デフォルト表紙
市場調査レポート
商品コード
1663857

合成データ生成の市場規模、シェア、成長分析:データタイプ別、モデリングタイプ別、提供別、用途別、最終用途別、地域別 - 産業予測 2025~2032年

Synthetic Data Generation Market Size, Share, and Growth Analysis, By Data Type (Tabular Data, Text Data), By Modeling Type (Direct Modeling, Agent-Based Modeling), By Offering, By Application, By End Use, By Region - Industry Forecast 2025-2032


出版日
発行
SkyQuest
ページ情報
英文 198 Pages
納期
3~5営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
合成データ生成の市場規模、シェア、成長分析:データタイプ別、モデリングタイプ別、提供別、用途別、最終用途別、地域別 - 産業予測 2025~2032年
出版日: 2025年02月24日
発行: SkyQuest
ページ情報: 英文 198 Pages
納期: 3~5営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

合成データ生成市場規模は2023年に3億6,176万米ドルとなり、予測期間(2025~2032年)のCAGRは37.4%で、2024年の4億9,706万米ドルから2032年には63億1,395万米ドルに成長する見通しです。

世界の合成データ生成市場は、自律走行車、ヘルスケア、金融を中心とした多様な産業アプリケーションによって大きな成長を遂げています。セキュリティとコンプライアンスに対する懸念の高まりが、組織に合成データの活用を促し、機密情報を損なうことなく必要不可欠なデータセットの作成を可能にしています。高度なAI技術により、実世界の行動を正確に模倣した複雑な合成データセットの生成が可能になります。高品質な準備データを重視することで、合成データの有用性が高まり、ロバストなAIモデルの開発が強化されます。組織がAI主導の合成データの利点を認識するようになるにつれ、クラウドプラットフォームとの統合は柔軟性とシームレスなワークフローの組み込みを提供します。この動向は、業界全体のクラウド・ソリューションへのシフトと一致し、さまざまな分野での合成データ利用におけるコラボレーションと相互運用性を促進します。

目次

イントロダクション

  • 調査の目的
  • 調査範囲
  • 定義

調査手法

  • 情報調達
  • 二次と一次データの方法
  • 市場規模予測
  • 市場の前提条件と制限

エグゼクティブサマリー

  • 世界市場の見通し
  • 供給と需要の動向分析
  • セグメント別機会分析

市場力学と見通し

  • 市場概要
  • 市場規模
  • 市場力学
    • 促進要因と機会
    • 抑制要因と課題
  • ポーターの分析

主な市場の考察

  • 重要成功要因
  • 競合の程度
  • 主な投資機会
  • 市場エコシステム
  • 市場の魅力指数(2024年)
  • PESTEL分析
  • マクロ経済指標
  • バリューチェーン分析
  • 価格分析
  • ケーススタディ
  • 特許分析
  • 技術分析

合成データ生成市場規模:データタイプ別

  • 市場概要
  • 表形式データ
  • テキストデータ
  • 画像と動画データ
  • その他

合成データ生成市場規模:モデリングタイプ別

  • 市場概要
  • ダイレクトモデリング
  • エージェントベースモデリング

合成データ生成市場規模:提供別

  • 市場概要
  • ソフトウェア
  • サービス

合成データ生成市場規模:用途別

  • 市場概要
  • AIトレーニング
  • 予測分析
  • データプライバシー
  • 不正行為検出
  • 自動運転車
  • ヘルスケア

合成データ生成市場規模:最終用途別

  • 市場概要
  • BFSI(銀行、金融サービス、保険)
  • ヘルスケア
  • 自動車
  • 小売り
  • ITおよび通信
  • 政府

合成データ生成市場規模

  • 北米
    • 米国
    • カナダ
  • 欧州
    • ドイツ
    • スペイン
    • フランス
    • 英国
    • イタリア
    • その他欧州地域
  • アジア太平洋地域
    • 中国
    • インド
    • 日本
    • 韓国
    • その他アジア太平洋地域
  • ラテンアメリカ
    • ブラジル
    • その他ラテンアメリカ地域
  • 中東・アフリカ
    • GCC諸国
    • 南アフリカ
    • その他中東・アフリカ

競合情報

  • 上位5社の比較
  • 主要企業の市場ポジショニング(2024年)
  • 主な市場企業が採用した戦略
  • 最近の市場動向
  • 企業の市場シェア分析(2024年)
  • 主要企業の企業プロファイル
    • 企業の詳細
    • 製品ポートフォリオ分析
    • 企業のセグメント別シェア分析
    • 収益の前年比比較(2022~2024年)

