![]() |
市場調査レポート
商品コード
1804796
造船における非推進用電動モーターシステム市場:モータータイプ別、定格出力別、定格電圧別、冷却方式別、船舶タイプ別、販売チャネル別 - 2025年~2030年の世界予測Non-Propulsion Electric Motor Systems in Shipbuilding Market by Motor Type, Power Rating, Voltage Rating, Cooling Method, Vessel Type, Sales Channel - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
造船における非推進用電動モーターシステム市場:モータータイプ別、定格出力別、定格電圧別、冷却方式別、船舶タイプ別、販売チャネル別 - 2025年~2030年の世界予測 |
出版日: 2025年08月28日
発行: 360iResearch
ページ情報: 英文 183 Pages
納期: 即日から翌営業日
|
造船における非推進用電動モーターシステム市場は、2024年には56億4,000万米ドルとなり、2025年には59億8,000万米ドル、CAGR6.18%で成長し、2030年には80億9,000万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年2024 | 56億4,000万米ドル |
推定年2025 | 59億8,000万米ドル |
予測年2030 | 80億9,000万米ドル |
CAGR(%) | 6.18% |
非推進用電動モーターシステムは、海事産業における極めて重要な進歩であり、運航効率と環境性能の大幅な向上をもたらします。これらのモーターは、錨泊やバラスト管理からビルジ・ポンプ、デッキ・クレーンの吊り上げ、消火、係留、操舵装置、換気まで、船上のさまざまな機能を駆動し、船舶がますます厳しくなる規制要件や持続可能性要件を満たすことを保証します。伝統的な油圧や機械駆動の補機類が完全に電気的なアーキテクチャに移行するにつれ、船主やオペレーターは、信頼性の向上、メンテナンスの複雑さの軽減、港や海上でのより静かなオペレーションを達成することができます。
近年、非推進用電動モーターシステムの状況は、技術革新と規制圧力の両方によって大きな変化を経験しています。メーカーは、より高いトルク密度、改善された熱管理、リアルタイムの性能監視を備えたモーターを提供するために、先進的な材料、パワーエレクトロニクス、スマートセンサーを統合しています。同時に、デジタル化の動向は、予知保全アルゴリズムと遠隔診断機能をモーターコントローラーに直接組み込むことを可能にし、造船所とオペレーターが故障を予見して保全スケジュールを最適化することを可能にし、それによって計画外のダウンタイムを削減しています。
米国政府による2025年に向けた新関税の発表は、非推進用電動モーターシステムのコスト方程式に重要な変数を導入します。主要な製造拠点から輸入される部品やサブアセンブリーは追加関税に直面する可能性があり、OEMや造船所はグローバルな調達戦略の見直しを迫られます。例えば、レアアース磁石や特殊なラミネートなどの重要な原材料は、関税の影響を受けやすい地域を通過する場合、コストが高くなる可能性があり、最終顧客の価格設定や契約交渉に影響を与えます。
多次元的なセグメンテーションフレームワークにより、非推進用電動モーターシステムの需要パターンとカスタマイズ要件のニュアンスが明らかになりました。モータの種類別に分類すると、アンカーウィンドラスモータ、バラストポンプモータ、ビルジポンプモータ、デッキクレーンホイストモータ、消防ポンプモータ、係留ウィンチモータ、ステアリングギアモータ、換気ファンモータは、それぞれ独自のトルク、速度、環境保護の要求を提示し、OEMを差別化された製品ポートフォリオとアフターマーケットサポート戦略へと導きます。
地域ダイナミックスは、非推進用電動モーターシステムの採用曲線に大きな影響を与えます。南北アメリカでは、老朽化した船隊の改修イニシアチブと港湾の排出規制区域の組み合わせが、アフターサービスネットワークと迅速な部品入手に重点を置いた電動補機への投資を促進しています。欧州、中東・アフリカに目を移すと、厳しい環境指令と主要航路における高い船舶輸送量が相まって、船級協会が受入基準を定義する上で極めて重要な役割を果たしており、新造船と改造ソリューションの両方にとって力強い市場が形成されています。
非推進用電動モーターシステムの競合情勢は、グローバルなOEMと専門メーカーが混在していることが特徴です。既存企業は研究開発に多額の投資を行い、漸進的な効率向上を達成する一方、中小企業は機敏性を活用してニッチ・ソリューションや迅速なカスタマイズ機能を導入しています。モーターメーカーとオートメーションプロバイダーとの協力関係は、造船業者にとって調達と設置を簡素化する統合ドライブパッケージを可能にします。
業界のリーダーは、高効率モータ技術とスマート制御プラットフォームへの継続的な投資を優先し、ライフサイクルコストの優位性を実証する必要があります。学術機関や船級協会との共同研究パートナーシップを確立することで、斬新なモーター設計の検証を加速し、進化する安全・環境基準への適合を認証することができます。同時に、柔軟な製造プロセスとモジュール式製品アーキテクチャを開発することで、多様な船舶タイプや出力要件に対応するための迅速なカスタマイズと拡張性が可能になります。
本分析では、1次調査と2次調査を組み合わせた厳格な混合調査手法を採用しています。一次的洞察は、造船所、船舶運航会社、電動モーターOEM、システムインテグレーターの意思決定者との構造化されたインタビューから得ており、運用上の課題と投資の優先順位を包括的に理解しています。二次調査情報には、技術動向と競合を検証するための業界刊行物、規制当局への届出、船級協会の技術標準、特許データベースなどが含まれます。
非推力電動モーターシステムの進化は、環境規制、デジタル化、運航効率への要求によって推進される、より広範な海事変革の裏付けとなっています。モーター設計、パワーエレクトロニクス、インテリジェント制御システムの技術的進歩により、造船業者やオペレーターはライフサイクルコストを最適化しながら、厳しい排出量目標を達成できるようになっています。同時に、2025年に予定されている米国の関税引き上げなど、新たな貿易政策により、積極的なサプライチェーン戦略と弾力的な調達モデルが求められています。
The Non-Propulsion Electric Motor Systems in Shipbuilding Market was valued at USD 5.64 billion in 2024 and is projected to grow to USD 5.98 billion in 2025, with a CAGR of 6.18%, reaching USD 8.09 billion by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 5.64 billion |
Estimated Year [2025] | USD 5.98 billion |
Forecast Year [2030] | USD 8.09 billion |
CAGR (%) | 6.18% |
Non-propulsion electric motor systems represent a pivotal advancement in the maritime industry, offering substantial gains in operational efficiency and environmental performance. These motors drive a variety of onboard functions-from anchoring and ballast management to bilge pumping, deck crane hoisting, fire suppression, mooring, steering gear, and ventilation-ensuring that vessels meet increasingly stringent regulatory and sustainability requirements. As traditional hydraulic and mechanically driven auxiliaries give way to fully electric architectures, shipowners and operators can achieve improved reliability, reduced maintenance complexity, and quieter operation in port and at sea.
