市場調査レポート
商品コード
1420123

自動車の機能安全と意図した機能の安全性(SOTIF)(2024年)

Automotive Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2024

出版日: | 発行: ResearchInChina | ページ情報: 英文 365 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=156.76円
自動車の機能安全と意図した機能の安全性(SOTIF)(2024年)
出版日: 2023年12月27日
発行: ResearchInChina
ページ情報: 英文 365 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

インテリジェントコネクテッドビークルが流行するにつれて、自動車のEEAの変化は加速し、電子的/電気的故障によるリスクはますます高くなっています。その結果、機能安全とSOTIF(意図した機能の安全性)が、特に自律走行車の分野で注目を集めています。

2023年、中国における自動車機能安全とSOTIFの発展は、規格と政策によって加速されました。最新の機能安全規格GB_T 34590 2022が2023年7月1日に正式に発効したほか、中国の関連部門も機能安全とSOTIFに関する複数の政策を発表しました。

例えば2023年7月、Ministry of Industry and Information Technology of China(MIIT)は「Guidelines for the Construction of National Internet of Vehicles Industry Standard System」(2023年)を発表し、機能安全とSOTIFの標準構築を明確に計画し案内しました。2023年8月、MIITとその他の3部門は共同で「New Industry Standardization Pilot Project Implementation Plan」(2023年~2035年)を発布し、その中の「Connection Technologies in the New Energy Vehicle Industry」は、インテリジェントコネクテッドビークルの用語と定義、機能安全とSOTIFのプロセス、監査と評価、自動車サイバーセキュリティ、データセキュリティ、ソフトウェアアップグレード、その他の製品と技術利用の標準を規定しています。

2023年11月17日、MIIT、Ministry of Public Security、Ministry of Housing and Urban-Rural Development、Ministry of Transportは共同で「Notice on the Pilot Program for Access and On-road Passage of Intelligent Connected Vehicles」を公布し、L3/L4自律走行へのアクセス仕様を正式に提案し、高度インテリジェントドライブの事故における責任を初めて明確にし、同時に第一陣の企業選定を開始しました。

この告示は、自動車企業と車両のアクセス、特に安全保証能力に関する要求を規定しています。企業には、機能安全、SOTIF、サイバーセキュリティ、データセキュリティ、ソフトウェアアップグレード管理、リスク管理、緊急管理などを保証する能力が求められます。

インテリジェントコネクテッドビークル製品のプロセス保証の要件には、車両(特に自律走行システム)の機能安全プロセス保証、自律走行システムのSOTIFプロセス保証、車両のサイバーセキュリティとデータセキュリティのプロセス保証が含まれます。

そのため、中国では機能安全とSOTIFがL3自律走行車のアクセス要件となっており、機能安全とSOTIF標準プロセスをL3以上の自律走行システムに導入することがOEMとサプライヤーのレイアウトの焦点となっています。

OEMとサプライヤーは、自動車機能安全プロセスと製品認証を大幅に増加させ、SOTIFプロセス認証のレイアウトに着手しました。

ISO 26262は世界の必須規格ではありませんが、自動車産業で広く受け入れられており、自動車サプライチェーン関係者にとっての閾値となっています。OEMやTier 1サプライヤーは、ISO 26262認証を取得していない製品やベンダーを拒否しなければならなくなります。インテリジェントカーの発展に伴い、自律走行企業もOEMも機能安全とSOTIFをますます重要視しています。

近年、国際的な主流OEMと中国の自動車メーカーの両方が、機能安全とSOTIFにより注目し、より多額の投資を行っています。特に、Great Wall Motor、SAIC、Geely、GAC、Changan、BYDといった中国の独立系自動車メーカーは、いずれも重要なシステムの機能安全の開発に対する要求を高めています。機能安全チームを設置するほか、機能安全トレーニングに積極的に参加し、第三者機関と協力し、自社開発製品と車両の機能安全の製品とプロセスを厳格に管理し、サプライヤーの機能安全開発能力と製品の機能安全能力をサプライチェーンへの参入基準としています。

当レポートでは、中国の自動車産業について調査分析し、機能安全およびSOTIFの現状と動向、標準と政策、認証、主要企業のソリューションなどの情報を提供しています。

目次

第1章 自動車の機能安全の現状と動向

  • 自動車の機能安全の現状
    • 自動車の機能安全の定義
    • 自動車の機能安全に対する需要
    • 自動車の機能安全の主な特長
    • 自動車の機能安全開発の歴史
    • 自動車の機能安全の目的
    • 自動車の機能安全の基本設計原理
    • 一般的な自動車の機能安全ワークフロー
    • SEOoCソフトウェア開発プロセスの例
    • 自動車の機能安全のコスト構造
    • 自動車の機能安全ソフトウェアツールの分類
    • 自動車の機能安全の設計、検証手法
    • 自動車の機能安全の基礎的な解析手法
    • 自動車の機能安全に関する基本的な定義
  • 自動車の機能安全の開発と進化
    • 自動車の機能安全の量産の難しさ
    • 自動車の機能安全の進化(1)
    • 自動車の機能安全の進化(2)
    • 運用失敗のケース
    • 自動車安全の総合開発動向(1)
    • 自動車安全の総合開発動向(2)
    • 自動車安全の総合開発動向(3)
    • 自動車安全の統合開発動向(4)
    • 自動車安全の統合開発動向(5)

