![]() |
市場調査レポート
商品コード
1694625
自動車のコックピットにおけるAIの応用(2025年)Research Report on the Application of AI in Automotive Cockpits, 2025 |
||||||
|
自動車のコックピットにおけるAIの応用(2025年) |
出版日: 2025年03月02日
発行: ResearchInChina
ページ情報: 英文 310 Pages
納期: 即日から翌営業日
|
音声認識やフェイスモニタリング機能が初めて自動車に搭載された2000年代初頭から、2023年の「大規模モデル統合」動向の台頭、さらには自動車メーカーが推論モデル「DeepSeek-R1」を広く採用する2025年まで、コックピットにおけるAIの応用は3つの重要なフェーズを経て進化してきました。
前大規模モデル時代:コックピットは機械式から電子式へ、そしてインテリジェントシステムへと移行し、顔認識や音声認識などのシナリオのために小規模AIモデルが統合されました。
ポスト大規模モデルの時代:AIの応用範囲は拡大し、量も増え、効果も大幅に改善されましたが、精度と適応性は依然として一貫性がありませんでした。
マルチモーダル大規模言語モデル(LLM)と推論モデル:コックピットは基本的な知能から「ディープインタラクションと自己進化」の段階へと進みました。
コックピットAI開発動向1:ディープインタラクション
ディープインタラクションは、「リンケージインタラクション」、「マルチモーダルインタラクション」、「パーソナライズドインタラクション」、「アクティブインタラクション」、「精密インタラクション」に反映されます。
「精密インタラクション」を例にとると、推論大規模モデルは音声インタラクションの精度、特に連続認識の精度を向上させるだけでなく、コンテキストの動的理解を通じて、センサー融合処理データと組み合わせ、マルチタスク学習アーキテクチャに依存して、ナビゲーション、音楽、その他の複合要求を同期処理し、応答速度は従来のソリューションに比べて40%向上します。2025年、推論モデル(DeepSeek-R1など)が大規模に搭載された後、エンドサイドの推論機能により、自動音声認識プロセスが高速化され、精度がさらに向上することが予測されます。
「マルチモーダルインタラクション」を例にとると、大規模モデルのマルチソースデータ処理能力を利用して、クロスモーダルコラボレーティブインテリジェントインタラクションシステムを構築することができます。3Dカメラとマイクアレイを深く統合することで、システムはジェスチャーコマンド、音声セマンティクス、環境特性を同時に分析し、マルチモーダルな意図理解を短時間で完了することができ、これは従来のソリューションよりも60%高速です。クロスモーダルアライメントモデルに基づき、ジェスチャー制御と音声コマンドを協調させることで、複雑な運転シナリオにおける誤操作率をさらに低減することができます。2025年~2026年に、マルチモーダルデータフュージョン処理機能が新世代のコックピットの標準になると予測されています。代表的なシナリオは以下の通りです。
ジェスチャー操作:ドライバーは、手を振る、指を指すなどの簡単なジェスチャーで、運転中の注意を散漫にすることなく、窓、サンルーフ、ボリューム、ナビゲーションなどの機能を便利に操作できます。
顔認識とパーソナライゼーション:顔認識技術によりドライバーを自動的に識別し、個人の選好に応じてシート、バックミラー、エアコン、音楽などの設定を自動的に調整し、「車に乗って楽しむ」というパーソナライズされた体験を実現します。
アイトラッキングとアテンションモニタリング:視線追跡技術により、ドライバーの視線方向と注意状態をモニターし、疲労運転や不注意などの危険行動をタイムリーに検出し、早期警告プロンプトを提供することで、運転の安全性を向上させます。
感情認識と感情的相互作用:AIシステムは、ドライバーの表情や声のトーンなどを通じて、不安、疲労、興奮などのドライバーの感情状態を判断し、それに応じて車内の環境照明、音楽、空調などを調整して、より親密な感情的サービスを提供することもできます。
コックピットAI開発動向2:自己進化
2025年、コックピットエージェントは、ユーザーがコックピットと対話するための媒体となり、その顕著な特徴が、「長期記憶」、「フィードバック学習」、「能動的認知」に反映される「自己進化」です。
当レポートでは、中国の自動車産業について調査分析し、国内外のメーカーによる、自動車のコックピットにおけるAIの応用に関する情報を提供しています。
Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution"
From the early 2000s, when voice recognition and facial monitoring functions were first integrated into vehicles, to the rise of the "large model integration" trend in 2023, and further to 2025 when automakers widely adopt the reasoning model DeepSeek-R1, the application of AI in cockpits has evolved through three key phases:
Pre-large model era: Cockpits transitioned from mechanical to electronic and then to intelligent systems, integrating small AI models for scenarios like facial and voice recognition.
Post-large model era: AI applications expanded in scope and quantity, with significant improvements in effectiveness, though accuracy and adaptability remained inconsistent.
Multimodal large language models (LLMs) and reasoning models: Cockpits advanced from basic intelligence to a stage of "deep interaction and self-evolution."
Cockpit AI Development Trend 1: Deep Interaction
Deep interaction is reflected in "linkage interaction", "multi-modal interaction", "personalized interaction", "active interaction" and "precise interaction".
