デフォルト表紙
市場調査レポート
商品コード
1690217

前臨床in-vivoイメージング市場レポート:2031年までの動向、予測、競合分析

Preclinical In-Vivo Imaging Market Report: Trends, Forecast and Competitive Analysis to 2031


出版日
発行
Lucintel
ページ情報
英文 150 Pages
納期
3営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円

ご注意: DRM (デジタル著作権管理システム) 付PDFになります。
制限内容は、上記ライセンスの[詳細]アイコンをクリックしてご確認ください。

前臨床in-vivoイメージング市場レポート:2031年までの動向、予測、競合分析
出版日: 2025年03月21日
発行: Lucintel
ページ情報: 英文 150 Pages
納期: 3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界の前臨床in-vivoイメージング市場の将来は、研究開発と創薬市場に機会があり、有望視されています。世界の前臨床in-vivoイメージング市場は、2025~2031年のCAGRが6.2%で、2031年までに推定15億米ドルに達すると予想されています。この市場の主要促進要因は、慢性疾患の有病率の増加、非侵襲的小動物イメージング技術に対する需要の高まり、前臨床研究活動に対する資金提供の増加です。

  • Lucintelの予測によると、モダリティカテゴリでは、マイクロ超音波システムセグメントが予測期間中に最も高い成長を遂げる見込みです。
  • 用途別では、研究や医薬品開発へのモダリティ採用の増加により、研究開発が引き続き最大セグメントとなります。
  • 地域別では、前臨床研究量の増加とカナダにおける研究・イノベーションに対する政府助成金の増加により、北米が最大地域であり続けると考えられます。

前臨床in-vivoイメージング市場の戦略的成長機会

前臨床in-vivoイメージングのセグメントは、様々なアプリケーションにおいて戦略的成長機会が存在することが特徴です。技術革新と研究活動の増加により、成長の可能性は持続しています。

  • イメージングモダリティの拡大:マルチモーダルシステムの獲得は、前臨床研究を前進させる道を提示します。この戦略により、複雑な細胞現象や疾患病態の詳細な調査が可能になり、治療法開発に新たな道が開ける。
  • イメージングプロセスにおけるイメージングシステム用AIの開発:高い成長機会を持つ画像分析のもう1つのセグメントは、画像データの利用を強化するAI画像分析です。さまざまな研究が、画像処理へのAI応用が調査方法の改善に役立ち、さらには疾病プロセスや治療に対する反応の理解を深めることを示しています。
  • 費用対効果の高い画像ソリューションの開発:費用対効果の高いイメージングソリューションの構築は、特に前臨床研究において、低コストで使いやすいイメージング技術への需要に応えるものです。より安価なシステムで、より利用しやすくなれば、研究能力が向上し、より多くの機関で研究を実施できるようになる可能性があります。
  • ポータブルイメージング技術の成長:ポータブルイメージング技術の発明は、その柔軟性と可用性によって研究の可能性を広げます。ポータブルシステムは、小規模ラボやフィールドワークなど様々なレベルでのin-vivoイメージングを可能にし、前臨床研究の幅を広げます。
  • リアルタイムイメージングの革新:リアルタイムイメージングは、ダイナミックな生物学的プロセスを継続的に評価することで新しい方法を開発し、さらなる開発を可能にします。これにより、細胞機能や疾患における研究開発を容易に追跡できるようになり、研究や治療方法が強化されます。

このような成長機会は、共通性の原則や、アクセスのしやすさ、技術の豊富さなどから、前臨床のin-vivoイメージングの開発に驚くべき可能性をもたらします。これらのセグメントに取り組むことは、研究の進歩や改善に役立ちます。

前臨床in-vivoイメージング市場促進要因・課題

前臨床in-vivoイメージング市場に影響を与える要因は、技術的要因、経済状況、規制など多岐にわたります。人が知っておくべき要素もあり、市場ナビゲーションの支援や成長の支援も含まれます。

