|
市場調査レポート
商品コード
1219684
炭化ケイ素半導体デバイスの世界市場規模、シェア、産業動向分析レポート:製品別、最終用途別、ウエハーサイズ別、コンポーネント別、地域別展望・予測、2022年~2028年Global Silicon Carbide Semiconductor Devices Market Size, Share & Industry Trends Analysis Report By Product, By End Use, By Wafer Size, By Component, By Regional Outlook and Forecast, 2022 - 2028 |
||||||
炭化ケイ素半導体デバイスの世界市場規模、シェア、産業動向分析レポート:製品別、最終用途別、ウエハーサイズ別、コンポーネント別、地域別展望・予測、2022年~2028年 |
出版日: 2023年01月31日
発行: KBV Research
ページ情報: 英文 335 Pages
納期: 即納可能
|
炭化ケイ素半導体デバイスの世界市場規模は、2028年までに52億米ドルに達し、予測期間中にCAGR20.3%の市場成長率で上昇すると予測されています。
研究プロジェクトでは、自動車のパワートレインに炭化ケイ素(SiC)半導体デバイスを使用することに焦点が当てられています。それでも、最近の改良により、徐々に実用的な代替品になってきています。例えば、高速充電方式を採用したテスラの車両アーキテクチャは、現在SiCを使用しています。
さらに、各国政府が再生可能エネルギー源を継続的に支援し、自動車メーカーが自動車の製造コストを下げる努力を行っていることから、ハイブリッド車や標準的な電気自動車(EV)の走行台数が増加することが予想されます。これは、より安全で、より軽く、より小さい、より急速な充電とより長い寿命を持つ電池を求める消費者の要求によって、電池技術の継続的な向上が実現可能であることが大きな要因となっています。その結果、炭化ケイ素半導体はプラグインハイブリッド車(PHEV)や純電気自動車のアプリケーションに最適なものとなっています。
COVID-19の影響度分析
COVID-19の発生に伴う広域封鎖や物資・人の移動の制限は、SiC半導体部品を使用する電子機器、自動車、パワーエレクトロニクスの需要に大きな影響を与えました。また、世界経済が急激に後退し、消費者の購買力、借入余力に影響を与えました。その結果、炭化ケイ素半導体デバイス市場は、各種テクノロジー製品全般の需要減退により、マイナスの影響を受けました。さらに、パンデミック時の炭化ケイ素半導体デバイスの需要と供給の不均衡から生じる需給ギャップが、市場にマイナスの影響を与えました。
市場の成長要因
シリコンベース技術に対する化合物半導体または炭化ケイ素(SiC)半導体の利点
炭化ケイ素を用いたパワー半導体は、シリコン系半導体よりも優れた電子特性を持っています。電子移動度と飽和電子速度が大きいです。また、SiCパワー半導体は、エネルギーバンドギャップが広いため、過熱しにくいです。また、シリコン半導体と比較して、電子回路のノイズが少なく、電力損失を低減できます。SiCパワーデバイスのような化合物半導体は、その品質向上により、マイクロ波リンク、携帯電話、高周波レーダーシステム、衛星通信などのアプリケーションでますます使用されるようになってきています。炭化ケイ素ベースのパワー半導体は、シリコンよりも優れているため、市場が拡大しているのです。
5g移動通信技術の採用拡大
デジタルインフラへの大きな依存は、高速インターネットの研究開発に拍車をかけています。5G無線モバイル技術は、既存国および新興国において急速に導入されることが予想されます。このワイヤレス規格により、最大10Gbpsの高速データ転送が可能になると予想されています。このインフラは、高速データ転送を必要とするスマートデバイスやモノのインターネットの普及をサポートすると予想されています。モバイル通信には、パワー半導体、特にRF(Radio Frequency)半導体が必要とされます。したがって、予測期間中、5Gは炭化ケイ素半導体デバイス市場の成長に大きな機会を提供することになるでしょう。
市場の抑制要因
炭化ケイ素半導体のウエハーのコスト高