第2章 SOTIFの現状と動向

  • SOTIFの概要
    • SOTIFの定義
    • SOTIFを提案する理由
    • SOTIFのシナリオ分析
    • SOTIFの目的
    • SOTIF手法(1)
    • SOTIFシステムの解析方法
    • L3 SOTIFの典型的な設計ケース
  • SOTIFの開発
    • 自動車の機能安全 vs. SOTIF
    • 自動車の機能安全とSOTIFの統合(1)
    • 自動車の機能安全とSOTIFの統合(2)
    • 自動車の機能安全とSOTIFプロセスの統合
    • 自動車の機能安全とSOTIFの統合開発
    • 自動車の機能安全とSOTIFの検証管理の統合
    • 機械学習、自動車の機能安全、SOTIF
    • SOTIFにおける技術的ブレークスルー
  • 代表的なADASのSOTIFに関する調査
  • 自動運転システムのSOTIF

第3章 自動車の機能安全とSOTIFに関する規格と政策

  • 主要国家自動車機能安全規格と政策
  • 機能安全規格
  • ISO 26262のイントロダクション
  • ISO 21448のイントロダクション

第4章 自動車の機能安全の開発とSOTIF認証

  • 自動車の機能安全認証のイントロダクション
  • SOTIF認証
  • ASPICEのイントロダクション
  • 主な自動車機能安全認証機関

第5章 自動車の機能安全とSOTIFにおけるOEMのレイアウト

  • 自動車の機能安全におけるOEMのレイアウト
  • 機能安全における主要OEMのレイアウト

第6章 主要自動車部品の機能安全要件とソリューション

  • 主要自動車部品の機能安全要件とソリューション
  • 自動車の機能安全における主要部品サプライヤーと関連製品のレイアウト
  • 主要自動車部品の機能安全の例

第7章 主要企業の自動車機能安全ソリューション

  • Synopsys
  • Jingwei Hirain
  • Vector
  • Bosch
  • Continental
  • NXP
  • Renesas
  • Texas Instruments
  • Infineon
  • eSOL
  • CICV
  • SaimoAI
目次
Product Code: CYH115

As intelligent connected vehicles boom, the change in automotive EEA has been accelerated, and the risks caused by electronic and electrical failures have become ever higher. As a result, functional safety and SOTIF (safety of the intended functionality) have caught more attention, especially in the field of autonomous vehicles.

In 2023, standards and policies have speeded up the development of automotive functional safety and SOTIF in China. In addition to the latest functional safety standard GB_T 34590 2022 officially taking into effect on July 1, 2023, related Chinese departments also issued multiple policies concerning functional safety and SOTIF.

For example, in July 2023, the Ministry of Industry and Information Technology of China (MIIT) issued the "Guidelines for the Construction of National Internet of Vehicles Industry Standard System (Intelligent Connected Vehicles) (2023)", which clearly plans and guides the construction of standards for functional safety and SOTIF. In August 2023, the MIIT and other three departments jointly issued the Notice on the New Industry Standardization Pilot Project Implementation Plan (2023-2035), of which the Intelligent Connection Technologies in the New Energy Vehicle Industry stipulates the terms and definition of intelligent connected vehicles, functional safety and SOTIF processes, audits and evaluations, automotive cyber security, data security, software upgrades and other product and technology application standards.

On November 17, 2023, the MIIT, the Ministry of Public Security, the Ministry of Housing and Urban-Rural Development and the Ministry of Transport jointly issued the Notice on the Pilot Program for Access and On-road Passage of Intelligent Connected Vehicles, which officially suggests access specifications for L3/L4 autonomous driving and clarifies the responsibilities in high-level intelligent driving accidents for the first time, and simultaneously started the selection of the first batch of enterprises.

The Notice specifies the requirements for the access of automotive enterprises and vehicles, especially for their safety guarantee capabilities. Enterprises are required to have the ability to guarantee functional safety, SOTIF, cybersecurity, data security, software upgrade management, and risk and emergency management.

The requirements for process guarantee of intelligent connected vehicle products include the functional safety process guarantee of vehicles (especially autonomous driving systems), the SOTIF process guarantee of autonomous driving systems, and the process guarantee of vehicle cybersecurity and data security.

Therefore functional safety and SOTIF have become the access requirements for L3 autonomous vehicles in China, and the introduction of functional safety and SOTIF standard processes into L3 and higher-level autonomous systems has become the layout focus of OEMs and suppliers.

OEMs and suppliers greatly increase automotive functional safety processes and product certifications, and embark on the layout of SOTIF process certification.

