![]() |
市場調査レポート
商品コード
1359014
ブラウン水素市場の2030年までの予測:技術別、エンドユーザー別、地域別の世界分析Brown Hydrogen Market Forecasts to 2030 - Global Analysis By Technology, End User and By Geography |
||||||
カスタマイズ可能
|
ブラウン水素市場の2030年までの予測:技術別、エンドユーザー別、地域別の世界分析 |
出版日: 2023年10月01日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、世界のブラウン水素市場は2023年に369億3,000万米ドルを占め、2030年には581億5,000万米ドルに達すると予測され、予測期間中のCAGRは6.7%です。
ブラウン水素は、石炭ガス化プロセスを用いて製造されます。石炭は石炭ガス化の過程で固体から気体に変化します。石炭がガス化されると、化学成分が分離され、メタンガスが生成されます。分離されたガスは、廃棄のために輸送される前に、水素と高濃度の二酸化炭素を回収するために従来通り洗浄されます。
IEAによれば、化石燃料由来の水素に基づく精製や化学製造は、すでに欧州の北海、北米のメキシコ湾岸、中国の南東部など、世界中の沿岸工業地帯に集中しています。これらの工場がよりクリーンな水素生成に切り替えるよう奨励されれば、全体的な経費は削減されると思われます。
ブラウン水素市場を牽引する重要な要因は、エネルギー・キャリアとして、また石油化学、石油精製、輸送部門の工業プロセスに不可欠な要素として、世界規模で水素の需要が高まっていることです。さらに、この需要増加は、プロセス効率の向上、排出ガスの削減、厳格な品質基準を満たすために産業界が水素に目を向けた結果でもあります。同時に、水素を動力源とする輸送手段へのシフトも加速しており、エネルギー情勢の変化における水素の重要な役割を浮き彫りにしています。
ブルー水素やグリーン水素を製造するような、よりクリーンな水素製造プロセスは、ブラウン水素と競合します。グリーン水素は再生可能エネルギーを動力源とする電気分解によって製造され、二酸化炭素を排出しないが、ブルー水素はCCSを備えた化石燃料から製造され、ブラウン水素よりも二酸化炭素排出量が少ないです。さらに、ブラウン水素市場の持続可能性は、こうしたよりクリーンな代替品の出現と拡大によって脅かされています。
ブラウン水素製造のためのCCS技術の開発は、産業界全体により広範な炭素回収・貯留の応用に希望を与えます。CCSへの投資によって、コストを下げ、効率を高め、世界の排出削減を促進する革新がもたらされる可能性があります。さらに、先進的なCCSソリューションの創出と導入は、研究パートナーシップ、産業界との提携、政府からの財政的インセンティブを通じて加速させることができます。
茶色い水素製造産業が環境に与える影響は、各国が気候変動対策への取り組みを強化する中、深刻な脅威であり続けています。CCS技術を用いても、ブラウン水素による二酸化炭素(CO2)排出量は、長期的な排出削減目標に沿わない可能性があります。さらに、ブラウン水素の継続的な開発は、規制上の制限や、燃料の環境影響に関する世論の変化によって妨げられる可能性があります。
COVID-19の大流行は、ブラウン水素の市場にさまざまな影響を与えました。建設プロジェクトやサプライチェーンは当初混乱し、遅延やコスト超過を招いた。しかし、世界中の政府が景気回復をより優先させる中、雇用創出を促進し、苦境にある産業を支援するブラウン水素の可能性に対する理解が広まっています。その結果、特に炭素回収・貯留(CCS)技術に関連するブラウン水素の取り組みに対する財政支援や立法的な裏付けが強化されました。よりクリーンなエネルギー源への移行もパンデミックによって加速され、一部の利害関係者は、より野心的な排出削減目標や、グリーン水素やブルー水素との競争激化に照らして、ブラウン水素の機能を再評価するようになっています。
水素製造の最大市場シェアは、水蒸気メタン改質(SMR)セグメントに属すると予想されます。水素を製造するための試行錯誤の技術で、頻繁に応用されているのが水蒸気メタン改質です。水蒸気メタン改質は、天然ガス(メタン)と非常に高温の水蒸気の相互作用を伴い、製品別として水素ガスと二酸化炭素が生成されます。さらに、SMRは効果的で、いくつかの代替方法よりもコストが低いため、好まれています。しかし、SMRがポピュラーな技術であるにもかかわらず、二酸化炭素排出量の削減への関心が高まっており、SMRに関連する二酸化炭素排出量を削減するための炭素回収・貯留(CCS)技術への関心が高まっていることを忘れてはならないです。
予測期間中、CAGRが最も高くなると予想されるのは発電分野です。水素発電は、化石燃料による従来の発電に代わるクリーンで効率的な発電として人気を集めています。水素は、燃料電池やガスタービンに使用することで、二酸化炭素を排出せずに発電できるため、クリーンエネルギーへの転換において極めて重要な要素です。水素をエネルギー・ミックスに組み入れ、送電網の安定化とエネルギー貯蔵の機会を検討する政府や電力会社は、水素発電プロジェクトへの投資を増やしています。再生可能で低炭素なエネルギー源を求める世界の動きが強まる中、水素を利用した発電は今後も成長を続け、レジリエントで持続可能なエネルギーの未来を支えていくと予想されます。
アジア太平洋地域は、ブラウン水素市場において最大のシェアを占めています。この地域、特に中国、オーストラリア、日本などの国々は、炭素回収・貯留(CCS)とブラウン水素製造技術に重点的に投資してきました。石炭埋蔵量が多く、エネルギー転換戦略の一環として水素に力を入れている中国は、特に重要なプレーヤーでした。さらに、エネルギー源を多様化し経済を支えるため、日本とオーストラリアもブラウン水素プロジェクトに多額の資金を投資しています。
予測期間中、ブラウン水素市場のCAGRが最も高いのは欧州地域です。欧州は野心的な水素戦略を策定し、クリーンエネルギー転換の重要な要素として水素を積極的に推進してきました。ブラウン水素プロジェクトは、ドイツ、オランダ、英国といった国々で資金提供されており、炭素回収・貯留(CCS)技術との組み合わせも頻繁に行われています。さらに、ブラウン水素が重要な役割を果たす可能性のある鉄鋼や化学などの重工業の脱炭化水素化の必要性が、こうした取り組みの動機となっています。欧州では、カーボンニュートラル達成への強いコミットメントと水素インフラ整備により、ブラウン水素の高い成長が見込まれています。