ウェハーコストが高いことが、SiCベースのパワーデバイスの製造における主な障壁となっています。SiC半導体は、代替となるシリコンをベースとした半導体よりも高価です。チップ内のSiC層を製造するために重要な前駆物質は、高純度シラン(SiH4)とSiC粉末です。現在、高純度SiC粉末の供給元は限られており、価格も高いです。高純度SiC材料の生産は、ワシントンミルズ(米国)、パリダス(米国)、ブリヂストン(米国)、LGInnotek(韓国)など、国際的な大手産業ガス企業数社に限られています。これが地域市場の成長を支えています。
コンポーネントの展望
炭化ケイ素半導体デバイス市場は、コンポーネントによって、ショットキーダイオード、FET/MOSFETトランジスタ、集積回路、整流器/ダイオード、パワーモジュール、その他に分類されます。2021年の炭化ケイ素半導体デバイス市場では、パワーモジュール部門が最も高い収益シェアを獲得しました。電力変換のスイッチとしてSiCを使用するのは、炭化ケイ素パワーモジュールによって可能になり、e-モビリティ、エネルギー、産業分野で多くの用途があります。電力消費効率の向上と運用コストの削減を支援します。
製品の展望
炭化ケイ素半導体デバイス市場は、製品別にオプトエレクトロニクスデバイス、パワー半導体、周波数デバイスに分類されます。オプトエレクトロニクスデバイスセグメントは、2021年の炭化ケイ素半導体デバイス市場で大きな収益シェアを示しました。照明や高エネルギーレーザー用途でSiCの使用が増加していることが、オプトエレクトロニクスデバイスの拡大要因となっています。SiCは熱安定性が高いため、光検出器、発光ダイオード(LED)、望遠鏡、太陽電池などのオプトエレクトロニクス製品でより頻繁に使用されています。オプトエレクトロニクスデバイスを製造する数多くの企業が、有機的かつ無機的に拡大しています。
ウエハーサイズの展望
炭化ケイ素半導体市場は、ウエハーサイズによって1インチから4インチ、6インチ、8インチ、10インチ以上に区分されます。10インチ以上のセグメントは、2021年の炭化ケイ素半導体デバイス市場で顕著な成長率を調達しました。SiCウエハーの商業的な製造が、10インチ以上のSiCウエハーの使用増加の原因です。また、これらのウエハーによって、パワーダイオードや発光ダイオード(LED)などの窒化ガリウム(GaN)製品の製造が可能になります。また、炭化ケイ素層はシリコンウェーハのコストを上昇させないため、GaNへのシリコンの拡散を防ぐこともできます。
エンドユーザーの展望
炭化ケイ素半導体デバイス市場は、エンドユーザーごとに自動車、家電、航空宇宙・防衛、医療機器、データ・通信機器、エネルギー・電力、その他に分類されます。2021年の炭化ケイ素半導体デバイス市場では、航空宇宙・防衛セグメントが有望な成長率を目しめしています。このセグメントの成長は、SiCが航空宇宙・防衛産業向けに、より少ない燃料使用量と排出量の軽量化部品を提供できることに起因しています。この材料は、所定の電流と電圧の定格に対して、より軽量でより小さなデバイスでより高い電力密度とスイッチングを可能にします。
地域別の展望
炭化ケイ素半導体デバイス市場を地域別に見ると、北米、欧州、アジア太平洋、LAMEAの4地域で分析されています。アジア太平洋地域は、2021年の炭化ケイ素半導体デバイス市場で最も高い収益シェアを示しています。主要な市場プレーヤーは、アジア太平洋地域における市場の拡大を促進することが期待されます。この拡大は、この地域全体で研究開発および生産への投資が増加していることがさらに寄与しています。例えば、東芝電子部品・ストレージは、パワーコンポーネントの製造能力を増強するための投資を行うと発表しました。このような施策により、同地域の市場での地位は強化されています。
市場参入企業がとっている主な戦略は、パートナーシップです。カーディナルマトリックスで提示された分析に基づいて、株式会社東芝、三菱電機株式会社、STMicroelectronics N.V., ON Semiconductor Corporation, Infineon Technologies AGは、炭化ケイ素半導体デバイス市場の先駆者です。Allegro Microsystems, Inc.、富士電機株式会社、ローム株式会社などの企業が炭化ケイ素半導体デバイス市場における主要なイノベーターとして挙げられます。
List of Figures
The Global Silicon Carbide Semiconductor Devices Market size is expected to reach $5.2 billion by 2028, rising at a market growth of 20.3% CAGR during the forecast period.