Although ISO 26262 is not a global mandatory standard, it has been widely accepted in the automotive industry and has become the threshold for automotive supply chain players. OEMs and Tier 1 suppliers will have to reject products or vendors that are not ISO 26262-certified. As intelligent vehicles develop, both autonomous driving companies and OEMs attach ever more importance to functional safety and SOTIF.

In recent years, both international mainstream OEMs and Chinese automakers have paid more attention to and invested more heavily in functional safety and SOTIF. In particular, Chinese independent automakers such as Great Wall Motor, SAIC, Geely, GAC, Changan and BYD have all raised the requirements for functional safety development of important systems. Besides setting up functional safety teams, they actively participate in functional safety training, cooperate with third-party institutions, strictly control self-developed products and vehicle functional safety products and processes, and take suppliers' functional safety development capabilities and product functional safety capabilities as the criteria to enter their supply chains.

OEMs or suppliers put ever more emphasis on functional safety certification. According to public statistics, from January to November 2023, Chinese companies passed 114 functional safety certifications, including 41 product certifications and 73 process certifications, far more than in 2022 (about 40).

In addition to functional safety certification, the official implementation of SOTIF standards has spurred many OEMs and suppliers such as Great Wall Motor, FAW Hongqi, Changan Automobile, GAC, Horizon Robotics, Jingwei Hirain, Huawei, Desay SV and SenseAuto to deploy SOTIF processes. They have passed SOTIF process certifications in advance, laying a safety foundation for the further layout of autonomous driving systems.

Functional safety, SOTIF, cybersecurity, etc. tends to be developed in from an independent way to an integrated way.

In addition to functional safety, the development of vehicles will have to face other safety challenges in the future, such as SOTIF and cybersecurity. Functional safety and SOTIF focus on system design and verification to ensure that the system can work safely in all situations. Cybersecurity centers on external threats and attacks. In practical application, functional safety, SOTIF and cybersecurity often cross over. In the future, intelligent connected vehicles should solve all the risks related to vehicle safety before they can be delivered in large quantities. The integrated development of the three safety systems has become a major development trend of vehicle safety in the future. Multiple companies like KOSTAL, Neta, Baolong Technology and Pan-Asia Technical Automotive Center are exploring integrated development of safety.

As vehicles carry more complex embedded electronic systems, the risks incurred by software system damage and random hardware damage are increasing. Integrating the ISO 26262 functional safety standard into the Automotive Software Process Improvement and Capability dEtermination (ASPICE) to guide automotive software development will greatly improve automotive system software development quality, development efficiency and product safety.

Table of Contents

1 Status Quo and Trends of Automotive Functional Safety

  • 1.1 Status Quo of Automotive Functional Safety
    • 1.1.1 Definition of Automotive Functional Safety
    • 1.1.2 Demand for Automotive Functional Safety
    • 1.1.3 Main Features of Automotive Functional Safety
    • 1.1.4 Development History of Automotive Functional Safety
    • 1.1.5 Purposes of Automotive Functional Safety
    • 1.1.6 Basic Design Principle of Automotive Functional Safety
    • 1.1.7 General Automotive Functional Safety Workflow
    • 1.1.8 Example of SEooC Software Development Process
    • 1.1.9 Cost Structure of Automotive Functional Safety
    • 1.1.10 Classification of Automotive Functional Safety Software Tools
    • 1.1.11 Design and Verification Method of Automotive Functional Safety
    • 1.1.12 Basic Analysis Method of Automotive Functional Safety
    • 1.1.13 Basic Definition Related to Automotive Functional Safety
  • 1.2 Development and Evolution of Automotive Functional Safety
    • 1.2.1 Difficulties in Mass Production of Automotive Functional Safety
    • 1.2.2 Evolution of Automotive Functional Safety (1)
    • 1.2.3 Evolution of Automotive Functional Safety (2)
    • 1.2.4 Fail Operational Case:
    • 1.2.5 Integrated Development Trends of Automotive Safety (1)
    • 1.2.6 Integrated Development Trends of Automotive Safety (2)
    • 1.2.7 Integrated Development Trends of Automotive Safety (3)
    • 1.2.8 Integrated Development Trends of Automotive Safety (4)
    • 1.2.9 Integrated Development Trends of Automotive Safety (5)

