デフォルト表紙
市場調査レポート
商品コード
1806351

計算流体力学市場:コンポーネント別、モデリング別、アーキテクチャ別、オペレーティングシステム別、次元別、ワークフロー段階別、フェーズ別、用途別、最終用途産業別、展開モード別、企業規模別-2025年~2030年の世界予測

Computational Fluid Dynamics Market by Component, Modeling, Computing Architecture, Operating System, Dimensionality, Workflow Stage, Phase, Applications, End-use Industries, Deployment Mode, Enterprise Size - Global Forecast 2025-2030


出版日
発行
360iResearch
ページ情報
英文 199 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=148.52円
計算流体力学市場:コンポーネント別、モデリング別、アーキテクチャ別、オペレーティングシステム別、次元別、ワークフロー段階別、フェーズ別、用途別、最終用途産業別、展開モード別、企業規模別-2025年~2030年の世界予測
出版日: 2025年08月28日
発行: 360iResearch
ページ情報: 英文 199 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

計算流体力学市場は、2024年に30億6,000万米ドルと評価され、2025年には33億米ドル、CAGR 8.46%で成長し、2030年には49億9,000万米ドルに達すると予測されています。

主な市場の統計
基準年2024 30億6,000万米ドル
推定年2025 33億米ドル
予測年2030 49億9,000万米ドル
CAGR(%) 8.46%

計算流体力学を、ソフトウェア、サービス、計算アーキテクチャを統合し、イノベーションと検証を加速する戦略的エンジニアリング能力として位置付ける

計算流体力学は、専門的なシミュレーション能力から、製品のイノベーション、安全性の検証、複雑なシステム全体の運用最適化を支える基盤的なエンジニアリング分野へと移行しています。

アルゴリズムの進化、ヘテロジニアスなコンピュート移行、そして進化するサービスモデルが、企業導入に向けた計算流体力学の状況をどのように再構築しているかを理解します

CFDの状況は、アルゴリズムの革新、計算の民主化、スピードと忠実性を求める各分野の要求の収束によって、大きく変化しています。

2025年までの関税シフトが、計算流体力学の利害関係者にとって、ハードウェアの調達、展開戦略、サプライチェーンの回復力をどのように変化させるかを評価します

2025年までに米国で発表または実施される関税措置の累積的な影響は、国境を越えたサプライチェーンを運営するCFDベンダー、ハードウェアサプライヤー、エンドユーザーに多面的な影響をもたらします。

戦略的セグメンテーション分析により、コンポーネント、モデリング、コンピュート、デプロイメント、および業界の次元が、CFDの優先順位、調達、および機能ロードマップをどのように決定するかを明らかにします

セグメンテーションの洞察は、技術の選択、ワークフローの段階、および展開の様式において、どこで価値が実現されるかを明らかにし、投資と能力開発の優先順位を決定するためのフレームワークを提供します。

南北アメリカ、中東アフリカ、アジア太平洋市場におけるCFDの採用、調達の嗜好、計算機導入の選択を形成する地域力学

地域ダイナミックスは、技術採用パターン、ベンダーのポジショニング、コンピュートおよびソフトウェア投資に関連する運用上のトレードオフに大きく影響します。

ソフトウェアの差別化、サービスの専門化、ハードウェアとクラウドのパートナーシップは、いかにしてベンダーのポジショニングを決定し、計算流体力学における競争経路を生み出すか

企業レベルの洞察により、ソルバーの忠実度、統合の深さ、サービスの提供、計算の最適化といった軸でベンダーがどのように差別化しているかを明らかにします。

能力監査、モジュール調達、計算実験、人材開発を通じて、CFD能力を近代化するためのリーダー向けの実行可能な道筋を提示

業界のリーダーは、CFD能力の近代化に向けて、当面の性能ニーズと長期的な戦略的回復力のバランスを考慮した、現実的で段階的なアプローチを採用する必要があります。

専門家へのインタビュー、技術文献のレビュー、シナリオ分析、ケーススタディを組み合わせた強固な複数手法別調査フレームワークにより、CFDの戦略的意味を検証します

調査手法は、質的および量的なインプットを統合し、経営陣の意思決定と技術的な実施に合わせた、強固で再現可能な洞察を生み出します。

CFDを管理された企業資産とするために、能力監査、計算機選択、パートナー戦略をどのように収束させるかを示す重要な戦略的要請の統合

結論として,計算流体力学は,アルゴリズムの進歩,計算の異種性,サービス指向のデリバリモデルが相まって,組織がどのようにエンジニアリング価値を獲得するかを決定する変曲点にある.

目次

第1章 序文

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 市場の概要

第5章 市場力学

  • CFDシミュレーションにおける自動メッシュ生成と最適化のための機械学習アルゴリズムの統合
  • 産業アプリケーションにおける高精度な大規模過渡流れ解析のためのGPUアクセラレーションソルバーの採用
  • スケーラブルなオンデマンドコンピューティングリソースと共同シミュレーションワークフローを可能にするクラウドネイティブCFDプラットフォーム
  • リアルタイム監視と予測保守のためにCFDとIoTデータを結合するデジタルツインフレームワークの開発
  • 電気自動車部品設計における流体、熱、構造解析を組み合わせたマルチフィジックスシミュレーションの応用
  • 遷移流および乱流を正確に予測するための高次乱流モデリング技術の進歩
  • 積層造形プロセスのパラメータ調整と欠陥削減のためのCFD駆動設計最適化ループの導入
  • エンジニアリング設計におけるインタラクティブな視覚化と意思決定のためのCFDと拡張現実インターフェースの統合

第6章 市場洞察

  • ポーターのファイブフォース分析
  • PESTEL分析

第7章 米国の関税の累積的な影響2025

第8章 計算流体力学市場:コンポーネント別

  • サービス
    • コンサルティング
    • サポートとメンテナンス
    • トレーニング
  • ソフトウェア
    • オープンソースソフトウェア
    • 独自ソフトウェア

第9章 計算流体力学市場モデリング別

  • 熱伝達モデリング
  • 分子流モデリング
  • 乱流モデリング

第10章 計算流体力学市場コンピューティングアーキテクチャ

  • クラウドHPC
  • CPU
  • エッジ&組み込み
  • グラフィックプロセッサ
    • マルチGPU
    • シングルGPU
  • 異機種CPU-GPU