A semiconductor created by combining silicon with carbon is known as silicon carbide. SiC semiconductors can function in harsh environments owing to their hardness, which is similar to a diamond. Furthermore, silicon carbide has advantages over conventional silicon semiconductors in the market for power semiconductors, including a larger breakdown electric field strength, lower thermal expansion, a wider band gap, and chemical reaction resistance.
In comparison to a silicon power semiconductor, silicon carbide electrons need three times as much energy to go to the conduction band from the conduction band. SiC-based electrical devices can endure higher temperatures and voltages due to this characteristic than their silicon-based counterparts. They also carry a lot more current, nearly five times as much as their silicon equivalents, so they provide lower ON resistance and decrease switching loss, which reduces power loss.
Research projects are focused on using silicon carbide (SiC) semiconductor devices in automobile powertrains. Nevertheless, it has progressively become a practical alternative due to recent improvements. For instance, Tesla's vehicle architectures, which use a speedy charging method, currently use SiC.
Furthermore, governments' continued support of sources of renewable energy and automakers' efforts to lower the cost of manufacturing their vehicles are expected to lead to a rise in the number of hybrid and standard electric vehicles (EVs) on the road. This is made feasible in large part by the ongoing improvements in battery technology driven by consumer demand for safer, lighter, smaller batteries that charge more rapidly and last longer. As a result, silicon carbide semiconductors are ideal for plug-in hybrid (PHEV) and purely electric vehicle applications.
COVID-19 Impact Analysis
The widespread lockdowns and limitations placed on the movement of goods and people that followed the COVID-19 outbreak severely impacted the demand for electronic gadgets, vehicles, and power electronics that employ SiC semiconductor components. In addition, the world economy saw a sharp recession, which impacted consumer purchasing power and borrowing capacity. As a result, the silicon carbide semiconductor devices market was negatively impacted due to the general drop in demand for various technology products. Furthermore, the market was further negatively impacted by the demand-supply gap that resulted from the imbalance between supply and demand for silicon carbide semiconductor devices during the pandemic.
Market Growth Factors
Benefits of the compound or silicon carbide (SiC) semiconductors over silicon-based technology
Power semiconductors made of silicon carbide have better electronic characteristics than silicon semiconductors. They have greater electron mobility and saturation electron velocity. SiC power semiconductors have a broader energy bandgap, which makes them less susceptible to overheating. Additionally, they tend to produce less noise in electronic circuits as compared to silicon devices, which reduces power loss. Compound semiconductors, like SiC power devices, are increasingly used in microwave links, mobile phones, high-frequency radar systems, satellite communications, and other applications due to their improved qualities. The market is growing as a result of silicon carbide-based power semiconductors' superiority over silicon.
Greater adoption of 5g mobile communication technology
The massive reliance on digital infrastructure has fueled high-speed internet research and development. The 5G wireless mobile technology is expected to be rapidly implemented in established and developing countries. It is expected that this wireless standard will provide rapid data transfer speeds of up to 10 Gbps. This infrastructure is forecasted to support the growing use of smart devices and the internet of things, both of which require fast data transfers to operate effectively. Power semiconductors, particularly radio frequency (RF) semiconductors, are required for mobile communications. Therefore, during the projection period, 5G will offer a significant opportunity for the growth of the silicon carbide semiconductor devices market.
Market Restraining Factors
Costly wafers of silicon carbide semiconductors
The high wafer cost is the main barrier to the fabrication of SiC-based power devices. SiC semiconductors are more expensive than semiconductors based on the silicon they are meant to replace. The crucial precursors for manufacturing SiC layers in the chips are high-purity silane (SiH4) and SiC powder. Currently, there are only a few providers of high-purity SiC powder, and it is rather expensive. The production of high-purity SiC materials is limited to a few large, international industrial gas firms, including Washington Mills (United States), Pallidus (United States), Bridgestone (United States), and LGInnotek (Korea). This supports the growth of the regional market.