前臨床in-vivoイメージング市場を牽引する要因は以下の通りです。

  • 技術の進歩:リアルタイムイメージングやマルチモーダルイメージング技術など、イメージングシステムに関する技術の成長が前臨床in-vivoイメージングの拡大を促進しています。これらの変化により、イメージングツールの能力、精度、可能性が向上し、より詳細な研究が可能になります。
  • 高解像度イメージングに対する需要の増加:複雑な生物学的プロセスの活動や病原体に起因する相互作用を探索するために使用される高解像度イメージングの成長は、依然として主要な要因であることに留意することが重要です。そのため、単純なイメージング技術による前臨床検査ではなく、より深い洞察をもたらす先進的イメージング技術による前臨床検査が行われるようになっています。
  • 費用対効果の高いソリューションの開発:手頃な価格のイメージングソリューションの開発は、こうした技術の普及を拡大し、市場の成長を促す要因となっています。安価なイメージング装置が利用できるようになったことで、リソースに制約のある環境も含め、あらゆる場面で研究を取り入れ、推進することが容易になりました。
  • 規制とコンプライアンス要件:規制への懸念と安全ガイドラインは、市場の成長にとって極めて重要です。必要な規制基準を満たしたイメージング技術のみが市場に流通し、安全性と効率を高めることができます。

前臨床in-vivoイメージング市場課題は?

  • 競争市場力学:前臨床in-vivoイメージング市場は、その性質上、非常に競争が激しくなっています。さらに、企業は関連性を維持し、研究需要を満たすために、市場で製品を革新し、再配置する必要があります。
  • 先端技術の高コスト:これらの先端イメージング技術のほとんどは、コストが高くつく傾向にあり、特に小規模な研究機関や資金が限られている地域では、その普及の妨げとなっています。このようなコストは、新しいイメージングシステムの導入や利用に影響を与える可能性があります。
  • 技術的複雑さと統合の問題:先進的な画像処理システムの技術的な複雑さと、新しいコンポーネントを組み込む際の予期せぬ課題は、おそらくそのようなシステムの現場での成功を左右する可能性があります。つまり、技術と操作の両方が、現場での展開と性能の成功を阻害しない程度に直感的でなければならないです。

これらの市場促進要因・課題は、前臨床in vivoイメージング市場とどのように相互作用しているのだろうか。成長は技術開発と需要に支えられているが、市場範囲はコスト、規制、市場競争によって制限されています。これらの課題をうまく克服し、同時に産業の望ましい結果に到達するための推進力を活用することが重要になります。

目次

第1章 エグゼクティブサマリー

第2章 世界の前臨床in-vivoイメージング市場:市場力学

  • イントロダクション、背景、分類
  • サプライチェーン
  • 産業の促進要因と課題

第3章 2019~2031年までの市場動向と予測分析

  • マクロ経済動向(2019~2024年)と予測(2025~2031年)
  • 世界の前臨床in-vivoイメージング市場の動向(2019~2024年)と予測(2025~2031年)
  • タイプによる世界の前臨床in-vivoイメージング市場
    • 光学イメージング
    • 核イメージング
    • MRI造影剤
    • 超音波造影剤
    • CT造影剤
  • モダリティによる世界の前臨床in-vivoイメージング市場
    • 光学画像システム
    • 前臨床核イメージングシステム
    • マイクロMRIシステム
    • マイクロ超音波システム
    • マイクロCTシステム
    • 前臨床光音響イメージングシステム
    • 前臨床磁気粒子イメージング(MPI)システム
  • 用途による世界の前臨床in-vivoイメージング市場
    • 研究開発
    • 創薬
  • 流通チャネルによる世界の前臨床in-vivoイメージング市場
    • 製薬会社
    • バイオテクノロジー企業
    • 研究機関
    • その他

第4章 2019~2031年までの地域別市場動向と予測分析

  • 地域の前臨床in-vivoイメージング市場
  • 北米の前臨床in-vivoイメージング市場
  • 欧州の前臨床in-vivoイメージング市場
  • アジア太平洋前臨床in-vivoイメージング市場
  • その他地域前臨床in-vivoイメージング市場