第11章 計算流体力学市場オペレーティングシステム別

  • リナックス
  • macOS
  • ウィンドウズ

第12章 計算流体力学市場次元別

  • 1D
  • 2D
  • 3D

第13章 計算流体力学市場ワークフローステージ別

  • メッシュ
  • 後処理
  • 前処理
  • ソルバー

第14章 計算流体力学市場フェーズ別

  • 多相流
  • 単相流

第15章 計算流体力学市場:用途別

  • 航空宇宙工学
  • 製品開発
  • 視覚効果
  • 天気予報

第16章 計算流体力学市場:最終用途産業別

  • 航空宇宙および防衛
  • 自動車
  • エレクトロニクスおよび半導体
  • エネルギー
  • ヘルスケア
  • 産業機器
  • 材料および化学処理
  • 石油・ガス

第17章 計算流体力学市場:展開モード別

  • クラウドベース
    • ハイブリッドクラウド
    • プライベートクラウド
    • パブリッククラウド
  • オンプレミス

第18章 計算流体力学市場:企業規模別

  • 大企業
  • 中小企業

第19章 南北アメリカの計算流体力学市場

  • 米国
  • カナダ
  • メキシコ
  • ブラジル
  • アルゼンチン

第20章 欧州・中東・アフリカの計算流体力学市場

  • 英国
  • ドイツ
  • フランス
  • ロシア
  • イタリア
  • スペイン
  • アラブ首長国連邦
  • サウジアラビア
  • 南アフリカ
  • デンマーク
  • オランダ
  • カタール
  • フィンランド
  • スウェーデン
  • ナイジェリア
  • エジプト
  • トルコ
  • イスラエル
  • ノルウェー
  • ポーランド
  • スイス

第21章 アジア太平洋地域の計算流体力学市場

  • 中国
  • インド
  • 日本
  • オーストラリア
  • 韓国
  • インドネシア
  • タイ
  • フィリピン
  • マレーシア
  • シンガポール
  • ベトナム
  • 台湾

第22章 競合情勢

  • 市場シェア分析, 2024
  • FPNVポジショニングマトリックス, 2024
  • 競合分析
    • Airflow Sciences Corporation
    • Altair Engineering Inc.
    • ANSYS, Inc.
    • Autodesk, Inc.
    • Azore Software, LLC
    • byteLAKE
    • Cadence Design Systems, Inc.
    • Cape CFD
    • COMSOL, Inc.
    • Convergent Science, Inc.
    • Dassault Systemes SE
    • Dive Solutions GmbH
    • ESI Group by Keysight Technologies, Inc.
    • FEXILON TECHNOLOGIES
    • Graphler Technology Solutions
    • Hexagon AB
    • Hitech Digital Solutions LLP
    • Mr CFD Company, LLC
    • PTC Inc.
    • Resolved Analytics, PLLC
    • Siemens AG
    • Simerics Inc.
    • Streamwise GmbH
    • Symscape
    • Tridiagonal Solutions Pvt. Ltd.
    • VirtusAero, LLC
    • OpenCFD Ltd.
    • EnginSoft S.p.A.
    • Flow Science, Inc.
    • SimScale GmbH
    • Virtura3D

第23章 リサーチAI

第24章 リサーチ統計

第25章 リサーチコンタクト

第26章 リサーチ記事

第27章 付録

図表

LIST OF FIGURES

  • FIGURE 1. COMPUTATIONAL FLUID DYNAMICS MARKET RESEARCH PROCESS
  • FIGURE 2. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, 2018-2030 (USD MILLION)
  • FIGURE 3. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY REGION, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 4. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 5. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2024 VS 2030 (%)
  • FIGURE 6. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 7. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2024 VS 2030 (%)
  • FIGURE 8. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 9. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2024 VS 2030 (%)
  • FIGURE 10. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 11. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2024 VS 2030 (%)
  • FIGURE 12. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 13. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2024 VS 2030 (%)
  • FIGURE 14. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 15. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2024 VS 2030 (%)
  • FIGURE 16. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 17. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2024 VS 2030 (%)
  • FIGURE 18. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 19. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2024 VS 2030 (%)
  • FIGURE 20. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 21. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2024 VS 2030 (%)
  • FIGURE 22. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 23. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2024 VS 2030 (%)
  • FIGURE 24. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 25. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2024 VS 2030 (%)
  • FIGURE 26. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 27. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COUNTRY, 2024 VS 2030 (%)
  • FIGURE 28. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 29. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY STATE, 2024 VS 2030 (%)
  • FIGURE 30. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY STATE, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 31. EUROPE, MIDDLE EAST & AFRICA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COUNTRY, 2024 VS 2030 (%)
  • FIGURE 32. EUROPE, MIDDLE EAST & AFRICA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 33. ASIA-PACIFIC COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COUNTRY, 2024 VS 2030 (%)
  • FIGURE 34. ASIA-PACIFIC COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 35. COMPUTATIONAL FLUID DYNAMICS MARKET SHARE, BY KEY PLAYER, 2024
  • FIGURE 36. COMPUTATIONAL FLUID DYNAMICS MARKET, FPNV POSITIONING MATRIX, 2024
  • FIGURE 37. COMPUTATIONAL FLUID DYNAMICS MARKET: RESEARCHAI
  • FIGURE 38. COMPUTATIONAL FLUID DYNAMICS MARKET: RESEARCHSTATISTICS
  • FIGURE 39. COMPUTATIONAL FLUID DYNAMICS MARKET: RESEARCHCONTACTS
  • FIGURE 40. COMPUTATIONAL FLUID DYNAMICS MARKET: RESEARCHARTICLES