2 Status Quo and Trends of SOTIF

  • 2.1 Overview of SOTIF
    • 2.1.1 Definition of SOTIF
    • 2.1.2 Why to Propose SOTIF
    • 2.1.3 Scenario Analysis of SOTIF
    • 2.1.4 Purposes of SOTIF
    • 2.1.5 SOTIF Methodology (1)
    • 2.1.6 Analysis Method of SOTIF System
    • 2.1.7 Typical Design Cases of L3 SOTIF
  • 2.2 Development of SOTIF
    • 2.2.1 Automotive Functional Safety VS SOTIF
    • 2.2.2 Integration of Automotive Functional Safety and SOTIF (1)
    • 2.2.3 Integration of Automotive Functional Safety and SOTIF (2)
    • 2.2.4 Integration of Automotive Functional Safety and SOTIF Processes
    • 2.2.5 Integrated Development of Automotive Functional Safety and SOTIF
    • 2.2.6 Verification Management Integration of Automotive Functional Safety and SOTIF
    • 2.2.7 Machine Learning, Automotive Functional Safety and SOTIF
    • 2.2.8 Technical Breakthrough in SOTIF
  • 2.3 Research on SOTIF of Typical ADAS
    • 2.3.1 SOTIF of Lane Keeping System
    • 2.3.2 SOTIF of Automatic Brake Assist System
    • 2.3.3 SOTIF of Adaptive Cruise Control (ACC) System
    • 2.3.4 SOTIF of Traffic Jam Assist (TJA) System
    • 2.3.5 SOTIF of Automated Parking System
    • 2.3.6 SOTIF Design of Automotive AEB Control Strategy
  • 2.4 SOTIF of Autonomous Driving System
    • 2.4.1 Composition of Autonomous Driving System
    • 2.4.2 Perception-related SOTIF
    • 2.4.3 Prediction-related SOTIF
    • 2.4.4 Decision-making-related SOTIF
    • 2.4.5 Control-related SOTIF Technology
    • 2.4.6 HMI-related SOTIF
    • 2.4.7 SOTIF of V2X

3 Standard and Policies for Automotive Functional Safety and SOTIF

  • 3.1 Major National Automotive Functional Safety Standards and Policies
    • 3.1.1 Global Automotive Functional Safety Standards
    • 3.1.2 Development of Foreign Functional Safety and SOTIF Standards
    • 3.1.3 Development of ISO 26262
    • 3.1.4 Automotive Functional Safety in the EU
    • 3.1.5 Development of Automotive Functional Safety in the USA
    • 3.1.6 Development of Automotive Functional Safety Standards in China
    • 3.1.7 Automotive Functional Safety Standards Research Organization in China
    • 3.1.8 Specific Automotive Functional Safety Standards in China
    • 3.1.9 Automotive Functional Safety Standards in China
    • 3.1.10 Test & Evaluation Method of Automotive Functional Safety and SOTIF
    • 3.1.11 Medium and Long-term Automotive Functional Safety and SOTIF Standards Planning in China
    • 3.1.12 Automotive Functional Safety and SOTIF Policies in China
    • 3.1.13 Guidelines for the Construction of the National Internet of Vehicles Industry Standard System (Intelligent Connected Vehicles) (2023)
    • 3.1.14 Notice on the Pilot Program for Admittance and Road Access of Intelligent Connected Vehicles: Overall Requirements and Organized Implementation
    • 3.1.15 Notice on the Pilot Program for Admittance and Road Access of Intelligent Connected Vehicles: Safety Measures
    • 3.1.16 Notice on the Pilot Program for Admittance and Road Access of Intelligent Connected Vehicles: Description
    • 3.1.17 Guide on the Implementation of the Pilot Program for Admittance and Road Access of Intelligent Connected Vehicles (Trial): Functional Safety Requirements at Corporate Level
    • 3.1.18 Guide on the Implementation of the Pilot Program for Admittance and Road Access of Intelligent Connected Vehicles (Trial): Corporate Requirements for Functional Safety Guarantee
    • 3.1.19 Guide on the Implementation of the Pilot Program for Admittance and Road Access of Intelligent Connected Vehicles (Trial): Corporate Requirements for SOTIF Guarantee
    • 3.1.21 Guide on the Implementation of the Pilot Program for Admittance and Road Access of Intelligent Connected Vehicles (Trial): Requirements at Product Level
    • 3.1.22 Guide on the Implementation of the Pilot Program for Admittance and Road Access of Intelligent Connected Vehicles (Trial): Requirements for Functional Safety of Vehicles and Autonomous Driving Systems
    • 3.1.23 Guide on the Implementation of the Pilot Program for Admittance and Road Access of Intelligent Connected Vehicles (Trial): Requirements for SOTIF of Vehicles and Autonomous Driving Systems
  • 3.2 Functional Safety Standards
    • 3.2.1 Automotive SOTIF Standards
    • 3.2.2 Requirements of Major National Autonomous Driving System Regulations and Standards on SOTIF
    • 3.2.3 Main SOTIF Standards in China
    • 3.2.4 Construction of SOTIF Standards in China
  • 3.6 Introduction to ISO 26262
    • 3.3.1 ISO 26262
    • 3.3.2 ISO 26262:2011 VS ISO 26262:2018
    • 3.3.3 Content of ISO 26262
    • 3.3.4 ISO 26262-2: Functional Safety Management (1)
    • 3.3.5 ISO 26262-2: Functional Safety Management (2)
    • 3.3.6 ISO 26262-3: Concept of Functional Safety
    • 3.3.7 ISO 26262-3: Hazard Analysis and Risk Assessment (HARA) (1)
    • 3.3.8 ISO 26262-3: Hazard Analysis and Risk Assessment (HARA) (2)
    • 3.3.9 ISO 26262-3: Functional Safety Goals and Levels of Safety Requirements
    • 3.3.10 ISO 26262-4: System-level Product Development
    • 3.3.11 ISO 26262-4: Concept of Technical Safety
    • 3.3.12 ISO 26262-4: System Project Integration and Testing
    • 3.3.13 ISO 26262-5: Hardware-level Product Development
    • 3.3.14 ISO 26262-5: Hardware design
    • 3.3.15 ISO 26262-5: Hardware Safety Analysis
    • 3.3.16 ISO 26262-5: Hardware Design Verification
    • 3.3.17 ISO 26262-5: Evaluation of Hardware Architecture Metrics
    • 3.3.18 ISO 26262-5: Violation Evaluation of Safety Goals due to Random Hardware Failure
    • 3.3.19 ISO 26262-5: Hardware Integration and Verification
    • 3.3.20 ISO 26262-6: Software Functional Safety
    • 3.3.21 ISO 26262-6: Overview of Software-level Product Development
    • 3.3.22 ISO 26262-6: Software Development Plan
    • 3.3.23 ISO 26262-6: Software Safety Requirements
    • 3.3.24 ISO 26262-6: Software Architecture Design
    • 3.3.25 ISO 26262-6: Software Architecture Design - Software Safety Mechanism
    • 3.3.26 ISO 26262-6: Software Architecture Design - Software Error Handling Mechanism
    • 3.3.27 ISO 26262-6: Software Architecture Design - Software Architecture Verification Method
    • 3.3.28 ISO 26262-6: Software Unit Design and Implementation
    • 3.3.29 ISO 26262-6: Software Unit Verification
    • 3.3.30 ISO 26262-6: Software Unit Test Case Export and Coverage Analysis
    • 3.3.31 ISO 26262-6: Software Integration and Verification
    • 3.3.32 ISO 26262-6: Software Integration Test Coverage
    • 3.3.33 ISO 26262-6: Embedded Software Test
  • 3.4 Introduction to ISO 21448
    • 3.4.1 SOTIF Standards
    • 3.4.2 Development of ISO 21448 for SOTIF
    • 3.4.3 Contents of ISO/CD 21448
    • 3.4.4 Development Process of SOTIF