第5章 競合分析

  • 製品ポートフォリオ分析
  • 業務統合
  • ポーターのファイブフォース分析

第6章 成長機会と戦略分析

  • 成長機会分析
    • 世界の前臨床in-vivoイメージング市場におけるタイプ別成長機会
    • 世界の前臨床in-vivoイメージング市場におけるモダリティによる成長機会
    • 世界の前臨床in-vivoイメージング市場における用途による成長機会
    • 世界の前臨床in-vivoイメージング市場における流通チャネルによる成長機会
    • 地域の前臨床in-vivoイメージング市場の成長機会
  • 世界の臨床前in-vivoイメージング市場における新たな動向
  • 戦略分析
    • 新製品開発
    • 世界の前臨床in-vivoイメージング市場の能力拡大
    • 世界の前臨床in-vivoイメージング市場における合併、買収、合弁事業
    • 認証とライセンシング

第7章 主要企業の企業プロファイル

  • Bruker Corporation
  • Siemens
  • TriFoil Imaging
  • PerkinElmer
  • VisualSonics
目次

The future of the global preclinical in-vivo imaging market looks promising with opportunities in the research & development and drug discovery markets. The global preclinical in-vivo imaging market is expected to reach an estimated $1.5 billion by 2031 with a CAGR of 6.2% from 2025 to 2031. The major drivers for this market are the growing prevalence of chronic diseases, rising demand for on-invasive small animal imaging techniques, and increasing funding for preclinical research activities.

  • Lucintel forecasts that, within the modality category, micro-ultrasound systems segment is expected to witness the highest growth over the forecast period.
  • Within the application category, research & development will remain the largest segment due to the increased adoption of modalities for research and drug development.
  • In terms of region, North America will remain the largest region due to the increasing volume of preclinical research and growing government funding for research and innovation in Canada.

Gain Valuable insights for your business decisions with our comprehensive 150+ page report.

Emerging Trends in the Preclinical In-Vivo Imaging Market

The sphere of preclinical in-vivo imaging is advancing with a few emerging trends that are overhauling the research and the development activities. The preclinical in-vivo imaging process is characterized by the inclusion of novel technologies or techniques which improve the modalities used.

  • Integration of Multimodal Imaging: Interventional and multimodal imaging has led to an increasing trend in imaging systems where PET, MRI and CT techniques are integrated together. Such systems enhance the knowledge regarding the regularity of biological processes, and elucidate pathways that are likely to be disrupted in disease states due to the ability to capture anatomic, functional and molecular processes concurrently.
  • Advancement in Contrast Agents and Probes: There is an improved efficiency of in-vivo imaging procedures because of new imaging agents and new types of imaging probes. Preclinical target evaluation and diagnostics may benefit from such innovations because they enable the assessment of the disease process and the efficacy of therapeutic agents on a cellular and molecular level more so than previously possible.
  • Utilization of Artificial Intelligence: There has been an increasing adoption of systems that use images and incorporate the application of attention AI that is used for imaging enhancement and interpretation of results. Big data from imaging studies can be analyzed by the machine and produce statistically significant biomarkers where human intelligence is limited significantly improving the quality and pace of research.
  • Emergence of Portable Imaging Systems: The portable and compact imaging modalities are maturing and are being utilized in preclinical investigations. Such systems are versatile and allow the possibility of in-vivo imaging in conventional laboratories or field settings without degrading the quality of imaging.
  • Advances in Real-Time Imaging: Continuous imaging techniques enhance the prospects of real-time monitoring of biological processes as they occur as opposed to destructive sampling methods. New imaging modalities especially optical and fluorescence have breached the barriers of resolution and temporal limitations to allow time-lapse imaging of cellular events and processes, thus unveiling disease pathology and therapeutic strategies.

These trends are driving significant progress in preclinical in-vivo imaging by praising the level of analysis, facilitating the acquisition of imagery, and getting more work done in quicker times. They are changing the processes by which diseases are studied and new remedies are created by the investigators.

Recent Developments in the Preclinical In-Vivo Imaging Market

There is ever increasing transformation in research capabilities and understanding of biological processes through the recent developments in preclinical in-vivo imaging. Employment of various technologies and improvement of existing methodologies that make research accurate, targeting and within shorter periods are important features of, recent technology advancement.