LIST OF TABLES

  • TABLE 1. COMPUTATIONAL FLUID DYNAMICS MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2024
  • TABLE 3. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, 2018-2024 (USD MILLION)
  • TABLE 4. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, 2025-2030 (USD MILLION)
  • TABLE 5. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 6. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 7. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 8. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COUNTRY, 2025-2030 (USD MILLION)
  • TABLE 9. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 10. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2025-2030 (USD MILLION)
  • TABLE 11. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 12. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 13. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CONSULTING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 14. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CONSULTING, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 15. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SUPPORT & MAINTENANCE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 16. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SUPPORT & MAINTENANCE, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 17. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY TRAINING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 18. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY TRAINING, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 19. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2018-2024 (USD MILLION)
  • TABLE 20. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2025-2030 (USD MILLION)
  • TABLE 21. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 22. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 23. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPEN-SOURCE SOFTWARE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 24. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPEN-SOURCE SOFTWARE, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 25. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PROPRIETARY SOFTWARE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 26. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PROPRIETARY SOFTWARE, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 27. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2018-2024 (USD MILLION)
  • TABLE 28. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2025-2030 (USD MILLION)
  • TABLE 29. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2018-2024 (USD MILLION)
  • TABLE 30. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2025-2030 (USD MILLION)
  • TABLE 31. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY HEAT TRANSFER MODELING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 32. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY HEAT TRANSFER MODELING, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 33. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MOLECULAR FLOW MODELING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 34. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MOLECULAR FLOW MODELING, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 35. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY TURBULENCE MODELING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 36. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY TURBULENCE MODELING, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 37. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2018-2024 (USD MILLION)
  • TABLE 38. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2025-2030 (USD MILLION)
  • TABLE 39. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD HPC, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 40. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD HPC, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 41. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CPU, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 42. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CPU, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 43. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY EDGE & EMBEDDED, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 44. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY EDGE & EMBEDDED, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 45. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 46. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 47. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MULTI-GPU, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 48. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MULTI-GPU, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 49. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SINGLE GPU, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 50. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SINGLE GPU, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 51. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2018-2024 (USD MILLION)
  • TABLE 52. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2025-2030 (USD MILLION)
  • TABLE 53. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY HETEROGENEOUS CPU-GPU, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 54. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY HETEROGENEOUS CPU-GPU, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 55. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2018-2024 (USD MILLION)
  • TABLE 56. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2025-2030 (USD MILLION)
  • TABLE 57. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY LINUX, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 58. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY LINUX, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 59. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MACOS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 60. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MACOS, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 61. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WINDOWS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 62. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WINDOWS, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 63. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2018-2024 (USD MILLION)
  • TABLE 64. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2025-2030 (USD MILLION)
  • TABLE 65. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY 1D, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 66. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY 1D, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 67. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY 2D, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 68. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY 2D, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 69. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY 3D, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 70. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY 3D, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 71. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2018-2024 (USD MILLION)
  • TABLE 72. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2025-2030 (USD MILLION)
  • TABLE 73. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MESHING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 74. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MESHING, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 75. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY POST-PROCESSING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 76. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY POST-PROCESSING, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 77. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PRE-PROCESSING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 78. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PRE-PROCESSING, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 79. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOLVERS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 80. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOLVERS, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 81. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2018-2024 (USD MILLION)
  • TABLE 82. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2025-2030 (USD MILLION)
  • TABLE 83. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MULTIPHASE FLOW, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 84. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MULTIPHASE FLOW, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 85. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SINGLE-PHASE FLOW, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 86. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SINGLE-PHASE FLOW, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 87. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2018-2024 (USD MILLION)
  • TABLE 88. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2025-2030 (USD MILLION)
  • TABLE 89. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY AEROSPACE ENGINEERING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 90. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY AEROSPACE ENGINEERING, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 91. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PRODUCT DEVELOPMENT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 92. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PRODUCT DEVELOPMENT, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 93. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY VISUAL EFFECTS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 94. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY VISUAL EFFECTS, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 95. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WEATHER FORECASTING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 96. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WEATHER FORECASTING, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 97. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2018-2024 (USD MILLION)
  • TABLE 98. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2025-2030 (USD MILLION)
  • TABLE 99. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY AEROSPACE AND DEFENSE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 100. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY AEROSPACE AND DEFENSE, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 101. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY AUTOMOTIVE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 102. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY AUTOMOTIVE, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 103. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ELECTRONICS AND SEMICONDUCTOR, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 104. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ELECTRONICS AND SEMICONDUCTOR, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 105. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENERGY, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 106. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENERGY, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 107. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY HEALTHCARE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 108. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY HEALTHCARE, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 109. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY INDUSTRIAL EQUIPMENT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 110. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY INDUSTRIAL EQUIPMENT, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 111. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MATERIAL AND CHEMICAL PROCESSING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 112. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MATERIAL AND CHEMICAL PROCESSING, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 113. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OIL AND GAS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 114. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OIL AND GAS, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 115. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2018-2024 (USD MILLION)
  • TABLE 116. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2025-2030 (USD MILLION)
  • TABLE 117. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 118. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 119. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY HYBRID CLOUD, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 120. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY HYBRID CLOUD, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 121. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PRIVATE CLOUD, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 122. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PRIVATE CLOUD, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 123. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PUBLIC CLOUD, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 124. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PUBLIC CLOUD, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 125. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2018-2024 (USD MILLION)
  • TABLE 126. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2025-2030 (USD MILLION)
  • TABLE 127. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ON-PREMISE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 128. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ON-PREMISE, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 129. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2018-2024 (USD MILLION)
  • TABLE 130. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2025-2030 (USD MILLION)
  • TABLE 131. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY LARGE ENTERPRISES, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 132. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY LARGE ENTERPRISES, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 133. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SMALL & MEDIUM ENTERPRISES, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 134. GLOBAL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SMALL & MEDIUM ENTERPRISES, BY REGION, 2025-2030 (USD MILLION)
  • TABLE 135. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 136. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2025-2030 (USD MILLION)
  • TABLE 137. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2018-2024 (USD MILLION)
  • TABLE 138. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2025-2030 (USD MILLION)
  • TABLE 139. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2018-2024 (USD MILLION)
  • TABLE 140. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2025-2030 (USD MILLION)
  • TABLE 141. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2018-2024 (USD MILLION)
  • TABLE 142. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2025-2030 (USD MILLION)
  • TABLE 143. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2018-2024 (USD MILLION)