4 Development of Automotive Functional Safety and SOTIF Certification

  • 4.1 Introduction to Automotive Functional Safety Certification
    • 4.1.1 Introduction to Automotive Functional Safety Certification
    • 4.1.2 Functional Safety Certification Types
    • 4.1.3 Main Process of Automotive Functional Safety Certification
    • 4.1.4 Basic Steps of Automotive Functional Safety Process Certification
    • 4.1.5 Basic Steps of Automotive Functional Safety Product Certification
    • 4.1.6 Cases of Automotive Functional Safety Product Certification Process
    • 4.1.7 Achievements of Automotive Functional Safety Certification
    • 4.1.8 Automotive Safety Integrity Level (ASIL)
    • 4.1.9 Automotive Software Tool Confidence Level (TCL)
    • 4.1.10 TCL Evaluation Process
    • 4.1.11 Main Functional Safety Certification Methods
    • 4.1.12 Major Third-party Automotive Functional Safety Certification Agencies
    • 4.1.13 Statistics on Automotive Functional Safety Certification of Enterprises in China
  • 4.2 SOTIF Certification
    • 4.2.1 Introduction to SOTIF Certification
    • 4.2.2 Process of SOTIF Certification
    • 4.2.3 SOTIF Guarantee Ssystem Assessment
    • 4.2.4 Main Deliverables of SOTIF Certification Management Process
    • 4.2.5 Third-party SOTIF Certification Agencies
    • 4.2.6 Enterprises with SOTIF Certification
  • 4.3 Introduction to ASPICE
    • 4.3.1 Introduction to ASPICE
    • 4.3.2 Content of ASPICE
    • 4.3.3 ASPICE Levels
    • 4.3.4 Development Process of ASPICE
    • 4.3.5 ASPICE Process Construction and Tool Vendors
    • 4.3.6 Relationship between ASPICE and ISO 26262
    • 4.3.7 Integration of ASPICE and Functional Safety
    • 4.3.8 Integration of ASPICE and Vehicle Development
    • 4.3.9 Introduction to ASPICE Certification
    • 4.3.10 ASPICE Certification Process
    • 4.3.11 ASPICE Certification Review
    • 4.3.12 ASPICE Certification Review: Preparation for Review
    • 4.3.13 ASPICE Certification Review: Review
  • 4.4 Major Automotive Functional Safety Certification Agencies
    • 4.4.1 SGS
      • 4.4.1.1 Functional Safety Services
      • 4.4.1.2 ISO 26262
      • 4.4.1.3 SOTIF Services
      • 4.4.1.4 Main ISO 26262 Customers: International
      • 4.4.1.5 Main ISO 26262 Customers: China
    • 4.4.2 TUV SUD
      • 4.4.2.1 Automotive Functional Safety Certification Services
      • 4.4.2.2 Functional Safety Training Services
    • 4.4.3 TUV Rheinland
      • 4.4.3.1 Automotive Services
      • 4.4.3.2 ISO 26262 Certification Services
      • 4.4.3.3 ASPICE certification
    • 4.4.4 DNV: Functional Safety Products
    • 4.4.5 UL Solutions
      • 4.4.5.1 UL Solutions: Functional Safety Certification Services
      • 4.4.5.2 UL Solutions: SOTIF Certification Services
    • 4.4.6 China Certification Centre for Automotive Products Co., Ltd. (CCAP)
      • 4.4.6.1 CCAP: Functional Safety Certification Services
      • 4.4.6.2 CCAP: ASPICE Technical Services
    • 4.4.7 China Quality Certification Center: Functional Safety Certification Services

