表紙:デジタルツイン市場:技術・ツイニングタイプ・サイバーツーフィジカルソリューション・使用事例・産業・用途(2024~2029年)
市場調査レポート
商品コード
1498820

デジタルツイン市場:技術・ツイニングタイプ・サイバーツーフィジカルソリューション・使用事例・産業・用途(2024~2029年)

Digital Twins Market by Technology, Twinning Type, Cyber-to-Physical Solutions, Use Cases and Applications in Industry Verticals 2024 - 2029

出版日: | 発行: Mind Commerce | ページ情報: 英文 157 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=147.72円
デジタルツイン市場:技術・ツイニングタイプ・サイバーツーフィジカルソリューション・使用事例・産業・用途(2024~2029年)
出版日: 2024年06月21日
発行: Mind Commerce
ページ情報: 英文 157 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

当レポートでは、世界のデジタルツイン市場を調査し、デジタルツインの技術、ソリューション、使用事例、R&D、初期導入における先進企業の取り組みの評価、用途の開発・運用を含む、デジタルツインの製品とサービスのエコシステムの評価、産業別の使用事例の考察をまとめています。また、デジタルツインをサポートし、デジタルツインの恩恵を受ける技術についても分析しています。さらに、製造シミュレーションや予測分析など、多くのセグメントとユースケースにおけるデジタルツインニングソリューションについて、2024年から2029年までの詳細な予測を、世界、地域、主要国の予測とともに掲載しています。

主なレポート結果

  • IT意思決定者の47%がデジタルツインを知らない
  • スマートシティにおけるデジタルツインソリューションは2029年には59億米ドルの規模に達する
  • IoTプラットフォームの95%以上に2029年には何らかのデジタルツイン機能が搭載される
  • デジタルツインはIoTアプリケーションイネーブルメントの標準機能/特徴になる
  • 主要なデジタルツインソリューションには、アセットツインニング、コンポーネントツインニング、システムツインニング、プロセスツインニング、ワークフローツインニングが含まれる
  • ベンダーの96.5%が産業向けデジタルツイン機能を備えたIIoT APIとプラットフォーム統合の必要性を認識している
  • 幅広い業種の経営幹部の47.2%がデジタルツインの利点を理解しており、そのうち63%は2029年までに自社の業務に取り入れることを計画している

産業別デジタルツイン技術:

デジタルツイン技術は、物理的な資産やシステム、プロセスの仮想レプリカを作成できるため、さまざまな業界で採用が進んでいます。以下に、デジタルツインを活用している主な産業別事例を紹介します。

製造

  • 予知保全:故障を予測し、メンテナンスのスケジュールを立てるための機器のモニタリング
  • プロセスの最適化:製造プロセスの合理化と効率化
  • 製品ライフサイクル管理:設計から製造終了までの製品の追跡

医療

  • 患者モニタリング:患者のデジタルレプリカを作成して個別化治療を実現
  • 医療機器管理:医療機器のシミュレーションと性能の最適化
  • 病院管理:病院運営と患者フローの強化

自動車・輸送

  • 車両設計・試験:新しい車両設計のシミュレーションと性能試験
  • フリート管理:車両フリートのパフォーマンスのモニタリングと最適化
  • スマートインフラ:より良い交通管理のためのスマートシティインフラと車両の統合

エネルギー・ユーティリティ

  • 電力網管理:配電ネットワークのモニタリングと最適化
  • 資産管理:風力タービンやソーラーパネルなどのエネルギー資産の追跡と管理
  • 予知保全:重要インフラの故障防止

航空宇宙・防衛

  • 航空機の設計とメンテナンス:航空機の性能をシミュレーションし、メンテナンスの必要性を予測
  • ミッションプランニング:防衛作戦とミッション計画の最適化
  • 訓練シミュレーション:隊員に現実的な訓練環境を提供

不動産・建設

  • ビルディングインフォメーションモデリング:建物の詳細なデジタル表示の作成
  • 建設プロジェクト管理:建設プロセスのモニタリングと最適化
  • 施設管理:建物の管理と運用の強化

小売・消費財

  • サプライチェーンの最適化:サプライチェーンの効率性と対応力の強化
  • カスタマーエクスペリエンス:消費者行動のデジタルレプリカに基づく顧客体験のパーソナライズ
  • 在庫管理:在庫追跡と管理の改善