  • TABLE 144. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2025-2030 (USD MILLION)
  • TABLE 145. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2018-2024 (USD MILLION)
  • TABLE 146. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2025-2030 (USD MILLION)
  • TABLE 147. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2018-2024 (USD MILLION)
  • TABLE 148. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2025-2030 (USD MILLION)
  • TABLE 149. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2018-2024 (USD MILLION)
  • TABLE 150. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2025-2030 (USD MILLION)
  • TABLE 151. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2018-2024 (USD MILLION)
  • TABLE 152. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2025-2030 (USD MILLION)
  • TABLE 153. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2018-2024 (USD MILLION)
  • TABLE 154. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2025-2030 (USD MILLION)
  • TABLE 155. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2018-2024 (USD MILLION)
  • TABLE 156. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2025-2030 (USD MILLION)
  • TABLE 157. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2018-2024 (USD MILLION)
  • TABLE 158. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2025-2030 (USD MILLION)
  • TABLE 159. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2018-2024 (USD MILLION)
  • TABLE 160. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2025-2030 (USD MILLION)
  • TABLE 161. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2018-2024 (USD MILLION)
  • TABLE 162. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2025-2030 (USD MILLION)
  • TABLE 163. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2018-2024 (USD MILLION)
  • TABLE 164. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2025-2030 (USD MILLION)
  • TABLE 165. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 166. AMERICAS COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COUNTRY, 2025-2030 (USD MILLION)
  • TABLE 167. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 168. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2025-2030 (USD MILLION)
  • TABLE 169. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2018-2024 (USD MILLION)
  • TABLE 170. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2025-2030 (USD MILLION)
  • TABLE 171. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2018-2024 (USD MILLION)
  • TABLE 172. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2025-2030 (USD MILLION)
  • TABLE 173. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2018-2024 (USD MILLION)
  • TABLE 174. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2025-2030 (USD MILLION)
  • TABLE 175. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2018-2024 (USD MILLION)
  • TABLE 176. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2025-2030 (USD MILLION)
  • TABLE 177. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2018-2024 (USD MILLION)
  • TABLE 178. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2025-2030 (USD MILLION)
  • TABLE 179. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2018-2024 (USD MILLION)
  • TABLE 180. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2025-2030 (USD MILLION)
  • TABLE 181. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2018-2024 (USD MILLION)
  • TABLE 182. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2025-2030 (USD MILLION)
  • TABLE 183. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2018-2024 (USD MILLION)
  • TABLE 184. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2025-2030 (USD MILLION)
  • TABLE 185. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2018-2024 (USD MILLION)
  • TABLE 186. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2025-2030 (USD MILLION)
  • TABLE 187. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2018-2024 (USD MILLION)
  • TABLE 188. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2025-2030 (USD MILLION)
  • TABLE 189. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2018-2024 (USD MILLION)
  • TABLE 190. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2025-2030 (USD MILLION)
  • TABLE 191. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2018-2024 (USD MILLION)
  • TABLE 192. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2025-2030 (USD MILLION)
  • TABLE 193. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2018-2024 (USD MILLION)
  • TABLE 194. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2025-2030 (USD MILLION)
  • TABLE 195. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2018-2024 (USD MILLION)
  • TABLE 196. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2025-2030 (USD MILLION)
  • TABLE 197. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY STATE, 2018-2024 (USD MILLION)
  • TABLE 198. UNITED STATES COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY STATE, 2025-2030 (USD MILLION)
  • TABLE 199. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 200. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2025-2030 (USD MILLION)
  • TABLE 201. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2018-2024 (USD MILLION)
  • TABLE 202. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2025-2030 (USD MILLION)
  • TABLE 203. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2018-2024 (USD MILLION)
  • TABLE 204. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2025-2030 (USD MILLION)
  • TABLE 205. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2018-2024 (USD MILLION)
  • TABLE 206. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2025-2030 (USD MILLION)
  • TABLE 207. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2018-2024 (USD MILLION)
  • TABLE 208. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2025-2030 (USD MILLION)
  • TABLE 209. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2018-2024 (USD MILLION)
  • TABLE 210. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2025-2030 (USD MILLION)
  • TABLE 211. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2018-2024 (USD MILLION)
  • TABLE 212. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2025-2030 (USD MILLION)
  • TABLE 213. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2018-2024 (USD MILLION)
  • TABLE 214. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2025-2030 (USD MILLION)
  • TABLE 215. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2018-2024 (USD MILLION)
  • TABLE 216. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2025-2030 (USD MILLION)
  • TABLE 217. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2018-2024 (USD MILLION)
  • TABLE 218. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2025-2030 (USD MILLION)
  • TABLE 219. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2018-2024 (USD MILLION)
  • TABLE 220. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2025-2030 (USD MILLION)
  • TABLE 221. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2018-2024 (USD MILLION)
  • TABLE 222. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2025-2030 (USD MILLION)
  • TABLE 223. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2018-2024 (USD MILLION)
  • TABLE 224. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2025-2030 (USD MILLION)
  • TABLE 225. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2018-2024 (USD MILLION)
  • TABLE 226. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2025-2030 (USD MILLION)
  • TABLE 227. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2018-2024 (USD MILLION)
  • TABLE 228. CANADA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2025-2030 (USD MILLION)
  • TABLE 229. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 230. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2025-2030 (USD MILLION)
  • TABLE 231. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2018-2024 (USD MILLION)
  • TABLE 232. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2025-2030 (USD MILLION)
  • TABLE 233. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2018-2024 (USD MILLION)
  • TABLE 234. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2025-2030 (USD MILLION)
  • TABLE 235. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2018-2024 (USD MILLION)
  • TABLE 236. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2025-2030 (USD MILLION)
  • TABLE 237. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2018-2024 (USD MILLION)
  • TABLE 238. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2025-2030 (USD MILLION)
  • TABLE 239. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2018-2024 (USD MILLION)
  • TABLE 240. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2025-2030 (USD MILLION)
  • TABLE 241. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2018-2024 (USD MILLION)
  • TABLE 242. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2025-2030 (USD MILLION)
  • TABLE 243. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2018-2024 (USD MILLION)
  • TABLE 244. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2025-2030 (USD MILLION)
  • TABLE 245. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2018-2024 (USD MILLION)
  • TABLE 246. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2025-2030 (USD MILLION)
  • TABLE 247. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2018-2024 (USD MILLION)
  • TABLE 248. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2025-2030 (USD MILLION)
  • TABLE 249. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2018-2024 (USD MILLION)
  • TABLE 250. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2025-2030 (USD MILLION)
  • TABLE 251. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2018-2024 (USD MILLION)
  • TABLE 252. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2025-2030 (USD MILLION)
  • TABLE 253. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2018-2024 (USD MILLION)
  • TABLE 254. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2025-2030 (USD MILLION)
  • TABLE 255. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2018-2024 (USD MILLION)
  • TABLE 256. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2025-2030 (USD MILLION)
  • TABLE 257. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2018-2024 (USD MILLION)
  • TABLE 258. MEXICO COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2025-2030 (USD MILLION)
  • TABLE 259. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 260. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2025-2030 (USD MILLION)
  • TABLE 261. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2018-2024 (USD MILLION)
  • TABLE 262. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2025-2030 (USD MILLION)
  • TABLE 263. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2018-2024 (USD MILLION)
  • TABLE 264. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2025-2030 (USD MILLION)
  • TABLE 265. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2018-2024 (USD MILLION)
  • TABLE 266. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2025-2030 (USD MILLION)
  • TABLE 267. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2018-2024 (USD MILLION)
  • TABLE 268. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2025-2030 (USD MILLION)
  • TABLE 269. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2018-2024 (USD MILLION)
  • TABLE 270. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2025-2030 (USD MILLION)
  • TABLE 271. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2018-2024 (USD MILLION)
  • TABLE 272. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2025-2030 (USD MILLION)
  • TABLE 273. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2018-2024 (USD MILLION)
  • TABLE 274. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2025-2030 (USD MILLION)
  • TABLE 275. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2018-2024 (USD MILLION)
  • TABLE 276. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2025-2030 (USD MILLION)
  • TABLE 277. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2018-2024 (USD MILLION)
  • TABLE 278. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2025-2030 (USD MILLION)
  • TABLE 279. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2018-2024 (USD MILLION)
  • TABLE 280. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2025-2030 (USD MILLION)
  • TABLE 281. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2018-2024 (USD MILLION)
  • TABLE 282. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2025-2030 (USD MILLION)
  • TABLE 283. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2018-2024 (USD MILLION)
  • TABLE 284. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DEPLOYMENT MODE, 2025-2030 (USD MILLION)
  • TABLE 285. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2018-2024 (USD MILLION)
  • TABLE 286. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY CLOUD-BASED, 2025-2030 (USD MILLION)
  • TABLE 287. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2018-2024 (USD MILLION)
  • TABLE 288. BRAZIL COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY ENTERPRISE SIZE, 2025-2030 (USD MILLION)
  • TABLE 289. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 290. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPONENT, 2025-2030 (USD MILLION)
  • TABLE 291. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2018-2024 (USD MILLION)
  • TABLE 292. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SERVICES, 2025-2030 (USD MILLION)
  • TABLE 293. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2018-2024 (USD MILLION)
  • TABLE 294. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY SOFTWARE, 2025-2030 (USD MILLION)
  • TABLE 295. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2018-2024 (USD MILLION)
  • TABLE 296. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY MODELING, 2025-2030 (USD MILLION)
  • TABLE 297. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2018-2024 (USD MILLION)
  • TABLE 298. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY COMPUTING ARCHITECTURE, 2025-2030 (USD MILLION)
  • TABLE 299. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2018-2024 (USD MILLION)
  • TABLE 300. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY GPU, 2025-2030 (USD MILLION)
  • TABLE 301. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2018-2024 (USD MILLION)
  • TABLE 302. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY OPERATING SYSTEM, 2025-2030 (USD MILLION)
  • TABLE 303. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2018-2024 (USD MILLION)
  • TABLE 304. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY DIMENSIONALITY, 2025-2030 (USD MILLION)
  • TABLE 305. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2018-2024 (USD MILLION)
  • TABLE 306. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY WORKFLOW STAGE, 2025-2030 (USD MILLION)
  • TABLE 307. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2018-2024 (USD MILLION)
  • TABLE 308. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY PHASE, 2025-2030 (USD MILLION)
  • TABLE 309. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2018-2024 (USD MILLION)
  • TABLE 310. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY APPLICATIONS, 2025-2030 (USD MILLION)
  • TABLE 311. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2018-2024 (USD MILLION)
  • TABLE 312. ARGENTINA COMPUTATIONAL FLUID DYNAMICS MARKET SIZE, BY END-USE INDUSTRIES, 2025-2030 (USD MILLION)