Component Outlook
Based on component, the silicon carbide semiconductor devices market is categorized into Schottky diodes, FET/MOSFET transistors, integrated circuits, rectifiers/diodes, power modules, and others. The power modules segment garnered the highest revenue share in the silicon carbide semiconductor devices market in 2021. The use of SiC as a switch for power conversion is made possible by silicon carbide power modules, which have numerous uses in the e-mobility, energy, and industrial sectors. They assist in enhancing power consumption effectiveness and lowering operating expenses.
Product Outlook
On the basis of product, the silicon carbide semiconductor devices market is divided into optoelectronic devices, power semiconductors, and frequency devices. The optoelectronic devices segment witnessed a significant revenue share in the silicon carbide semiconductor devices market in 2021. The increasing use of SiC in lighting and high-energy laser applications is responsible for the expansion of optoelectronic devices. SiC is used more frequently in optoelectronic products, including photodetectors, light-Emitting Diodes (LED), telescopes, and solar cells because of its great thermal stability. Numerous companies that make optoelectronic devices are expanding both organically and inorganically.
Wafer Size Outlook
Based on wafer size, the silicon carbide semiconductor devices market is segmented into 1 inch to 4 inches, 6 inches, 8 inches, and 10 inches & above. The 10 inches and above segment procured a remarkable growth rate in the silicon carbide semiconductor devices market in 2021. The commercial manufacture of SiC wafers is responsible for the increased use of the 10 inches and above SiC wafers. These wafers also make it possible to create Gallium Nitride (GaN) products, such as power and light-emitting diodes (LED). Moreover, the silicon carbide layer does not increase the cost of silicon wafers, which also stops silicon from diffusing into GaN.
End User Outlook
On the basis of end user, the silicon carbide semiconductor devices market in fragmented into automotive, consumer electronics, aerospace & defense, medical devices, data & communication devices, energy & power, and others. The aerospace and defense segment witnessed a promising growth rate in the silicon carbide semiconductor devices market in 2021. The segment's growth is attributed to the ability of SiC to offer lighter-weight parts for the aerospace & defense industry that will use less fuel and emit fewer emissions. For a given current and voltage rating, this material enables higher power density and higher switching in a lighter, smaller device.
Regional Outlook
On the basis of region, the silicon carbide semiconductor devices market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The Asia Pacific segment witnessed the highest revenue share in the silicon carbide semiconductor devices market in 2021. Leading market players are expected to fuel the market's expansion in the Asia Pacific region. This expansion is further aided by the rising investments in research, development, and production throughout the region. For instance, Toshiba Electronic Components and Storage said it would invest in increasing the capacity of its power component manufacturing capacity. Such measures are strengthening the position of the region in the market.
The major strategies followed by the market participants are Partnerships. Based on the Analysis presented in the Cardinal matrix; Toshiba Corporation, Mitsubishi Electric Corporation, STMicroelectronics N.V., ON Semiconductor Corporation, and Infineon Technologies AG are the forerunners in the Silicon Carbide Semiconductor Devices Market. Companies such as Allegro Microsystems, Inc., FUJI ELECTRIC CO., LTD., and ROHM Co., Ltd. are some of the key innovators in Silicon Carbide Semiconductor Devices Market.
The market research report covers the analysis of key stake holders of the market. Key companies profiled in the report include Allegro Microsystems, Inc. (Sanken Electric Co., Ltd.), Infineon Technologies AG, ROHM Co., Ltd., STMicroelectronics N.V., ON Semiconductor Corporation, FUJI ELECTRIC CO., LTD., TT Electronics plc., Mitsubishi Electric Corporation, Toshiba Corporation, and Wolfspeed, Inc.
Recent Strategies Deployed in Silicon Carbide Semiconductor Devices Market
Partnerships, Collaborations and Agreements:
Jan-2023: Infineon Technologies partnered with Resonac Corporation, a Japan-based chemical manufacturing company. As per the partnership agreement, Infineon would offer Resonac its intellectual property associated with SiC material, and Resonac would provide Infineon with SiC materials. Moreover, this partnership actively complements Infineon's leading position.
Dec-2022: ROHM partnered with BASiC Semiconductor, a China-based manufacturer and developer of advanced semiconductors. The partnership involves jointly developing and offering SiC solutions intended for the energy vehicle market. Moreover, the partnership aligns with ROHM's efforts to achieve a decarbonized society.