Taking "precise interaction" as an example, the inference large model not only improves the accuracy of voice interaction, especially the accuracy of continuous recognition, but also through dynamic understanding of context, combined with sensor fusion processing data, relying on multi-task learning architecture to synchronously process navigation, music and other composite requests, and the response speed is increased by 40% compared with traditional solutions. It is expected that in 2025, after the large-scale loading of inference models (such as DeepSeek-R1), end-side inference capabilities can make the automatic speech recognition process faster and further improve the accuracy.
Taking "multi-modal interaction" as an example, using the multi-source data processing capabilities of large models, a cross-modal collaborative intelligent interaction system can be built. Through the deep integration of 3D cameras and microphone arrays, the system can simultaneously analyze gesture commands, voice semantics and environmental characteristics, and complete multi-modal intent understanding in a short time, which is 60% faster than traditional solutions. Based on the cross-modal alignment model, gesture control and voice commands can be coordinated to further reduce the misoperation rate in complex driving scenarios. It is expected that in 2025-2026, multi-modal data fusion processing capabilities will become standard in the new generation of cockpits. Typical scenarios include:
Gesture control: Drivers can conveniently control functions such as windows, sunroof, volume, navigation, etc. through simple gestures, such as waving, pointing, etc., without distracting their driving attention.
Facial recognition and personalization: The system can automatically identify the driver through facial recognition technology, and automatically adjust the settings of seats, rearview mirrors, air conditioners, music, etc. according to their personal preferences, to achieve a personalized experience of "get in the car and enjoy".
Eye tracking and attention monitoring: Through eye tracking technology, the system can monitor the driver's gaze direction and attention state, detect risk behaviors such as fatigue driving and inattention in a timely manner, and provide early warning prompts to improve driving safety.
Emotional recognition and emotional interaction: AI systems can even identify the driver's emotional state, such as judging whether the driver is anxious, tired or excited through facial expressions, voice tone, etc., and adjust the ambient lighting, music, air conditioning, etc. in the car accordingly to provide more intimate emotional services.
Cockpit AI Development Trend 2: self-evolution
In 2025, the cockpit agent will become the medium for users to interact with the cockpit, and one of its salient features is "self-evolution", reflected in "long-term memory", "feedback learning", and "active cognition".
"Long-term memory", "feedback learning", and "active cognition" are gradual processes. AI constructs user portraits through voice communication, facial recognition, behavior analysis and other data to achieve "thousands of people and thousands of faces" services. This function uses reinforcement learning and reasoning related technology implementation, and the system relies on data closed-loop continuous learning of user behavior. Under the reinforcement learning mechanism, each user feedback becomes the key basis for optimizing the recommendation results.
With the continuous accumulation of data, the large model can more quickly discover the law of user interest point transfer, and can anticipate user requests in advance. It is expected that in the next two years, with the help of more advanced reinforcement learning algorithms and efficient reasoning architecture, the system will increase the mining speed of users' new areas of interest by 50%, and the accuracy of recommended results will be further improved. Such as:
BMW's cockpit system remembers driver seat preferences, frequented locations, and automatically dims ambient lights to relieve anxiety on rainy days;
Mercedes-Benz's voice assistant can recommend restaurants based on the user's schedule and reserve charging stations in advance.
BMW Intelligent Voice Assistant 2.0 is based on Amazon's Large Language Model (LLM) and combines the roles of personal assistant, vehicle expert and accompanying occupant to generate customized suggestions by analyzing the driver's daily route, music preferences and even seat adjustment habits. For example, if the system detects that the driver often stops at a coffee shop every Monday morning, it will proactively prompt in a similar situation: "Are you going to a nearby Starbucks?" In addition, the system can also adjust recommendations based on weather or traffic conditions, such as recommending indoor parking on rainy days; when the user says "Hello BMW, take me home", "Hello BMW, help me find a restaurant", the personal assistant can quickly plan a route and recommend a restaurant.
Cockpit AI Development Trend 3: Symbiosis of Large and Small Models
The large model has been on the bus for nearly two years, but the phenomenon of the large model "completely replacing" the small model has not occurred. With its lightweight and low power consumption characteristics, the small model performs well in end-side task scenarios with high real-time requirements and relatively small data processing. For example, in intelligent voice interaction, the small model can quickly parse commands such as "turn on the air conditioner" or "next song" to provide instant responses. Similarly, in gesture recognition, the small model realizes low-latency operation through local computing, avoiding the time lag of cloud transmission. This efficiency makes the small model the key to improving the user interaction experience.
In practical applications, the two complement each other; the large model is responsible for complex calculations in the background (such as path planning), while the small model focuses on the fast response of the front desk (such as voice control), jointly building an efficient and intelligent cockpit ecosystem. Especially inspired by DeepSeek's distillation technology, it is expected that after 2025, the end-side small models obtained by distilling high-performance large models will be mass-produced on a certain scale."
Taking NIO as an example, it runs its AI application in a two-wheel drive manner for large and small models as a whole, with a focus on large models, but it does not ignore the application of small models.
Relevant Definitions