5 Layout of OEMs in Automotive Functional Safety and SOTIF

  • 5.1 Layout of OEMs in Automotive Functional Safety
    • 5.1.1 Global Recall Cases due to Automotive Functional Safety Failure
    • 5.1.2 Industrial Division of Labor in Automotive Functional Safety
    • 5.1.3 Work of OEMs and Parts Companies in Functional Safety
    • 5.1.4 Implementation Steps of Functional Safety of OEM Vehicle Projects
    • 5.1.5 OEMs' Evaluation on Suppliers' Functional Safety Capabilities
    • 5.1.6 Challenges and Key Elements in the Implementation of Functional Safety and SOTIF for Automakers
    • 5.1.7 SOTIF Development and Testing Process
    • 5.1.8 OEMs Pay More and More Attention to Functional Safety and SOTIF Requirements
    • 5.1.9 Functional Safety Certification of Major Local OEMs
    • 5.1.10 SOTIF Certification of OEMs
  • 5.2 Layout of Major OEMs in Functional Safety
    • 5.2.1 BMW
      • 5.2.1.1 Safety Strategy
      • 5.2.1.2 Functional Safety of Autonomous Driving Platform Architecture (1)
      • 5.2.1.3 Functional Safety of Autonomous Driving Platform Architecture (2)
    • 5.2.2 Mercedes-Benz
      • 5.2.2.1 Automotive Functional Safety
      • 5.2.2.2 Functional Safety and SOTIF of L3 Drive Pilot
      • 5.2.2.3 Integrated Safety Concept
    • 5.2.3 Ford's Safety Strategy
    • 5.2.4 Volvo's World Tree Intelligent Safety System
    • 5.2.5 Changan Automobile
      • 5.2.5.1 Status quo of Functional Safety Layout
      • 5.2.5.2 Functional Safety Team
      • 5.2.5.3 Business Concept of Functional Safety
      • 5.2.5.4 Software Quality Management: System Construction
      • 5.2.5.5 Software Quality Management: Organizational Settings
      • 5.2.5.6 Functional Safety/SOTIF of Software Quality Management
    • 5.2.6 GAC
      • 5.2.6.1 Functional Safety of the Latest EEA
      • 5.2.6.2 Functional Safety of Intelligent Driving System
      • 5.2.6.3 Functional Safety Certification
    • 5.2.7 Great Wall Motor
      • 5.2.7.1 Functional Safety of GEEP 4.0
      • 5.2.7.2 Functional Safety Certification
    • 5.2.8 Geely
      • 5.2.8.1 Global Safety Layout
      • 5.2.8.3 Functional Safety Certification
      • 5.2.8.3 Functional Safety Design of GEEA 3.0
      • 5.2.8.4 Steer-by-Wire (SbW) Functional Safety Design Solution
    • 5.2.9 Automotive Functional Safety of ENOVATE: Functional Safety Project Implementation (Torque)
    • 5.2.10 Functional Safety Design of NIO SkyOS