TABLE 313

目次
Product Code: MRR-433AB1DC28A2

The Computational Fluid Dynamics Market was valued at USD 3.06 billion in 2024 and is projected to grow to USD 3.30 billion in 2025, with a CAGR of 8.46%, reaching USD 4.99 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 3.06 billion
Estimated Year [2025] USD 3.30 billion
Forecast Year [2030] USD 4.99 billion
CAGR (%) 8.46%

Positioning computational fluid dynamics as a strategic engineering capability that integrates software, services, and compute architecture to accelerate innovation and validation

Computational fluid dynamics has moved from a specialist simulation capability to a foundational engineering discipline that underpins product innovation, safety validation, and operational optimization across complex systems.

Practitioners and executives now negotiate a landscape shaped by software openness, heterogeneous compute architectures, and tighter integration between simulation and physical testing. This introduction situates readers within the technological and commercial forces that inform procurement choices and long-term capability development. It highlights how modern CFD workflows combine pre-processing, solver execution, and post-processing with data orchestration to accelerate design cycles.

The narrative emphasizes the expanding role of services alongside software, where consulting, support and maintenance, and targeted training are integral to realizing value from advanced solvers. Equally, distinctions between open-source codebases and proprietary software shape adoption dynamics, total cost of ownership considerations, and the pace at which organizations can industrialize simulation outputs into production-ready artifacts.

Finally, this opening frames the balance between computational intensity and usability, underscoring how choices in computing architecture-from cloud high-performance computing to edge and embedded deployments-affect development timelines, collaboration models, and the reproducibility of results. The introduction prepares readers to evaluate strategic trade-offs across capability segments and organizational contexts.

Understanding how algorithmic advances, heterogeneous compute transitions, and evolving service models are reshaping the computational fluid dynamics landscape for enterprise adoption

The CFD landscape is undergoing transformative shifts driven by convergence of algorithmic innovation, compute democratization, and sectoral demands for speed and fidelity.

Advances in turbulence and multiphase flow modeling are expanding solvable problem sets, enabling more accurate representation of real-world physics in shorter runtimes. At the same time, the maturation of GPU and heterogeneous CPU-GPU platforms has altered solver design priorities, prompting software vendors to optimize parallelism and memory efficiency for single GPU and multi-GPU environments. These compute shifts also intersect with the emergence of cloud HPC offerings and hybrid deployment patterns, reshaping accessibility for smaller engineering teams and distributed R&D organizations.

Open-source software ecosystems continue to accelerate method dissemination and collaborative validation, while proprietary vendors invest in user experience, solver robustness, and integrated workflows that combine meshing, pre-processing, solvers, and post-processing. Services are evolving from basic support into advanced consulting and domain-specific training, enabling customers to translate solver outputs into validated engineering decisions.