スマートシティ

  • 都市計画:都市インフラとサービスのシミュレーションと最適化
  • 公共の安全:緊急対応と治安対策の強化
  • 持続可能性:環境への影響とエネルギー使用量のモニタリングと管理

通信

  • ネットワークの最適化:パフォーマンス向上のための通信ネットワークの監視と最適化
  • サービス管理:電気通信サービスとカスタマーエクスペリエンスの管理強化
  • インフラ管理:通信インフラの追跡と保守

目次

第1章 エグゼクティブサマリー

第2章 イントロダクション

  • 概要
  • 関連技術とデジタルツインへの影響
    • 産業用インターネットとインダストリー4.0
    • ペアリング技術
    • サイバーフィジカルシステム
    • AR・VR・MR
    • AIと機械学習
    • 付加製造・3Dプリンティング
  • 潜在的用途と結果の分析
    • MRO (保守・修理・オーバーホール)
    • 消費者資産のデジタルアバター
    • パフォーマンス/サービスモニタリング
    • 検査・修理
    • 予知保全
    • 製品設計・開発
    • 複合材組立・製造
    • 潜在的な事業成果
  • デジタルツインサービスのエコシステム
    • IIoT
    • 消費者向けIoT
    • 産業の発展
    • Digital Twinning as a Service

第3章 デジタルツイン企業の評価

  • ABB
  • Allerin Tech Pvt. Ltd.
  • Altair Engineering, Inc.
  • Amazon Web Services
  • ANSYS
  • Aucotec AG
  • Autodesk Inc.
  • Bentley Systems, Incorporated
  • CADFEM GmbH
  • Cisco Systems
  • Cityzenith
  • Cosmo Tech
  • Dassault Systems
  • Digital Twin Consortium
  • Digital Twin Technologies
  • DNV GL
  • DXC Technology
  • Eclipse Foundation
  • Emerson
  • Emesent
  • Faststream Technologies
  • FEINGUSS BLANK GmbH
  • Flowserve
  • Forward Networks
  • General Electric
  • Google
  • Hitachi Ltd.
  • Honeywell
  • HP
  • IBM
  • Industrial Internet Consortium
  • Intellias
  • Invicara
  • KBMax
  • Lanner Electronics
  • Microsoft
  • National Instruments
  • NavVis
  • Oracle
  • PETRA Data Science
  • Physical Web
  • Pratiti Technologies
  • Prodea System Inc.
  • PTC
  • QiO Technologies
  • Robert Bosch
  • SAP
  • Schneider
  • SenSat
  • Siemens
  • Sight Machine Inc.
  • Simplifa GmbH
  • Softweb Solutions Inc.
  • Sogeti Group
  • SWIM.AI
  • Synavision
  • Sysmex Corporation
  • TIBCO Software
  • Toshiba Corporation
  • UrsaLeo
  • Virtalis Limited
  • Visualiz
  • Wipro Limited
  • XenonStack
  • Zest Labs

第4章 デジタルツイン市場の分析・予測

  • 世界のデジタルツイン市場の推移・予測
  • デジタルツイン市場:ツイニングタイプ別
  • デジタルツインの用途
  • デジタルツイン市場:産業別
    • 製造:タイプ別
    • スマートシティ:タイプ別
    • 自動車:タイプ別
    • 医療:タイプ別
    • 輸送:タイプ別
  • デジタルツイン市場:地域別
    • 北米
    • 南米
    • 欧州
    • アジア太平洋
    • 中東・アフリカ