  • Enhanced Multimodal Imaging Systems: Today's multimodal imaging systems involve the combination of previously disparate imaging techniques such as PET, MRI, and CT. This facilitates a multi-faceted approach to the study of biological processes and the acquisition of anatomical, functional and molecular information that will help to resolve some of the challenges posed by preclinical research.
  • Advanced Contrast Agents and Probes: The latest imaging contrast agents and imaging probes are increasing the efficacy of in-vivo imaging. These developments allow researchers to demonstrate better targeting of, and distinguish between, various cellular and molecular species, thus improving the study of disease mechanisms and treatment efficiency.
  • AI-Driven Image Analysis: The application of artificial intelligence (AI) specifically in image analysis is one of the notable aspects of development. AI algorithms assist in the acquisition and analysis of a large amount of imaging data, allowing gaining of high precision information and expanding the effectiveness to research diagnosis.
  • Development of Portable Imaging Technologies: In recent years, there has been a remarkable progress in the use of non-invasive imaging technologies. These systems are efficient due to their flexibility for application in both smaller research laboratories and in the field, thus enhancing the advanced imaging and flexibility to the diverse needs of research.
  • Recent Developments in Real-Time Imaging: Here are developments in real-time imaging techniques like highly-resolution optical imaging and fluorescence imaging that aid to continuous observation of biological activities. These techniques give a dynamic view of cellular processes and development of disease, thereby improving the understanding of treatment outcomes and disease processes.

These developments are advancing the field of preclinical in-vivo imaging by technology improvement, enhancing accessibility and expanding research efforts. New tools and methodologies being adopted are facilitating advancement in the understanding of biological systems and the creation of new therapies.

Strategic Growth Opportunities for Preclinical In-Vivo Imaging Market

The sector of preclinical in-vivo imaging is characterized by presence of several strategic growth opportunities in various applications. Growth potentials are persist because of technology innovations and increasing research activity.

  • Extension of Modalities for Imaging: The acquisition of multimodal one systems present an avenue of advancing preclinical studies since improving these imaging techniques incorporate more than one. This strategy enhances an in-depth investigation of complicated cellular events and disease pathology, thus offering new avenues in therapy development.
  • Development of AI for Imaging System in Imaging Process: Another area of imaging analysis which has a high growth opportunity is AI Imaging Analysis wherein the uses of imaging data are enhanced. Various studies show how AI application on imaging will help improve research processes and even enhance the understanding of disease processes and responses to treatment.
  • Development of Cost-Effective Imaging Solutions: The creation of cost-effective imaging solutions meets the demand for imaging technologies that are both low-cost and easy to use, especially in preclinical research. Less expensive systems and greater availability may increase the capacity of research and allow for research to be conducted in a greater number of institutions.
  • Growth in Portable Imaging Technologies: The invention of portable imaging technologies extends the possibilities of research through its flexibility and availability. Portable systems permit the performance of in-vivo imaging at various levels such as small labs and fieldwork thus broadening the preclinical scope of investigations.
  • Innovations in Real-Time Imaging: Real-time imaging does develop new ways by continuous asses of dynamic biological processes it allows further growth. This makes it easy to track cellular functions and developments in diseases and thus enhance research and therapy methods.

These growth opportunities present amazing potential for the development of preclinical in-vivo imaging in recall of the principles of commonality and, the accessibility and which are richer in technology. Addressing these areas will help in attaining progress and improvement of research.

Preclinical In-Vivo Imaging Market Driver and Challenges

The factors affecting the preclinical in-vivo imaging market are quite a number, technological factors, economic conditions and regulations among others. There are elements which a person should know and they include assistance in the market navigation as well as help in growth.

The factors responsible for driving the preclinical in-vivo imaging market include:

  • Technological Advancements: Growth of technologies in regards to the imaging systems such as real time and multimodal imaging technologies is promoting expansion of the preclinical in-vivo imaging. These changes enhance imaging tools' ability, precision, and potential to create research that is more detailed.
  • Increasing Demand for High-Resolution Imaging: It is important to note that the growth in high-resolution imaging, used to explore the activities of complex biological processes and pathogen-induced interactions, remains the major factor. Therefore, no more preclinical studies are performed with simple imaging techniques, but with advanced imaging technologies providing deeper insights.
  • Development of Cost-Effective Solutions: The development of affordable imaging solutions is a factor spurring growth of the market by expanding the reach of such technologies. The availability of inexpensive imaging equipment makes it easier to incorporate and promote research in all settings including those with resource constraints.
  • Regulatory and Compliance Requirements: Regulatory concerns and safety guidelines are crucial for the growth of the market. Only those imaging technologies that meet the necessary regulatory standards are distributed into the market to enhance safety and efficiency, both critical for large-scale use.