According to Stratistics MRC, the Global Brown Hydrogen Market is accounted for $36.93 billion in 2023 and is expected to reach $58.15 billion by 2030 growing at a CAGR of 6.7% during the forecast period. Brown hydrogen is created using the coal gasification process. Coal is changed from a solid to a gas during coal gasification. When coal is gasified, its chemical components are separated out, producing methane gas. Following isolation, the gas can be conventionally cleaned to recover hydrogen and a stream of highly concentrated carbon dioxide before being transported for disposal.
According to IEA, refining and chemical manufacturing based on hydrogen derived from fossil fuels are already concentrated in coastal industrial zones worldwide, such as the North Sea in Europe, the Gulf Coast in North America, and south-eastern China. Overall expenses would be reduced if these plants were encouraged to switch to cleaner hydrogen generation.
A significant factor driving the brown hydrogen market is the rising demand for hydrogen on a global scale as an energy carrier and an essential element in industrial processes in the petrochemicals, refining, and transportation sectors. Moreover, this increase in demand is a result of industries turning to hydrogen to improve process efficiency, cut emissions, and meet strict quality standards. At the same time, it is accelerating the shift to hydrogen-powered transportation options, highlighting hydrogen's critical role in the changing energy landscape.
Cleaner hydrogen production processes, like those that produce blue and green hydrogen, compete with brown hydrogen. While green hydrogen is produced through electrolysis powered by renewable energy with no carbon emissions, blue hydrogen is produced from fossil fuels with CCS and has a lower carbon footprint than brown hydrogen. Additionally, the sustainability of the brown hydrogen market is threatened by the emergence and expansion of these cleaner substitutes.
The development of CCS technologies for the production of brown hydrogen offers hope for more extensive carbon capture and storage applications across industries. Innovations that lower costs, boost efficiency, and encourage global emissions reduction can result from investments in CCS. Furthermore, the creation and uptake of advanced CCS solutions can be sped up through research partnerships, industry alliances, and financial incentives from the government.
The brown hydrogen production industry's environmental impact continues to pose a serious threat as countries step up their efforts to combat climate change. Even with the use of CCS technology, the carbon dioxide (CO2) emissions caused by brown hydrogen may not be in line with long-term emission reduction goals. Moreover, brown hydrogen's continued development may be hampered by regulatory restrictions and shifting public opinion about the environmental effects of the fuel.