第5章 総論・提言

図表

Figures

  • Figure 1: Digital Twinning Model
  • Figure 2: Building Blocks of Cognitive Digital Twinning
  • Figure 3: Digital Thread Model in Digital Manufacturing Transformation Processes
  • Figure 4: Example of Types of Digital Twinning
  • Figure 5: Industrial Internet Building Block and Digital Twinning
  • Figure 6: Additive Manufacturing Path and Goals
  • Figure 7: Digital Thread for Additive Manufacturing in AM Process
  • Figure 8: Data Fusion for MRO Operation
  • Figure 9: Composite Manufacturing Model
  • Figure 10: Digital Twinning Application and Outcomes
  • Figure 11: Global Digital Twins 2024 - 2029
  • Figure 12: Digital Twins Types 2024 - 2029
  • Figure 13: Digital Twins Applications 2024 - 2029
  • Figure 14: Digital Twins by Industry 2024 - 2029
  • Figure 15: Digital Twins in Manufacturing by Type 2024 - 2029
  • Figure 16: Digital Twins in Manufacturing by Application 2024 - 2029
  • Figure 17: Digital Twins in Smart City by Type 2024 - 2029
  • Figure 18: Digital Twins in Smart City by Application 2024 - 2029
  • Figure 19: Digital Twins in Automotive by Type 2024 - 2029
  • Figure 20: Digital Twins in Automotive by Application 2024 - 2029
  • Figure 21: Digital Twins in Healthcare by Type 2024 - 2029
  • Figure 22: Digital Twins in Healthcare by Application 2024 - 2029
  • Figure 23: Digital Twins in Transport by Type 2024 - 2029
  • Figure 24: Digital Twins in Transport by Application 2024 - 2029
  • Figure 25: Digital Twins by Region 2024 - 2029
  • Figure 26: North America Digital Twins by Country 2024 - 2029
  • Figure 27: North America Digital Twins by Industry 2024 - 2029
  • Figure 28: United States Digital Twins 2024 - 2029
  • Figure 29: Canada Digital Twins 2024 - 2029
  • Figure 30: Mexico Digital Twins 2024 - 2029
  • Figure 31: South America Digital Twins by Country 2024 - 2029
  • Figure 32: South America Digital Twins by Industry 2024 - 2029
  • Figure 33: Argentina Digital Twins 2024 - 2029
  • Figure 34: Brazil Digital Twins 2024 - 2029
  • Figure 35: Chile Digital Twins 2024 - 2029
  • Figure 36: Europe Digital Twins by Country 2024 - 2029
  • Figure 37: Europe Digital Twins by Industry 2024 - 2029
  • Figure 28: U.K. Digital Twins 2024 - 2029
  • Figure 39: Germany Digital Twins 2024 - 2029
  • Figure 40: France Digital Twins 2024 - 2029
  • Figure 41: Spain Digital Twins 2024 - 2029
  • Figure 42: Italy Digital Twins 2024 - 2029
  • Figure 43: Poland Digital Twins 2024 - 2029
  • Figure 44: Russia Digital Twins 2024 - 2029
  • Figure 45: APAC Digital Twins by Country 2024 - 2029
  • Figure 46: APAC Digital Twins by Industry 2024 - 2029
  • Figure 47: China Digital Twins 2024 - 2029
  • Figure 48: Japan Digital Twins 2024 - 2029
  • Figure 49: South Korea Digital Twins 2024 - 2029
  • Figure 50: Australia Digital Twins 2024 - 2029
  • Figure 51: India Digital Twins 2024 - 2029
  • Figure 52: MEA Digital Twins by Country 2024 - 2029
  • Figure 53: MEA Digital Twins by Industry 2024 - 2029
  • Figure 54: Qatar Digital Twins 2024 - 2029
  • Figure 55: Kuwait Digital Twins 2024 - 2029
  • Figure 56: Saudi Arabia Digital Twins 2024 - 2029
  • Figure 57: South Africa Digital Twins 2024 - 2029

Tables

  • Table 1: Global Digital Twins 2024 - 2029
  • Table 2: Digital Twins Market by Type of Twinning 2024 - 2029
  • Table 3: Digital Twins Applications 2024 - 2029
  • Table 4: Digital Twins by Industry 2024 - 2029
  • Table 5: Digital Twins in Manufacturing by Type 2024 - 2029
  • Table 6: Digital Twins in Manufacturing by Application 2024 - 2029
  • Table 7: Digital Twins in Smart City by Type 2024 - 2029
  • Table 8: Digital Twins in Smart City by Application 2024 - 2029
  • Table 9: Digital Twins in Automotive by Type 2024 - 2029
  • Table 10: Digital Twins in Automotive by Application 2024 - 2029
  • Table 11: Digital Twins in Healthcare by Type 2024 - 2029
  • Table 12: Digital Twins in Healthcare by Application 2024 - 2029
  • Table 13: Digital Twins in Transport by Type 2024 - 2029
  • Table 14: Digital Twins in Transport by Application 2024 - 2029
  • Table 15: Digital Twins by Region 2024 - 2029
  • Table 16: North America Digital Twins by Country 2024 - 2029
  • Table 17: North America Digital Twins by Industry 2024 - 2029
  • Table 18: South America Digital Twins by Country 2024 - 2029
  • Table 19: South America Digital Twins by Industry 2024 - 2029
  • Table 20: Europe Digital Twins by Country 2024 - 2029
  • Table 21: Europe Digital Twins by Industry 2024 - 2029
  • Table 22: APAC Digital Twins by Country 2024 - 2029
  • Table 23: APAC Digital Twins by Industry 2024 - 2029
  • Table 24: MEA Digital Twins by Country 2024 - 2029
  • Table 25: MEA Digital Twins by Industry 2024 - 2029
目次