Regulatory and sustainability drivers are pushing CFD into domains such as electrified propulsion, thermal management in electrified vehicles and data centers, and renewable energy optimization. Consequently, adoption patterns are increasingly influenced by cross-functional teams that combine domain expertise, data science skills, and systems engineering perspectives. These shifts require leaders to reassess procurement strategies, talent development, and partnerships to preserve competitive advantage while ensuring reproducibility and governance of simulation assets.

Assessing how tariff shifts through 2025 reshape hardware procurement, deployment strategies, and supply-chain resilience for computational fluid dynamics stakeholders

The cumulative effects of tariff actions announced or implemented in the United States through 2025 introduce multifaceted implications for CFD vendors, hardware suppliers, and end users who operate transnational supply chains.

Tariff changes increase the cost volatility of compute hardware and pre-configured appliances that many organizations rely on for on-premise high-performance computing. As a result, procurement cycles and total cost assessments are influenced by duties applied to servers, accelerators, and storage systems. For organizations that historically favored on-premise investments, elevated import costs can accelerate migration to cloud-based HPC, hybrid solutions, or domestic assembly and sourcing strategies. Conversely, vendors that localize manufacturing or establish regionally distributed supply chains gain a strategic advantage in pricing and lead-time stability.

Software vendors are affected indirectly through increased customer sensitivity to capital expenditures and through adjustments in support and maintenance models to account for changing deployment footprints. For companies delivering integrated hardware-software solutions, tariffs amplify the need to modularize offerings so that software licensing and services remain competitively priced even if hardware elements face import levies.

From a geopolitical risk perspective, tariffs accentuate the importance of supply-chain resilience and contractual flexibility. Engineering organizations must weigh the benefits of long-term hardware ownership against the agility of cloud-based compute that can mitigate exposure to hardware price spikes. Procurement and finance teams are therefore urged to incorporate scenario planning that models duty-related cost pressures, lead-time variability, and vendor localization as key drivers of procurement strategy through 2025 and beyond.

Strategic segmentation analysis revealing how component, modeling, compute, deployment, and industry dimensions determine CFD priorities, procurement, and capability roadmaps

Segmentation insights illuminate where value is realized across technology choices, workflow stages, and deployment modalities, and they provide a framework for prioritizing investments and capability development.

Across component distinctions, the market divides between services and software. Services encompass consulting, support and maintenance, and training, each of which plays a critical role in ensuring solver adoption, accelerating time-to-competency, and preserving operational continuity. Software choices split along open-source and proprietary lines, with open-source facilitating adaptation and method transparency while proprietary offerings emphasize integrated workflows, commercial support, and vendor-driven optimization. Understanding this spectrum is essential for organizations balancing customization needs against the predictability of vendor roadmaps.

Modeling segmentation separates heat transfer modeling, molecular flow modeling, and turbulence modeling, and each domain imposes distinct solver requirements and validation regimes. Heat transfer problems often demand tightly coupled multiphysics approaches, molecular flow requires rarefied gas handling and statistical methods, and turbulence modeling balances fidelity against computational tractability. These modeling distinctions influence solver selection, mesh strategies, and post-processing workflows.

Computing architecture choices include cloud HPC, CPU, edge and embedded platforms, GPU, and heterogeneous CPU-GPU environments. GPU configurations bifurcate into multi-GPU and single GPU deployments, affecting parallel scaling, memory partitioning, and solver design. Operating systems such as Linux, macOS, and Windows shape developer tooling and deployment practices, with Linux remaining dominant in production HPC while macOS and Windows serve development and desktop validation roles.

Dimensionality considerations-1D, 2D, and 3D-drive mesh complexity and solver overhead, with 3D analyses demanding extensive compute and storage resources. Workflow stages span meshing, pre-processing, solvers, and post-processing, and each stage offers targeted opportunities for automation and quality control. Phase segmentation across multiphase flow and single-phase flow determines the selection of interface-tracking methods, phase-coupling strategies, and experimental validation protocols.

Applications cut across aerospace engineering, product development, visual effects, and weather forecasting, aligning simulation fidelity and performance objectives to domain-specific validation standards. End-use industries vary from aerospace and defense to automotive, electronics and semiconductor, energy, healthcare, industrial equipment, material and chemical processing, and oil and gas, each bringing unique regulatory, certification, and operational constraints. Deployment mode choices between cloud-based and on-premise solutions are further nuanced by cloud variants-hybrid cloud, private cloud, and public cloud-which influence data governance, latency, and integration complexity. Enterprise size distinctions between large enterprises and small and medium enterprises shape procurement agility, in-house expertise, and appetite for managed services. By mapping these segmentation axes against organizational priorities, leaders can construct targeted roadmaps that align solver capability, compute architecture, and service support to business outcomes.

Regional dynamics shaping CFD adoption, procurement preferences, and compute deployment choices across the Americas, Europe Middle East Africa, and Asia-Pacific markets

Regional dynamics substantially influence technology adoption patterns, vendor positioning, and the operational trade-offs associated with compute and software investments.

In the Americas, a combination of advanced aerospace programs, automotive electrification initiatives, and a mature cloud service landscape drives demand for high-fidelity simulations and integrated HPC services. Organizations in this region emphasize regulatory compliance, product certification, and rapid iteration cycles, which favor partners that can provide robust consulting, localized support and maintenance, and training programs tailored to cross-disciplinary teams. The proximity of hyperscale cloud providers also makes cloud-based HPC an increasingly attractive alternative to capital-intensive on-premise deployments.

Europe, Middle East & Africa present a heterogeneous picture where strong industrial clusters in aerospace, energy, and chemicals coexist with emerging hubs of research and innovation. Data sovereignty, stringent regulatory environments, and a growing focus on sustainability influence procurement choices, often leading to hybrid cloud approaches or private cloud implementations that preserve control over sensitive datasets. Vendors that demonstrate adherence to regional compliance frameworks and that offer localized engineering services tend to gain traction in this complex environment.

Asia-Pacific exhibits accelerated adoption across automotive, electronics and semiconductor manufacturing, and large-scale infrastructure projects. The region's emphasis on rapid product cycles and cost-optimized manufacturing incentivizes the use of GPU-accelerated compute and cloud HPC to scale simulation workloads. Local supply-chain dynamics and government industrial policies also shape hardware sourcing and vendor partnerships, prompting a mix of on-premise clusters for latency-sensitive workflows and public cloud for burst capacity. Regional differences in talent availability and specialized engineering capability further inform how organizations structure training, consulting engagements, and long-term partnerships.