6 Functional Safety Requirements and Solutions for Main Auto Parts

  • 6.1 Functional Safety Requirements and Solutions for Main Auto Parts
    • 6.1.1 Fields Involved in Automotive Functional Safety
    • 6.1.2 ASIL Requirements for Main Auto Parts
    • 6.1.3 ASIL Requirements for Common ECUs
    • 6.1.4 Functional Safety Requirements for ADAS
    • 6.1.5 Functional Safety Requirements for HPA
    • 6.1.6 Functional Safety Requirements for ICC System
    • 6.1.7 Functional Safety Requirements for the Underlying Software Layer of Automotive Domain Controllers
  • 6.2 Layout of Main Parts Suppliers and Related Products in Automotive Functional Safety
    • 6.2.1 Layout of Parts Suppliers in Automotive Functional Safety
    • 6.2.2 Functional Safety Certification of Major Operating System Enterprises
    • 6.2.3 Functional Safety Certification of Major Enterprises in Basic Software System
    • 6.2.4 Functional Safety Certification of Major Enterprises in Electric Drive and Power System
    • 6.2.5 Functional Safety Certification of Major Enterprises in BMS, Batteries and Other Fields
    • 6.2.6 Functional Safety Certification in Simulation and Testing Tools
    • 6.2.7 Functional Safety Certification in Main Intelligent Driving Products
    • 6.2.8 Functional Safety Certification in Chips, Domain Controllers and Computing Platforms (1)
    • 6.2.9 Functional Safety Certification in Chips, Domain Controllers and Computing Platforms (2)
    • 6.2.10 Functional Safety Certification in LiDAR, Gateways, Vehicle Lights, etc.
    • 6.2.11 Layout Cases of Suppliers in Functional Safety
    • 6.2.12 Functional Safety and SOTIF of Baidu Apollo
  • 6.3 Functional Safety Cases of Main Auto Parts
    • 6.3.1 Functional Safety Solutions for Chips and Computing Platforms
      • 6.3.1.1 Typical Allocation of Functional Safety in Automotive SoC
      • 6.3.1.2 Automotive SoC Functional Safety Solutions
      • 6.3.1.3 Automotive SoC/MCU Functional Safety Solutions
      • 6.3.1.4 Digital Chip Functional Safety
      • 6.3.1.5 Functional Safety of Automotive Intelligent computing Platforms
      • 6.3.1.6 Functional Safety Assessment of Basic Automotive Computing Platforms
      • 6.3.1.7 Functional Safety of DRAM
      • 6.3.1.8 Functional Safety Design for High-level Autonomous Driving Domain Controllers
    • 6.3.2 Functional Safety of Operating Systems
      • 6.3.2.1 High Safety Requirements of the Next-generation Intelligent Vehicle Operating System
      • 6.3.2.2 Landing of Functional Safety of Intelligent Vehicle Operating Systems
      • 6.3.2.3 Functional Safety of Linux (1)
      • 6.3.2.4 Functional Safety of Linux (2)
      • 6.3.2.5 Functional Safety of Blackberry QNX OS
      • 6.3.2.6 Functional Safety of Automotive Operating Systems
    • 6.3.3 Functional Safety of Automotive Software Systems
      • 6.3.3.1 Technical Difficulties in Functional Safety of Intelligent Vehicle Software
      • 6.3.3.2 Solutions to Technical Difficulties in Functional Safety of Intelligent Vehicle Software
      • 6.3.3.3 V-type Development of Functional Safety of Intelligent Vehicle Software
      • 6.3.3.4 Functional Safety Testing of Intelligent Vehicle Software
      • 6.3.3.5 Development Trends of Functional Safety of Intelligent Vehicle Software
      • 6.3.3.6 Functional Safety Solutions of Blackberry QNX Basic Platform Software
      • 6.3.3.7 Functional Safety of QNX Hypervisor Basic Software Platform
      • 6.3.3.8 Functional Safety of Blackberry QNX-based Cockpit-driving Integrated Controllers
      • 6.3.3.9 Functional Safety of AUTOSAR
      • 6.3.3.10 Autonomous Driving Software Middleware Functional Safety Solutions
    • 6.3.4 Functional Safety of Automotive Intelligent Driving Systems
      • 6.3.4.1 Safety Architecture of ADAS Controllers
      • 6.3.4.2 Safety Architecture of ADAS LDW
      • 6.3.4.3 End-to-end Functional Safety Examples of L2 Autonomous Driving Systems
      • 6.3.4.4 Functional Safety of Autonomous Driving Computing and Decision-making System Platforms
      • 6.3.4.5 Functional Safety of Parking Systems
      • 6.3.4.6 Safety Design Cases of Autonomous Driving Systems
    • 6.3.5 Functional Safety Development of Central Integrated Electronic and Electrical Architectures
      • 6.3.5.1 Functional Safety Development and Design Challenges for Central Integrated EEAs
      • 6.3.5.2 Functional Safety Development Process
      • 6.3.5.3 Functional Safety Development Requirements of Central Integrated EEAs
      • 6.3.5.4 Functional Safety Development Redundancy Design of Central Integrated EEAs
      • 6.3.5.5 Functional Safety Development Cases of Central Integrated EEAs: IM Motors
    • 6.3.6 Functional Safety of Other Automotive Systems
      • 6.3.6.1 Functional Safety Design Features of LiDAR
      • 6.3.6.2 Functional Safety Requirements for Automotive Display
      • 6.3.6.3 PACK Functional Safety Concept
      • 6.3.6.4 Automotive Network Functional Safety
      • 6.3.6.5 Functional Safety Solutions of Steer-by-Wire Systems
      • 6.3.6.6 SOTIF Solutions of Steer-by-Wire Systems