Overview:

This report evaluates digital twinning technology, solutions, use cases, and leading company efforts in terms of R&D and early deployments. The report assesses the digital twin product and service ecosystem including application development and operations. This includes consideration of use cases by industry vertical.

The report also analyzes technologies supporting and benefiting from digital twinning. The report also provides detailed forecasts covering digital twinning solutions in many market segments and use cases including manufacturing simulations, predictive analytics, and more from 2024 to 2029 with global, regional, and major country forecasts.

Select Report Findings:

  • We found 47% of IT decision makers have never heard of digital twins
  • Digital twin supported solutions in smart cities will reach $5.9 billion by 2029
  • Over 95% of all IoT Platforms will contain some form of digital twinning capability by 2029
  • Digital twinning will become standard feature/functionality for IoT Application Enablement by 2028
  • Leading digital twin solutions involve Asset Twinning, Component Twinning, System Twinning, Process and Workflow Twinning
  • 96.5% of vendors recognize the need for IIoT APIs and platform integration with digital twinning functionality for industrial verticals
  • 47.2% of executives across a broad spectrum of industry verticals understand the benefits of digital twinning and 63% of them plan to incorporate within their operations by 2029

A digital twin is a virtual object representation of a real-world item in which the virtual is mapped to physical things in the real world such as equipment, robots, or virtually any connected business asset. This mapping in the digital world is facilitated by IoT platforms and software that is leveraged to create a digital representation of the physical asset.

The digital twin of a physical asset can provide data about its status such as its physical state and disposition. Conversely, a digital object may be used to manipulate and control a real-world asset by way of teleoperation. The publisher of this report sees this form of cyber-physical connectivity, signaling, and control as a key capability to realize the vision for Industry 4.0 to fully digitize production, servitization, and the `as a service` model for products.

There are many potential use cases for digital twinning including monitoring, simulation, and remote control of physical assets with virtual objects. Solutions focus on Part, Product, Process, and System twinning. Leading digital twin solutions involve Asset Twinning, Component Twinning, System Twinning, Process and Workflow Twinning. We see digital twinning playing a key role in many related IoT operations processes including IoT application development, testing, and control.

The implementation of digital twins will also enable distributed remote control of assets, which will place an increasingly heavy burden on IoT Identity management, authentication, and authorization. IoT authentication market solutions are also important in support of the "things" involved in IoT, which vary from devices used to detect, actuate, signal, engage, and more. This will become particularly important with respect to digital twin solution integration.

As reflected by the Digital Twin Consortium, we see some of the key industries to lead cyber-to-physical integration and solutions include aerospace, healthcare, manufacturing, military, natural resources, and public safety sectors. In terms of integrating digital twin technology and solutions with telecommunications and enterprise infrastructure, we see a need for careful planning from a systems integration, testing, and implementation perspective. This will be especially important in the case of mission-critical applications.

Digital Twins Technology in Industry Verticals

The technology is being increasingly adopted across a variety of industry verticals due to its ability to create virtual replicas of physical assets, systems, or processes. Here are some key industry verticals leveraging digital twins:

Manufacturing:

  • Predictive Maintenance: Monitoring equipment to predict failures and schedule maintenance
  • Process Optimization: Streamlining production processes and improving efficiency
  • Product Lifecycle Management: Tracking products from design to end-of-life

Healthcare:

  • Patient Monitoring: Creating digital replicas of patients for personalized treatment
  • Medical Device Management: Simulating and optimizing the performance of medical devices
  • Hospital Management: Enhancing hospital operations and patient flow

Automotive and Transportation:

  • Vehicle Design and Testing: Simulating new vehicle designs and testing performance
  • Fleet Management: Monitoring and optimizing the performance of vehicle fleets
  • Smart Infrastructure: Integrating vehicles with smart city infrastructure for better traffic management

Energy and Utilities:

  • Power Grid Management: Monitoring and optimizing power distribution networks
  • Asset Management: Tracking and managing energy assets such as wind turbines and solar panels
  • Predictive Maintenance: Preventing failures in critical infrastructure

Aerospace and Defense:

  • Aircraft Design and Maintenance: Simulating aircraft performance and predicting maintenance needs
  • Mission Planning: Optimizing defense operations and mission planning
  • Training Simulations: Providing realistic training environments for personnel

Real Estate and Construction:

  • Building Information Modeling: Creating detailed digital representations of buildings
  • Construction Project Management: Monitoring and optimizing construction processes
  • Facility Management: Enhancing the management and operation of buildings

Retail and Consumer Goods:

  • Supply Chain Optimization: Enhancing supply chain efficiency and responsiveness
  • Customer Experience: Personalizing customer experiences based on digital replicas of consumer behavior
  • Inventory Management: Improving inventory tracking and management

Smart Cities:

  • Urban Planning: Simulating and optimizing city infrastructure and services
  • Public Safety: Enhancing emergency response and public safety measures
  • Sustainability: Monitoring and managing environmental impact and energy usage

Telecommunications:

  • Network Optimization: Monitoring and optimizing telecom networks for better performance
  • Service Management: Enhancing the management of telecom services and customer experience
  • Infrastructure Management: Tracking and maintaining telecom infrastructure

These are just a few examples, and the applications of digital twins are continuously expanding as technology advances and more industries recognize the potential benefits.

Companies in Report:

  • ABB
  • Allerin Tech Pvt. Ltd.
  • Altair Engineering, Inc.
  • Amazon Web Services
  • ANSYS
  • Aucotec AG
  • Autodesk Inc.
  • Bentley Systems, Incorporated
  • CADFEM GmbH
  • Cisco Systems
  • Cityzenith
  • Cosmo Tech
  • Dassault Systems
  • Digital Twin Consortium
  • Digital Twin Technologies
  • DNV GL
  • DXC Technology
  • Eclipse Foundation
  • Emerson
  • Emesent
  • Faststream Technologies
  • FEINGUSS BLANK GmbH
  • Flowserve
  • Forward Networks
  • General Electric
  • Google
  • Hitachi Ltd.
  • Honeywell
  • HP
  • IBM
  • Industrial Internet Consortium
  • Intellias
  • Invicara
  • KBMax
  • Lanner Electronics
  • Microsoft
  • National Instruments
  • NavVis
  • Oracle
  • PETRA Data Science
  • Physical Web
  • Pratiti Technologies
  • Prodea System Inc.,
  • PTC
  • QiO Technologies
  • Robert Bosch
  • SAP
  • Schneider
  • SenSat
  • Siemens
  • Sight Machine Inc.
  • Simplifa GmbH
  • Softweb Solutions Inc.
  • Sogeti Group
  • SWIM.AI
  • Synavision
  • Sysmex Corporation
  • TIBCO Software
  • Toshiba Corporation
  • UrsaLeo
  • Virtalis Limited
  • Visualiz
  • Wipro Limited
  • XenonStack
  • Zest Labs

Table of Contents

1.0. Executive Summary

2.0. Introduction

  • 2.1. Overview
    • 2.1.1. Understanding Digital Twinning
    • 2.1.2. Cognitive Digital Twining
    • 2.1.3. Digital Thread
    • 2.1.4. Convergence of Sensors and Simulations
    • 2.1.5. IoT APIs
    • 2.1.6. Software Modules and Elements
    • 2.1.7. Types of Digital Twinning
    • 2.1.8. Digital Twinning Work Processes
    • 2.1.9. Role and Importance of Digital Twinning
  • 2.2. Related Technologies and Impact on Digital Twinning
    • 2.2.1. Industrial Internet and Industry 4.0
    • 2.2.2. Pairing Technology
    • 2.2.3. Cyber-to-Physical Systems
    • 2.2.4. AR, VR, and Mixed Reality
    • 2.2.5. Artificial Intelligence and Machine Learning
    • 2.2.6. Additive Manufacturing and 3D Printing
  • 2.3. Potential Application and Outcome Analysis
    • 2.3.1. Maintenance, Repair and Overhaul Operation
    • 2.3.2. Digital Avatar of Consumer Assets
    • 2.3.3. Performance/Service Monitoring
    • 2.3.4. Inspection and Repairs
    • 2.3.5. Predictive Maintenance
    • 2.3.6. Product Design & Development
    • 2.3.7. Composite Assembling/Manufacturing
    • 2.3.8. Potential Business Outcomes
  • 2.4. Digital Twinning Service Ecosystem
    • 2.4.1. Industrial IoT
    • 2.4.2. Consumer IoT
    • 2.4.3. Industry Development
    • 2.4.4. Digital Twinning as a Service