Challenges in the preclinical in-vivo imaging market are:

  • Competitive Market Dynamics: It is the nature of the market for preclinical in-vivo imaging that makes it worse as it is a very competitive one. Moreover, there is a need for companies to innovate and reposition their products in the market to remain relevant and meet research demands.
  • High Costs of Advanced Technologies: Most of these advanced imaging technologies tend to be cost prohibitive which constitutes a hindrance to their scope especially in the case of smaller research institutions or in areas with limited funds. Such costs can influence the uptake and utilization of new imaging systems.
  • Technical Complexity and Integration Issues: The technical complexity of advanced imaging systems and unforeseen challenges of incorporating new components can perhaps determine the success of such systems in the field. This means that both the technology and the operation must be intuitive to the extent that they do not inhibit successful deployment and performance in the field.

How these drivers and challenges interact preclinical in vivo imaging market. The growth is supported by the technology development and demand but market scope is limited by cost, regulatory, exchange, and competition. It will be important to overcome these challenges successfully and at the same time take advantage of drivers to reach the desired outcome in the industry.

List of Preclinical In-Vivo Imaging Companies

Companies in the market compete based on product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. With these strategies, preclinical in-vivo imaging companies cater to increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the preclinical in-vivo imaging companies profiled in this report include-

  • Bruker Corporation
  • Siemens
  • Trifoil Imaging
  • PerkinElmer
  • Visualsonics

Preclinical In-Vivo Imaging by Segment

The study includes a forecast for the global preclinical in-vivo imaging market by type, modality, application, distribution channel, and region.

Preclinical In-Vivo Imaging Market by Type [Analysis by Value from 2019 to 2031]:

  • Optical Imaging
  • Nuclear Imaging
  • MRI Contrast Agents
  • Ultrasound Contrast Agents
  • CT Contrast Agents

Preclinical In-Vivo Imaging Market by Modality [Analysis by Value from 2019 to 2031]:

  • Optical Imaging Systems
  • Preclinical Nuclear Imaging Systems
  • Micro-MRI Systems
  • Micro-Ultrasound Systems
  • Micro-CT Systems
  • Preclinical Photoacoustic Imaging Systems
  • Preclinical Magnetic Particle Imaging (MPI) Systems

Preclinical In-Vivo Imaging Market by Application [Analysis by Value from 2019 to 2031]:

  • Research & Development
  • Drug Discovery

Preclinical In-Vivo Imaging Market by Distribution Channel [Analysis by Value from 2019 to 2031]:

  • Pharmaceutical Companies
  • Biotechnology Companies
  • Research Institutes
  • Others

Preclinical In-Vivo Imaging Market by Region [Analysis by Value from 2019 to 2031]:

  • North America
  • Europe
  • Asia Pacific
  • The Rest of the World

Country Wise Outlook for the Preclinical In-Vivo Imaging Market

With recent improvements in preclinical in vivo imaging, remarkable changes have been noted in the areas of drug development, disease modeling, and biological studies. Such developments are improving the processes of observing and assessing living animals to incorporate the findings into the inventions. Important areas like the US, China, Germany, India, and Japan have been handing help with these improvements in terms of technology and more research.