The COVID-19 pandemic had a wide range of effects on the market for brown hydrogen. Construction projects and supply chains were initially disrupted, which resulted in delays and cost overruns. However, as governments all over the world place a higher priority on economic recovery, a growing understanding of brown hydrogen's potential to promote job creation and support struggling industries has emerged. This resulted in increased financial support and legislative backing for brown hydrogen initiatives, particularly those connected to carbon capture and storage (CCS) technologies. The transition to cleaner energy sources was also accelerated by the pandemic, which led some stakeholders to re-evaluate the function of brown hydrogen in light of more ambitious emission reduction goals and the growing competition from green and blue hydrogen.
The largest market share for hydrogen production is anticipated to belong to the steam methane reforming (SMR) segment. A tried-and-true and frequently applied technique for producing hydrogen is steam methane reforming. It entails the interaction of natural gas (methane) and extremely hot steam, which results in the production of hydrogen gas and carbon dioxide as byproducts. Moreover, SMR is preferred because it is effective and costs less than some alternative methods. But it's important to remember that even though SMR is a popular technique, there is a growing focus on lowering carbon emissions, which has raised interest in carbon capture and storage (CCS) technologies to reduce the CO2 emissions connected with SMR.
Throughout the forecast period, the power generation segment is anticipated to have the highest CAGR. Hydrogen power generation is gaining popularity as a clean, efficient alternative to conventional electricity generation from fossil fuels. Hydrogen is a crucial component in the switch to clean energy because it can be used in fuel cells and gas turbines to generate electricity with no carbon emissions. Incorporating hydrogen into their energy mix and looking into opportunities for grid stabilization and energy storage, governments and utilities are investing more and more in projects that produce hydrogen power. Power generation using hydrogen is anticipated to continue growing, supporting a resilient and sustainable energy future as the global push for renewable and low-carbon energy sources increases.
The Asia-Pacific region had the largest market share for brown hydrogen. This region, especially nations like China, Australia, and Japan, has been heavily investing in carbon capture and storage (CCS) and brown hydrogen production technologies. Due to its large coal reserves and dedication to hydrogen as part of its energy transition strategy, China, in particular, was a significant player. Additionally, in order to diversify their energy sources and support their economies, Japan and Australia were also investing a sizable amount of money in brown hydrogen projects.
During the forecast period, the brown hydrogen market is expected to grow at the highest CAGR in the European region. Europe had outlined ambitious hydrogen strategies and had been actively pursuing hydrogen as a key component of its clean energy transition. Brown hydrogen projects were being funded in nations like Germany, the Netherlands, and the United Kingdom, frequently in conjunction with carbon capture and storage (CCS) technologies. Moreover, the need to de-carbonize heavy industry, including steel and chemicals, where brown hydrogen could play a key role, motivated these initiatives. High growth for brown hydrogen was anticipated in Europe due to the region's strong commitment to achieving carbon neutrality and the development of hydrogen infrastructure.
Some of the key players in Brown Hydrogen Market include: Shell Japan Limited , China Petrochemical Corporation., PetroChina Company Limited , Saudi Arabian Oil Co., Air Liquide S.A., J-Power Systems, Electric Power Development Co. Limited , Iwatani Corporation, Bloom Energy Corporation, Air Products Inc., Kawasaki Heavy Industries, Limited, Sinopec Limited and Sasol Limited.
In September 2023, ADNOC Gas plc has announced an agreement valued between US$450-550mn to supply LNG to PetroChina International Company Limited, a subsidiary of PetroChina Company Limited. This agreement follows several significant international LNG sales agreements, including those with Japan Petroleum Exploration Co., Ltd. (JAPEX), TotalEnergies Gas and Power, and India Oil Corporation (IOCL).
In June 2023, Japan Airlines (JAL) has signed a Memorandum of Understanding (MoU) with Shell Aviation, which will see JAL aircraft refuelled at Los Angeles International Airport (LAX) with sustainable aviation fuel (SAF) from 2025.The agreement supports JAL's ESG target of replacing 1% of its whole jet fuel amount with SAF in the 2025 fiscal year, set in its green transformation policy.
In June 2023, Air Liquide has signed a long-term Power Purchase Agreement (PPA) with the China Three Gorges Renewables and China Three Gorges Corporation Jiangsu Branch, subsidiaries of China Three Gorges, one of China's largest producers and retailers of renewable electricity, to purchase a total of 200 MW of renewable power per year in China. The renewable electricity will come from solar and wind farms located in the province of Jiangsu, which is the first province in China for Air Liquide in terms of electricity consumption.