3.0. Digital Twins Company Assessment

  • 3.1. ABB
  • 3.2. Allerin Tech Pvt. Ltd.
  • 3.3. Altair Engineering, Inc.
  • 3.4. Amazon Web Services
  • 3.5. ANSYS
  • 3.6. Aucotec AG
  • 3.7. Autodesk Inc.
  • 3.8. Bentley Systems, Incorporated
  • 3.9. CADFEM GmbH
  • 3.10. Cisco Systems
  • 3.11. Cityzenith
  • 3.12. Cosmo Tech
  • 3.13. Dassault Systems
  • 3.14. Digital Twin Consortium
  • 3.15. Digital Twin Technologies
  • 3.16. DNV GL
  • 3.17. DXC Technology
  • 3.18. Eclipse Foundation
  • 3.19. Emerson
  • 3.20. Emesent
  • 3.21. Faststream Technologies
  • 3.22. FEINGUSS BLANK GmbH
  • 3.23. Flowserve
  • 3.24. Forward Networks
  • 3.25. General Electric
  • 3.26. Google
  • 3.27. Hitachi Ltd.
  • 3.28. Honeywell
  • 3.29. HP
  • 3.30. IBM
  • 3.31. Industrial Internet Consortium
  • 3.32. Intellias
  • 3.33. Invicara
  • 3.34. KBMax
  • 3.35. Lanner Electronics
  • 3.36. Microsoft
  • 3.37. National Instruments
  • 3.38. NavVis
  • 3.39. Oracle
  • 3.40. PETRA Data Science
  • 3.41. Physical Web
  • 3.42. Pratiti Technologies
  • 3.43. Prodea System Inc.
  • 3.44. PTC
  • 3.45. QiO Technologies
  • 3.46. Robert Bosch
  • 3.47. SAP
  • 3.48. Schneider
  • 3.49. SenSat
  • 3.50. Siemens
  • 3.51. Sight Machine Inc.
  • 3.52. Simplifa GmbH
  • 3.53. Softweb Solutions Inc.
  • 3.54. Sogeti Group
  • 3.55. SWIM.AI
  • 3.56. Synavision
  • 3.57. Sysmex Corporation
  • 3.58. TIBCO Software
  • 3.59. Toshiba Corporation
  • 3.60. UrsaLeo
  • 3.61. Virtalis Limited
  • 3.62. Visualiz
  • 3.63. Wipro Limited
  • 3.64. XenonStack
  • 3.65. Zest Labs

4.0. Digital Twins Market Analysis and Forecasts 2024 to 2029

  • 4.1. Global Digital Twins 2024-2029
  • 4.2. Digital Twins Market by Type of Twinning 2024-2029
  • 4.3. Digital Twins Applications 2024-2029
  • 4.4. Digital Twins by Industry 2024-2029
    • 4.4.1. Digital Twins in Manufacturing by Type 2024-2029
    • 4.4.2. Digital Twins in Smart City by Type 2024-2029
    • 4.4.3. Digital Twins in Automotive by Type 2024-2029
    • 4.4.4. Digital Twins in Healthcare by Type 2024-2029
    • 4.4.5. Digital Twins in Transport by Type 2024-2029
  • 4.5. Digital Twins by Region 2024-2029
    • 4.5.1. North America Digital Twins 2024-2029
    • 4.5.2. South America Digital Twins 2024-2029
    • 4.5.3. Europe Digital Twins 2024-2029
    • 4.5.4. APAC Digital Twins 2024-2029
    • 4.5.5. MEA Digital Twins 2024-2029

5.0. Conclusions and Recommendations