  • United States: Within the U.S., there is a growing trend of applying combined imaging systems such as PET, MRI, and CT, which are favorable because the imaging in animal models is more efficient. Furthermore, the introduction of novel imaging agents and imaging molecules is enhancing the in vivo imaging such that much more detail on the bodily operation and the development of the pathology can be obtained.
  • China: China is keeping pace with the development of advanced in vivo imaging systems and seeks high-resolution imaging and monitoring without delay. Focus has been made on developing advanced optical imaging systems and imaging software capable of visualizing cellular and molecular nucleocytoplasmic trafficking in response to defined stimuli with high precision. There is also an inclination towards the use of artificial intelligence (AI) in the analysis and interpretation of images.
  • Germany: Germany has added additional new inventions for imaging technologies, for example, high-field MRI and sophisticated fluorescence systems. This has been making it possible for researchers to get even better spatial resolution and visualization of more complex biological processes. Germany is also at the forefront of the quest for new imaging systems combining several imaging modalities in one unit to facilitate studies in vivo Yours.
  • India: In India, there is a rising focus on making the preclinical in-vivo imaging systems more advanced as well as more cost effective. The other most recent advancements also include the use of economical imaging systems and the creation of imaging facilities in research centers for drug discovery and disease studies. India is also working on increasing the number of international research organizations that will assist researchers in improving imaging technologies.
  • Japan: Japan is taking the initiative in advancing the field of imaging with new inventions like the advanced near-infrared fluorescence imaging system and the high resolution optical imaging. With this, more molecular and cellular targets are being targeted and detected in live animals with the help of these cutting-edge technologies. Japanese researchers are now working on the incorporation of imaging technology and other biological research tools to achieve more profound in vivo findings.

Features of the Global Preclinical In-Vivo Imaging Market

Trend and Forecast Analysis: Market trends (2019 to 2024) and forecast (2025 to 2031) by various segments and regions.

Segmentation Analysis: Preclinical in-vivo imaging market size by various segments, such as by type, modality, application, distribution channel, and region in terms of ($B).

Regional Analysis: Preclinical in-vivo imaging market breakdown by North America, Europe, Asia Pacific, and Rest of the World.

Growth Opportunities: Analysis of growth opportunities in different types, modalities, applications, distribution channels, and regions for the preclinical in-vivo imaging market.

Strategic Analysis: This includes M&A, new product development, and the competitive landscape of the preclinical in-vivo imaging market.

Analysis of competitive intensity of the industry based on Porter's Five Forces model.

If you are looking to expand your business in this or adjacent markets, then contact us. We have done hundreds of strategic consulting projects in market entry, opportunity screening, due diligence, supply chain analysis, M & A, and more.

This report answers the following 11 key questions:

  • Q.1. What are some of the most promising, high-growth opportunities for the preclinical in-vivo imaging market by type (optical imaging, nuclear imaging, MRI contrast agents, ultrasound contrast agents, and CT contrast agents), modality (optical imaging systems, preclinical nuclear imaging systems, micro-MRI systems, micro-ultrasound systems, micro-CT systems, preclinical photoacoustic imaging systems, and preclinical magnetic particle imaging (MPI) systems), application (research & development and drug discovery), distribution channel (pharmaceutical companies, biotechnology companies, research institutes, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
  • Q.2. Which segments will grow at a faster pace and why?
  • Q.3. Which region will grow at a faster pace and why?
  • Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
  • Q.5. What are the business risks and competitive threats in this market?
  • Q.6. What are the emerging trends in this market and the reasons behind them?
  • Q.7. What are some of the changing demands of customers in the market?
  • Q.8. What are the new developments in the market? Which companies are leading these developments?
  • Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
  • Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
  • Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?

Table of Contents

1. Executive Summary

2. Global Preclinical In-Vivo Imaging Market : Market Dynamics

  • 2.1: Introduction, Background, and Classifications
  • 2.2: Supply Chain
  • 2.3: Industry Drivers and Challenges

3. Market Trends and Forecast Analysis from 2019 to 2031

  • 3.1. Macroeconomic Trends (2019-2024) and Forecast (2025-2031)
  • 3.2. Global Preclinical In-Vivo Imaging Market Trends (2019-2024) and Forecast (2025-2031)
  • 3.3: Global Preclinical In-Vivo Imaging Market by Type
    • 3.3.1: Optical Imaging
    • 3.3.2: Nuclear Imaging
    • 3.3.3: MRI Contrast Agents
    • 3.3.4: Ultrasound Contrast Agents
    • 3.3.5: CT Contrast Agents
  • 3.4: Global Preclinical In-Vivo Imaging Market by Modality
    • 3.4.1: Optical Imaging Systems
    • 3.4.2: Preclinical Nuclear Imaging Systems
    • 3.4.3: Micro-MRI Systems
    • 3.4.4: Micro-Ultrasound Systems
    • 3.4.5: Micro-CT Systems
    • 3.4.6: Preclinical Photoacoustic Imaging Systems
    • 3.4.7: Preclinical Magnetic Particle Imaging (MPI) Systems
  • 3.5: Global Preclinical In-Vivo Imaging Market by Application
    • 3.5.1: Research & Development
    • 3.5.2: Drug Discovery
  • 3.6: Global Preclinical In-Vivo Imaging Market by Distribution Channel
    • 3.6.1: Pharmaceutical Companies
    • 3.6.2: Biotechnology Companies
    • 3.6.3: Research Institutes
    • 3.6.4: Others