How software differentiation, service specialization, and hardware-cloud partnerships determine vendor positioning and create competitive pathways in computational fluid dynamics

Company-level insights reveal how vendors differentiate along axes of solver fidelity, integration depth, service offerings, and compute optimization.

Leading software providers increasingly position end-to-end workflows as a competitive advantage, integrating meshing, pre-processing, solver execution, and post-processing into coherent user experiences that reduce friction for multidisciplinary teams. Providers that invest in GPU and heterogeneous CPU-GPU optimization unlock performance gains for large-scale 3D and turbulence-intensive simulations, while those that emphasize modular open interfaces enhance interoperability with in-house pipelines and third-party tools.

Service-oriented firms and consulting practices are differentiating through domain specialization-providing deep expertise in industries such as aerospace certification, semiconductor thermal management, and renewable energy system modeling. These service providers combine hands-on solver tuning with knowledge transfer programs in support and training, enabling customers to operationalize simulation workflows and maintain validation rigor.

Hardware and cloud providers are competing on the basis of integrated solution stacks, including pre-validated appliances, optimized instance types for single GPU and multi-GPU runs, and managed HPC services that bundle provisioning, orchestration, and security. Strategic partnerships between software vendors and cloud or hardware suppliers facilitate smoother transitions to hybrid cloud models and help customers manage total lifecycle costs and operational risks.

Finally, newcomer entrants and specialist vendors are carving niches by focusing on algorithmic differentiation-novel turbulence closures, efficient multiphase solvers, or tools optimized for edge and embedded execution. These players often collaborate with academic institutions and standards bodies to validate methods and accelerate adoption within tightly regulated industries.

Actionable pathways for leaders to modernize CFD capabilities through capability audits, modular procurement, compute experimentation, and workforce development

Industry leaders must adopt a pragmatic, phased approach to modernizing CFD capabilities that balances immediate performance needs with long-term strategic resilience.

Begin by conducting a capability audit that aligns modeling requirements-such as turbulence, heat transfer, or molecular flow-with existing solver performance and validation gaps. This diagnosis should inform whether investments prioritize solver licensing, custom development on open-source stacks, or augmented services such as consulting and training to raise internal competency. Concurrently, evaluate compute architecture options by testing representative workloads across single GPU, multi-GPU, CPU, heterogeneous CPU-GPU, cloud HPC, and edge scenarios to quantify runtime, cost-efficiency, and data movement constraints.

Procurement strategies should include modular contracting that separates software licensing from hardware procurement and service delivery, enabling flexibility in the face of tariff-induced supply variability. Where data governance or latency is critical, hybrid cloud models can provide burst capacity while preserving on-premise control for sensitive workloads. Invest in workflow automation across meshing, pre-processing, solvers, and post-processing to improve throughput and reproducibility, and institutionalize validation protocols that map simulation outputs to experimental or operational benchmarks.

Talent development is equally essential; embed training programs that combine theoretical modeling with hands-on solver tuning, and cultivate cross-functional teams that bridge domain engineering, data science, and IT operations. Finally, pursue strategic vendor partnerships that prioritize open interfaces, performance roadmaps for GPU and heterogeneous compute, and joint support commitments to ensure predictable performance and upgrade paths.

A robust multi-method research framework combining expert interviews, technical literature review, scenario analysis, and case studies to validate CFD strategic implications

The research methodology synthesizes qualitative and quantitative inputs to produce robust, reproducible insights tailored for executive decision-making and technical implementation.

Primary research included structured interviews with software architects, computational scientists, procurement leaders, and systems engineers across aerospace, automotive, energy, semiconductor, and industrial equipment sectors. These conversations explored solver selection criteria, compute architecture trade-offs, deployment preferences, and the evolving role of services in operationalizing simulation outputs. Secondary research integrated peer-reviewed literature on turbulence and multiphase modeling, vendor technical documentation, and public disclosures regarding compute infrastructure trends. Comparative analysis examined software licensing models, open-source community activity, and recent technical breakthroughs in GPU and heterogeneous compute utilization.

Scenario analysis was used to explore the implications of tariff dynamics, supply-chain disruptions, and cloud adoption accelerants. Case studies illustrated application-specific best practices for meshing strategies, solver parameterization, and post-processing validation across representative 1D, 2D, and 3D workloads. Validation of findings incorporated cross-verification between interview insights and documented technical performance claims, and methodological limitations were documented to ensure transparency-particularly where vendor roadmaps or proprietary benchmarks constrained comparability.

This multi-method approach balances domain depth with broad sectoral coverage, providing a pragmatic foundation for strategic planning without relying on numeric market sizing or forecasting projections.

Synthesis of key strategic imperatives showing how capability audits, compute choices, and partner strategies converge to make CFD a managed enterprise asset

In conclusion, computational fluid dynamics is at an inflection point where algorithmic advances, compute heterogeneity, and service-oriented delivery models jointly determine how organizations capture engineering value.

The intersection of GPU acceleration, cloud-based HPC, and mature open-source ecosystems expands the set of solvable problems while challenging leaders to refine procurement strategies and workforce capabilities. Tariff developments through 2025 add a layer of supply-chain and cost uncertainty that can be mitigated through modular contracting, regional sourcing strategies, and cloud-enabled flexibility. Segmentation across components, modeling approaches, compute architectures, operating systems, dimensionality, workflow stages, phase considerations, applications, end-use industries, deployment modes, and enterprise size provides a comprehensive lens for prioritizing investments and aligning simulation capabilities to business outcomes.