7 Automotive Functional Safety Solutions of Main Enterprises

  • 7.1 Synopsys
    • 7.1.1 Native Automotive Solutions
    • 7.1.2 TestMAX Testing Solutions
    • 7.1.3 Functional Safety Verification Solutions
    • 7.1.4 VC Functional Safety Management
    • 7.1.5 IP for ISO 26262
    • 7.1.6 Functional-safety-standard-compliant IP for ADAS SoC
    • 7.1.7 Functional-safety-standard-compliant IP for Connected Car and Infotainment System SoC
    • 7.1.8 Functional-safety-standard-compliant IP for Gateways
    • 7.1.9 DesignWare IP Subsystem
    • 7.1.10 DesignWare ARC Functional Safety Software
    • 7.1.11 IP for ISO 26262
    • 7.1.12 Dynamics
  • 7.2 Jingwei Hirain
    • 7.2.1 Profile
    • 7.2.2 Functional Safety Solutions for Intelligent Connected Vehicles (1)
    • 7.2.3 Functional Safety Solutions for Intelligent Connected Vehicles (2)
    • 7.2.4 Functional Safety Solutions for Intelligent Connected Vehicles (3)
    • 7.2.5 Intelligent Driving Functional Safety Development Platform
    • 7.2.6 Functional Safety Testing Solutions for Intelligent Connected Vehicles
    • 7.2.7 Intelligent Driving Functional Safety & SOTIF Development and Verification Platform
    • 7.2.8 SOTIF Solutions
  • 7.3 Vector
    • 7.3.1 Vector: Functional Safety Solutions
    • 7.3.2 PREEvision Design Tools Support Functional Safety Process
    • 7.3.3 MICROSAR Safe
  • 7.4 Bosch
    • 7.4.1 Functional Safety Services
    • 7.4.2 TARA
    • 7.4.3 System Redundancy Design Solution
    • 7.4.4 Functional Safety Design of Hybrid Vehicles
    • 7.4.5 Mainstream Smart Cockpit Functional Safety Solutions
  • 7.5 Continental
    • 7.5.1 Functional Safety Services
    • 7.5.2 Functional Safety Training Services
  • 7.6 NXP
    • 7.6.1 Organizational Structure ofo Automotive Functional Safety
    • 7.6.2 Functional Safety Solutions: SafeAssure (1)
    • 7.6.3 Functional Safety Solutions: SafeAssure (2)
    • 7.6.4 Functional Safety Solutions
    • 7.6.5 Confirmation Measures in ISO 26262
    • 7.6.6 The Development Process Conforms to ISO 26262
    • 7.6.7 Functional Safety Levels of Basic System Chips
    • 7.6.8 Functional Safety Architecture of the Next-generation Platform
    • 7.6.9 Functional Safety Architecture of the Next-generation Platform: Hardware Safety
    • 7.6.10 Functional Safety Architecture of the Next-generation Platform: Safety Software Development Kit (SDK) (1)
    • 7.6.11 Functional Safety Architecture of the Next-generation Platform: Safety Software Development Kit (SDK) (2)
    • 7.6.12 Functional Safety Architecture of the Next-generation Platform: Safety Software Combination
    • 7.6.13 ASIL-D-compliant ECU Architecture Design
    • 7.6.14 ASIL-D-compliant L3/L4 Autonomous Driving Architecture
    • 7.6.15 Autonomous Driving Functional Safety Solutions
  • 7.7 Renesas
    • 7.7.1 Automotive Electronic Functional Safety Technical Support Projects
    • 7.7.2 Quantitative Analysis Tools Simplify ISO 26262 Certification
    • 7.7.3 Automotive Electronic Functional Safety Technical Support Projects
    • 7.7.4 ASIL-D System Security Mechanism of V3U with Self-diagnosis Capability
  • 7.8 Texas Instruments
    • 7.8.1 Product Types for Functional Safety Design
    • 7.8.2 Functional Safety Services
    • 7.8.3 Standard Quality Management Development Process
  • 7.9 Infineon
    • 7.9.1 Classification of Automotive-grade Products (1)
    • 7.9.2 Classification of Automotive-grade Products (2)
    • 7.9.3 Functional Safety Solutions
    • 7.9.4 Overall Functional Safety Solutions
    • 7.9.5 Functional Safety Solutions
    • 7.9.6 Building Blocks with Integrated Functional Safety
    • 7.9.7 Power Distribution System Functional Safety Solutions
  • 7.10 eSOL
    • 7.10.1 Main Tools for Functional Safety
    • 7.10.2 Activities and Tools for Functional Safety Standards
    • 7.10.3 Consulting Services for Functional Safety Standards
    • 7.10.4 Documentation Package Products Related to Automotive Functional Safety
  • 7.11 CICV
    • 7.11.1 Profile
    • 7.11.2 Functional Safety Software Tools
    • 7.11.3 Quality Management Features and Tools of Functional Safety
    • 7.11.4 Review of Functional Safety Software Tools
    • 7.11.5 SOTIF Working Group
    • 7.11.6 SOTIF Development Process
  • 7.12 SaimoAI
    • 7.12.1 Profile
    • 7.12.2 SOTIF Analysis Tool: Safety Pro (1)
    • 7.12.3 SOTIF Analysis Tool: Safety Pro (2)
    • 7.12.4 External Cooperation