4. Market Trends and Forecast Analysis by Region from 2019 to 2031

  • 4.1: Global Preclinical In-Vivo Imaging Market by Region
  • 4.2: North American Preclinical In-Vivo Imaging Market
    • 4.2.1: North American Market by Modality: Optical Imaging Systems, Preclinical Nuclear Imaging Systems, Micro-MRI Systems, Micro-Ultrasound Systems, Micro-CT Systems, Preclinical Photoacoustic Imaging Systems, and Preclinical Magnetic Particle Imaging (MPI) Systems
    • 4.2.2: North American Market by Application: Research & Development and Drug Discovery
  • 4.3: European Preclinical In-Vivo Imaging Market
    • 4.3.1: European Market by Modality: Optical Imaging Systems, Preclinical Nuclear Imaging Systems, Micro-MRI Systems, Micro-Ultrasound Systems, Micro-CT Systems, Preclinical Photoacoustic Imaging Systems, and Preclinical Magnetic Particle Imaging (MPI) Systems
    • 4.3.2: European Market by Application: Research & Development and Drug Discovery
  • 4.4: APAC Preclinical In-Vivo Imaging Market
    • 4.4.1: APAC Market by Modality: Optical Imaging Systems, Preclinical Nuclear Imaging Systems, Micro-MRI Systems, Micro-Ultrasound Systems, Micro-CT Systems, Preclinical Photoacoustic Imaging Systems, and Preclinical Magnetic Particle Imaging (MPI) Systems
    • 4.4.2: APAC Market by Application: Research & Development and Drug Discovery
  • 4.5: ROW Preclinical In-Vivo Imaging Market
    • 4.5.1: ROW Market by Modality: Optical Imaging Systems, Preclinical Nuclear Imaging Systems, Micro-MRI Systems, Micro-Ultrasound Systems, Micro-CT Systems, Preclinical Photoacoustic Imaging Systems, and Preclinical Magnetic Particle Imaging (MPI) Systems
    • 4.5.2: ROW Market by Application: Research & Development and Drug Discovery

5. Competitor Analysis

  • 5.1: Product Portfolio Analysis
  • 5.2: Operational Integration
  • 5.3: Porter's Five Forces Analysis

6. Growth Opportunities and Strategic Analysis

  • 6.1: Growth Opportunity Analysis
    • 6.1.1: Growth Opportunities for the Global Preclinical In-Vivo Imaging Market by Type
    • 6.1.2: Growth Opportunities for the Global Preclinical In-Vivo Imaging Market by Modality
    • 6.1.3: Growth Opportunities for the Global Preclinical In-Vivo Imaging Market by Application
    • 6.1.4: Growth Opportunities for the Global Preclinical In-Vivo Imaging Market by Distribution Channel
    • 6.1.5: Growth Opportunities for the Global Preclinical In-Vivo Imaging Market by Region
  • 6.2: Emerging Trends in the Global Preclinical In-Vivo Imaging Market
  • 6.3: Strategic Analysis
    • 6.3.1: New Product Development
    • 6.3.2: Capacity Expansion of the Global Preclinical In-Vivo Imaging Market
    • 6.3.3: Mergers, Acquisitions, and Joint Ventures in the Global Preclinical In-Vivo Imaging Market
    • 6.3.4: Certification and Licensing

7. Company Profiles of Leading Players

  • 7.1: Bruker Corporation
  • 7.2: Siemens
  • 7.3: TriFoil Imaging
  • 7.4: PerkinElmer
  • 7.5: VisualSonics