Leaders who combine rigorous capability audits, targeted training, and strategic vendor partnerships will be best positioned to translate CFD investment into measurable engineering improvements, faster certification cycles, and resilient operational models. The imperative is to treat CFD as a strategic asset-managed through governance, validated processes, and continuous performance optimization-rather than as a set of isolated tools.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of machine learning algorithms for automated mesh generation and optimization in CFD simulations
  • 5.2. Adoption of GPU-accelerated solvers for high-fidelity large-scale transient flow analysis in industrial applications
  • 5.3. Cloud-native CFD platforms enabling scalable on-demand compute resources and collaborative simulation workflows
  • 5.4. Development of digital twin frameworks coupling CFD with IoT data for real-time monitoring and predictive maintenance
  • 5.5. Application of multiphysics simulation combining fluid, thermal, and structural analysis for electric vehicle component design
  • 5.6. Advancements in high-order turbulence modeling techniques for accurate prediction of transitional and turbulent flows
  • 5.7. Deployment of CFD-driven design optimization loops for additive manufacturing process parameter tuning and defect reduction
  • 5.8. Integration of CFD with augmented reality interfaces for interactive visualization and decision-making in engineering design

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Computational Fluid Dynamics Market, by Component

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Consulting
    • 8.2.2. Support & Maintenance
    • 8.2.3. Training
  • 8.3. Software
    • 8.3.1. Open-Source Software
    • 8.3.2. Proprietary Software

9. Computational Fluid Dynamics Market, by Modeling

  • 9.1. Introduction
  • 9.2. Heat Transfer Modeling
  • 9.3. Molecular Flow Modeling
  • 9.4. Turbulence Modeling

10. Computational Fluid Dynamics Market, by Computing Architecture

  • 10.1. Introduction
  • 10.2. Cloud HPC
  • 10.3. CPU
  • 10.4. Edge & Embedded
  • 10.5. GPU
    • 10.5.1. Multi-GPU
    • 10.5.2. Single GPU
  • 10.6. Heterogeneous CPU-GPU

11. Computational Fluid Dynamics Market, by Operating System

  • 11.1. Introduction
  • 11.2. Linux
  • 11.3. macOS
  • 11.4. Windows

12. Computational Fluid Dynamics Market, by Dimensionality

  • 12.1. Introduction
  • 12.2. 1D
  • 12.3. 2D
  • 12.4. 3D

13. Computational Fluid Dynamics Market, by Workflow Stage

  • 13.1. Introduction
  • 13.2. Meshing
  • 13.3. Post-Processing
  • 13.4. Pre-Processing
  • 13.5. Solvers

14. Computational Fluid Dynamics Market, by Phase

  • 14.1. Introduction
  • 14.2. Multiphase Flow
  • 14.3. Single-Phase Flow

15. Computational Fluid Dynamics Market, by Applications

  • 15.1. Introduction
  • 15.2. Aerospace engineering
  • 15.3. Product development
  • 15.4. Visual effects
  • 15.5. Weather forecasting

16. Computational Fluid Dynamics Market, by End-use Industries

  • 16.1. Introduction
  • 16.2. Aerospace And Defense
  • 16.3. Automotive
  • 16.4. Electronics And Semiconductor
  • 16.5. Energy
  • 16.6. Healthcare
  • 16.7. Industrial Equipment
  • 16.8. Material and Chemical Processing
  • 16.9. Oil And Gas

17. Computational Fluid Dynamics Market, by Deployment Mode

  • 17.1. Introduction
  • 17.2. Cloud-Based
    • 17.2.1. Hybrid Cloud
    • 17.2.2. Private Cloud
    • 17.2.3. Public Cloud
  • 17.3. On-Premise

18. Computational Fluid Dynamics Market, by Enterprise Size

  • 18.1. Introduction
  • 18.2. Large Enterprises
  • 18.3. Small & Medium Enterprises

19. Americas Computational Fluid Dynamics Market

  • 19.1. Introduction
  • 19.2. United States
  • 19.3. Canada
  • 19.4. Mexico
  • 19.5. Brazil
  • 19.6. Argentina

20. Europe, Middle East & Africa Computational Fluid Dynamics Market

  • 20.1. Introduction
  • 20.2. United Kingdom
  • 20.3. Germany
  • 20.4. France
  • 20.5. Russia
  • 20.6. Italy
  • 20.7. Spain
  • 20.8. United Arab Emirates
  • 20.9. Saudi Arabia
  • 20.10. South Africa
  • 20.11. Denmark
  • 20.12. Netherlands
  • 20.13. Qatar
  • 20.14. Finland
  • 20.15. Sweden
  • 20.16. Nigeria
  • 20.17. Egypt
  • 20.18. Turkey
  • 20.19. Israel
  • 20.20. Norway
  • 20.21. Poland
  • 20.22. Switzerland

21. Asia-Pacific Computational Fluid Dynamics Market

  • 21.1. Introduction
  • 21.2. China
  • 21.3. India
  • 21.4. Japan
  • 21.5. Australia
  • 21.6. South Korea
  • 21.7. Indonesia
  • 21.8. Thailand
  • 21.9. Philippines
  • 21.10. Malaysia
  • 21.11. Singapore
  • 21.12. Vietnam
  • 21.13. Taiwan

22. Competitive Landscape

  • 22.1. Market Share Analysis, 2024
  • 22.2. FPNV Positioning Matrix, 2024
  • 22.3. Competitive Analysis
    • 22.3.1. Airflow Sciences Corporation
    • 22.3.2. Altair Engineering Inc.
    • 22.3.3. ANSYS, Inc.
    • 22.3.4. Autodesk, Inc.
    • 22.3.5. Azore Software, LLC
    • 22.3.6. byteLAKE
    • 22.3.7. Cadence Design Systems, Inc.
    • 22.3.8. Cape CFD
    • 22.3.9. COMSOL, Inc.
    • 22.3.10. Convergent Science, Inc.
    • 22.3.11. Dassault Systemes SE
    • 22.3.12. Dive Solutions GmbH
    • 22.3.13. ESI Group by Keysight Technologies, Inc.
    • 22.3.14. FEXILON TECHNOLOGIES
    • 22.3.15. Graphler Technology Solutions
    • 22.3.16. Hexagon AB
    • 22.3.17. Hitech Digital Solutions LLP
    • 22.3.18. Mr CFD Company, LLC
    • 22.3.19. PTC Inc.
    • 22.3.20. Resolved Analytics, PLLC
    • 22.3.21. Siemens AG
    • 22.3.22. Simerics Inc.
    • 22.3.23. Streamwise GmbH
    • 22.3.24. Symscape
    • 22.3.25. Tridiagonal Solutions Pvt. Ltd.
    • 22.3.26. VirtusAero, LLC
    • 22.3.27. OpenCFD Ltd.
    • 22.3.28. EnginSoft S.p.A.
    • 22.3.29. Flow Science, Inc.
    • 22.3.30. SimScale GmbH
    • 22.3.31. Virtura3D

23. ResearchAI

24. ResearchStatistics

25. ResearchContacts

26. ResearchArticles

27. Appendix