主要企業プロファイル

  • NVIDIA Corporation(USA)
  • IBM Corporation(USA)
  • Microsoft Corporation(USA)
  • Google LLC(USA)
  • Amazon Web Services(AWS)(USA)
  • Synthetic Data, Inc.(USA)
  • Hazy(UK)
  • Synthesis AI(USA)
  • TruEra(USA)
  • Gretel.ai(USA)
  • Zeta Alpha(Netherlands)
  • DataGen(Israel)
  • Mostly AI(Austria)
  • Tonic.ai(USA)
  • Aurora(USA)
  • Mindtech Global(UK)
  • Parallel Domain(USA)
  • AI.Reverie(USA)
  • Anyverse(Spain)
  • Cognata(Israel)

結論と提言

目次
Product Code: SQMIG45B2195

Synthetic Data Generation Market size was valued at USD 361.76 million in 2023 and is poised to grow from USD 497.06 million in 2024 to USD 6313.95 million by 2032, growing at a CAGR of 37.4% during the forecast period (2025-2032).

The global synthetic data generation market is experiencing significant growth, spurred by diverse industry applications, particularly in autonomous vehicles, healthcare, and finance. Rising concerns over security and compliance are driving organizations to leverage synthetic data, enabling the creation of essential datasets without compromising sensitive information. Advanced AI techniques allow for the generation of complex synthetic datasets that accurately mimic real-world behaviors. The emphasis on high-quality preparatory data enhances synthetic data's utility and fortifies the development of robust AI models. As organizations increasingly recognize the benefits of AI-driven synthetic data, the integration with cloud platforms offers flexibility and seamless workflow incorporation. This trend aligns with a broader industry shift toward cloud solutions, facilitating collaboration and interoperability in synthetic data usage across various sectors.

Top-down and bottom-up approaches were used to estimate and validate the size of the Synthetic Data Generation market and to estimate the size of various other dependent submarkets. The research methodology used to estimate the market size includes the following details: The key players in the market were identified through secondary research, and their market shares in the respective regions were determined through primary and secondary research. This entire procedure includes the study of the annual and financial reports of the top market players and extensive interviews for key insights from industry leaders such as CEOs, VPs, directors, and marketing executives. All percentage shares split, and breakdowns were determined using secondary sources and verified through Primary sources. All possible parameters that affect the markets covered in this research study have been accounted for, viewed in extensive detail, verified through primary research, and analyzed to get the final quantitative and qualitative data.

Synthetic Data Generation Market Segments Analysis

Global Synthetic Data Generation Market is segmented by Data Type, Modeling Type, Offering, Application, End Use and region. Based on Data Type, the market is segmented into Tabular Data, Text Data, Image & Video Data and Others. Based on Modeling Type, the market is segmented into Direct Modeling and Agent-Based Modeling. Based on Offering, the market is segmented into Software and Services. Based on Application, the market is segmented into AI Training, Predictive Analytics, Data Privacy, Fraud Detection, Autonomous Vehicles and Healthcare. Based on End Use, the market is segmented into BFSI (Banking, Financial Services, and Insurance), Healthcare, Automotive, Retail, IT & Telecom and Government. Based on region, the market is segmented into North America, Europe, Asia Pacific, Latin America and Middle East & Africa.

Driver of the Synthetic Data Generation Market

A key catalyst for the growth of the global synthetic data generation market is the escalating concern surrounding data privacy and protection. As regulations like the General Data Protection Regulation (GDPR) become more prevalent, organizations are increasingly turning to synthetic data to train their AI models. This approach allows them to safeguard individual and sensitive information while adhering to regulatory requirements. Moreover, it addresses privacy challenges by generating high-quality data that mimics real datasets, thus enabling companies to innovate and develop their technologies without the risk of violating data protection laws. Consequently, the demand for synthetic data solutions continues to rise.

Restraints in the Synthetic Data Generation Market

A key challenge in the Synthetic Data Generation market is maintaining the accuracy and quality of the produced data. Although it's feasible to generate synthetic datasets that mimic the original, discrepancies in data representation or inherent biases can adversely impact model training. Consequently, these synthetic datasets must undergo rigorous validation and testing processes to ensure their reliability, adding complexity to the generation process. This heightened scrutiny may lead to trust issues within the market, potentially acting as a barrier to broader adoption. Therefore, the need for comprehensive validation mechanisms is critical for fostering confidence in synthetic data technologies.