Nov-2022: Infineon partnered with Stellantis, a Netherlands-based automaker. The partnership involves reserving chip manufacturing for Stellantis' Tier 1 suppliers. Further, the partnership with an automaker aligns with Infineon's devotion to electromobility.
Oct-2022: Infineon Technologies extended its partnership with VinFast, a Vitenam-based automobile manufacturer. The partnership involves jointly setting up an application competence center intended to advance the development of smart mobility solutions. Additionally, the partnership involves offering technical support and acting as an adviser for selecting semiconductors.
Oct-2022: Wolfspeed partnered with Jaguar Land Rover, a UK-based manufacturer of automobiles. The partnership involves providing Jaguar Land Rover with Silicon Carbide semiconductors.
Jul-2022: Allegro MicroSystems partnered with Mouser Electronics, a distributor of semiconductors and electronic components. Through this partnership agreement, Allegro's products are also available on Mouser's website, thereby expanding Allegro's global footprint.
Jul-2022: Infineon Technologies extended its collaboration with Delta Electronics, a Taiwan-based provider of the industrial power system. The extended collaboration involves providing superior power solutions focused on wide bandgap semiconductors. Moreover, the collaboration provides Delta with many opportunities in the gaming and server domain.
Jul-2022: STMicroelectronics came into agreement with GlobalFoundries, a US-based contract chipmaker. As per the agreement, both companies would together create and operate a 300mm semiconductor manufacturing facility in France. The new facility would enable both companies to leverage economies of scale, and would also support STMicroelectronics' $20 billion+ revenue aim. Moreover, the new facility in France would also enable STMicroelectronics to better cater to the needs of its clients globally, through increased capacity.
Product Launches and Expansions:
Dec-2022: STMicroelectronics introduced new silicon-carbide power modules. The new power modules features less energy consumption, more power density, etc. The new product enables OEMs in the automotive industry to accelerate the electrification of vehicles.
Dec-2020: Fuji Electric launched X Series IGBT-IPM*1, a power semiconductor product. The new product features a 7th-generation X Series device, an IGBT devices overheat protection function, a warning output function, etc.
Acquisition and Mergers:
Sep-2022: Allegro MicroSystems took over Heyday Integrated Circuits, a France-based developer of integrated isolated gate drivers. The acquisition integrates Allegro's isolated current sensors, and Heyday's isolated gate drivers, and further broaden Allegro's market presence in multiple segments including, electric vehicles, data center, solar inverters, etc. Moreover, the acquisition would advance Allegro's efforts to provide an energy-efficient platform.
Nov-2021: onsemi acquired GT Advanced Technologies, a US-based provider of advanced materials and equipment. The addition of GT's competence in developing wafering-ready SiC, and its outstanding technical abilities benefit onsemi's clients and further enable onsemi to deliver end-to-end power solutions. Moreover, the acquisition complements and strengthens onesemi's commitment to making significant investments in high-growth technologies.
Jul-2020: Mitsubishi Electric took over a 46,500-square-meter wafer manufacturing facility from Sharp Fukuyama Semiconductor. With this acquisition, Mitsubishi aims to boost the production of power chips intended for electric vehicles.
Apr-2020: Infineon Technologies acquired Cypress Semiconductor, a US-based developer of semiconductor products. The acquisition is a significant milestone in Infineon's strategic development, and further expands Infineon's market presence. Moreover, this acquisition benefits customers through Infineon's expanded reach and improved design-in support customized as per their needs.
Geographical Expansions:
Aug-2022: onsemi expanded its global footprint by establishing a new silicon carbide (SiC) plant in New Hampshire, United States. The new site would quintuple SiC boule production capacity year-over-year, and also enables onsemi to have complete command over its silicon carbide manufacturing supply chain, which makes onsemi in a better position to fulfill the evolving demands for SiC-based solutions by its clients.
Apr-2022: Wolfspeed expanded its global footprint by setting up a new facility in New York intended for Silicon Carbide fabrication. The setting up of a new facility demonstrates Wolfspeed's devotion to reaching the highest standards for operational excellence, which would result in more output, and thus more products for the customers.
Market Segments covered in the Report:
By Product
By End Use
By Wafer Size
By Component
By Geography
Companies Profiled
Unique Offerings from KBV Research