionize agriculture, and advance scientific research.
The COVID-19 pandemic has had a mixed impact on the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Technology Market. While it temporarily disrupted supply chains and laboratory research, it also highlighted the importance of rapid, precise genome editing techniques. CRISPR technology's potential for diagnostic test development and vaccine research was prominently showcased. Moreover, the pandemic accelerated the adoption of digital collaboration tools and remote access to CRISPR-related research, making it easier for scientists to continue their work. As a result, CRISPR technology has gained greater attention and funding for applications beyond the pandemic, potentially expediting its growth and diversification in research, healthcare, and biotechnology.
The CRISPR kits & enzymes segment is expected to have a lucrative growth. These essential tools provide researchers with the necessary components for precise genome editing. CRISPR kits typically contain guide RNAs, Cas9 proteins, and other reagents needed for target DNA modification. Enzymes, like Cas9, are responsible for cleaving DNA at specific sites. Their ready availability simplifies the CRISPR workflow, enabling more efficient and accurate genetic manipulations for a wide range of applications, from gene therapy and drug discovery to agricultural advancements. The convenience and accessibility of these kits and enzymes drive the widespread adoption and continued growth of CRISPR technology in various scientific and industrial sectors.
The agriculture segment is anticipated to witness the fastest CAGR growth during the forecast period. CRISPR technology is revolutionizing the agricultural industry by offering precise and efficient genome editing tools for crop improvement and livestock breeding. It allows for the development of genetically modified crops with enhanced resistance to pests, diseases, and adverse environmental conditions, as well as improved nutritional content. This innovation has the potential to increase crop yields, reduce the need for chemical pesticides, and address food security challenges. CRISPR's applications in agriculture hold great promise for sustainable and more resilient food production, offering a crucial solution to global challenges in the face of a growing population and changing climate.
During the forecast period, it is expected that the North American market will continue to hold a majority of the market share. It boasts a robust ecosystem for CRISPR research and applications, characterized by a concentration of leading biotech companies, academic institutions, and research centers. The region's advanced infrastructure, significant investment in life sciences, and supportive regulatory environment have fostered rapid innovation in CRISPR technology. North America has been at the forefront of clinical trials, gene therapy advancements, and the development of CRISPR-based therapies, making it a hub for biotechnological breakthroughs. The strong presence of private and public funding, along with a skilled talent pool, positions North America as a leader in driving the growth and diversification of the CRISPR market.
Asia Pacific is projected to have the highest CAGR over the forecast period. The region's rapidly growing population, rising healthcare investments, and increasing focus on biotechnology research have fuelled the adoption of CRISPR technology. It is becoming a hotbed for innovative applications across agriculture, healthcare, and biotechnology, with a strong emphasis on genomics and precision medicine. Furthermore, several countries in Asia Pacific, including China and India, are making substantial investments in CRISPR-related research and development, driving the technology's expansion and commercialization.
Some of the key players in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Technology market include: Agilent Technologies, INC., Applied Stemcell, Beam Therapeutics, INC., Caribou Biosciences, Cellecta, INC., CRISPR Therapeutics AG, Danaher Corporation, Editas Medicine, Genecopoeia, INC., Genscript, Intellia Therapeutics INC., Lonza Group Ltd., Mammoth Biosciences INC., Merck KGAA, Origene Technologies, INC., Synthego Corporation, Thermo Fisher Scientific INC., Toolgen INC. and Twist bioscience corp.
In May 2023, Thermo Fisher Scientific opens cell therapy facility at UCSF to accelerate development of breakthrough therapies. Thermo Fisher Scientific Inc. and the University of California, San Francisco accelerated advanced cell therapies for difficult to treat conditions, including cancer, rare diseases, and other illnesses, from a newly opened cGMP manufacturing facility adjacent to UCSF Medical Center's Mission Bay campus.
In April 2022, Thermo Fisher Scientific Inc. launched the new GMP-manufactured Gibco CTS TrueCut Cas9 Protein to support genome editing for research and manufacturing applications, including CAR T-cell therapy research.
In September 2022, GenScript announced today that it has launched the GenWand Double-Stranded DNA (dsDNA) Service for the manufacture of CRISPR knock-in homology- directed repair (HDR) templates in T cell engineering.