Market Trends of the Synthetic Data Generation Market

The Synthetic Data Generation market is witnessing a significant trend towards the increased adoption of AI-driven solutions, as organizations across various sectors, including healthcare, finance, and automotive, seek cost-effective and scalable ways to generate diverse datasets. By leveraging machine learning algorithms, companies can enhance the accuracy of their predictive models while minimizing the burden of traditional data generation methods. Additionally, synthetic data alleviates privacy concerns associated with utilizing real-world data, making it an attractive option for firms looking to innovate responsibly. This trend signifies a transformative shift in data management strategies, positioning synthetic data as an essential component of modern data-driven enterprises.

Table of Contents

Introduction

  • Objectives of the Study
  • Scope of the Report
  • Definitions

Research Methodology

  • Information Procurement
  • Secondary & Primary Data Methods
  • Market Size Estimation
  • Market Assumptions & Limitations

Executive Summary

  • Global Market Outlook
  • Supply & Demand Trend Analysis
  • Segmental Opportunity Analysis

Market Dynamics & Outlook

  • Market Overview
  • Market Size
  • Market Dynamics
    • Drivers & Opportunities
    • Restraints & Challenges
  • Porters Analysis
    • Competitive rivalry
    • Threat of substitute
    • Bargaining power of buyers
    • Threat of new entrants
    • Bargaining power of suppliers

Key Market Insights

  • Key Success Factors
  • Degree of Competition
  • Top Investment Pockets
  • Market Ecosystem
  • Market Attractiveness Index, 2024
  • PESTEL Analysis
  • Macro-Economic Indicators
  • Value Chain Analysis
  • Pricing Analysis
  • Case Studies
  • Patent Analysis
  • Technology Analysis

Global Synthetic Data Generation Market Size by Data Type & CAGR (2025-2032)

  • Market Overview
  • Tabular Data
  • Text Data
  • Image & Video Data
  • Others

Global Synthetic Data Generation Market Size by Modeling Type & CAGR (2025-2032)

  • Market Overview
  • Direct Modeling
  • Agent-Based Modeling

Global Synthetic Data Generation Market Size by Offering & CAGR (2025-2032)

  • Market Overview
  • Software
  • Services

Global Synthetic Data Generation Market Size by Application & CAGR (2025-2032)

  • Market Overview
  • AI Training
  • Predictive Analytics
  • Data Privacy
  • Fraud Detection
  • Autonomous Vehicles
  • Healthcare

Global Synthetic Data Generation Market Size by End Use & CAGR (2025-2032)

  • Market Overview
  • BFSI (Banking, Financial Services, and Insurance)
  • Healthcare
  • Automotive
  • Retail
  • IT & Telecom
  • Government

Global Synthetic Data Generation Market Size & CAGR (2025-2032)

  • North America (Data Type, Modeling Type, Offering, Application, End Use)
    • US
    • Canada
  • Europe (Data Type, Modeling Type, Offering, Application, End Use)
    • Germany
    • Spain
    • France
    • UK
    • Italy
    • Rest of Europe
  • Asia Pacific (Data Type, Modeling Type, Offering, Application, End Use)
    • China
    • India
    • Japan
    • South Korea
    • Rest of Asia-Pacific
  • Latin America (Data Type, Modeling Type, Offering, Application, End Use)
    • Brazil
    • Rest of Latin America
  • Middle East & Africa (Data Type, Modeling Type, Offering, Application, End Use)
    • GCC Countries
    • South Africa
    • Rest of Middle East & Africa

Competitive Intelligence

  • Top 5 Player Comparison
  • Market Positioning of Key Players, 2024
  • Strategies Adopted by Key Market Players
  • Recent Developments in the Market
  • Company Market Share Analysis, 2024
  • Company Profiles of All Key Players
    • Company Details
    • Product Portfolio Analysis
    • Company's Segmental Share Analysis
    • Revenue Y-O-Y Comparison (2022-2024)

Key Company Profiles

  • NVIDIA Corporation (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • IBM Corporation (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Microsoft Corporation (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Google LLC (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Amazon Web Services (AWS) (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Synthetic Data, Inc. (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Hazy (UK)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Synthesis AI (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • TruEra (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Gretel.ai (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Zeta Alpha (Netherlands)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • DataGen (Israel)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Mostly AI (Austria)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Tonic.ai (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Aurora (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Mindtech Global (UK)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Parallel Domain (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • AI.Reverie (USA)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Anyverse (Spain)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments
  • Cognata (Israel)
    • Company Overview
    • Business Segment Overview
    • Financial Updates
    • Key Developments

Conclusion & Recommendations