Understanding the impact of these systems is critical for stakeholders across the value chain. Navies seek enhanced mission readiness and stealth capabilities, commercial shipping lines aim for lower lifecycle costs and lower carbon footprints, and offshore operators prioritize operational uptime and safety under harsh conditions. In this context, the adoption of non-propulsion electric motors aligns with global imperatives for decarbonization and energy efficiency.
This executive summary synthesizes the key developments, market drivers, regulatory influences, segmentation insights, regional dynamics, and competitive factors shaping the evolving landscape. It offers decision-makers a concise yet comprehensive overview of how non-propulsion electric motor systems are transforming shipbuilding practices and guiding the next generation of maritime technology strategies.
In recent years, the non-propulsion electric motor systems landscape has experienced profound shifts driven by both technological innovation and regulatory pressure. Manufacturers are integrating advanced materials, power electronics, and smart sensors to deliver motors with higher torque density, improved thermal management, and real-time performance monitoring. At the same time, digitalization trends are embedding predictive maintenance algorithms and remote diagnostics capabilities directly into motor controllers, allowing shipyards and operators to anticipate failures and optimize maintenance schedules, thereby reducing unplanned downtime.
Regulatory initiatives aimed at cutting greenhouse gas emissions and improving air quality have accelerated the transition from fossil-fuel-dependent auxiliaries to electric drives. Landmark regulations in the European Union, the United States, and key Asia-Pacific markets are mandating lower sulfur oxide and nitrogen oxide outputs, while some flag states are incentivizing zero-emission operations in designated port areas. In parallel, classification societies are issuing new guidelines for electric propulsion and auxiliary systems, reinforcing safety standards, electromagnetic compatibility requirements, and fault-tolerant designs.
Collectively, these technological and regulatory drivers are reshaping procurement strategies, fostering collaboration between motor OEMs and system integrators, and prompting investments in research and development. As a result, the market is witnessing a rapid evolution that demands strategic agility from both established players and emerging entrants.
The announcement of new tariffs by the United States government for 2025 introduces a significant variable into the cost equation for non-propulsion electric motor systems. Components and subassemblies imported from key manufacturing hubs may face additional duties, prompting OEMs and shipyards to reassess their global sourcing strategies. For example, critical raw materials such as rare-earth magnets and specialized laminations could become more costly if they transit tariff-sensitive jurisdictions, which in turn affects end-customer pricing and contract negotiations.
In response, certain domestic manufacturers are accelerating efforts to localize production of high-value components, while global suppliers are exploring tariff engineering strategies, such as adjusting country of origin certifications or modifying supply chain flows to minimize duty exposure. Consequently, stakeholders must monitor trade policy developments and engage in proactive scenario planning to mitigate margin erosion and avoid delivery delays.
Moreover, the cumulative impact of these measures extends beyond direct cost increases. Equipment financing models, long-term service agreements, and warranty provisions may also adjust to reflect heightened supply chain risks. As a result, companies that demonstrate supply chain resilience, transparent cost structures, and robust contingency planning are likely to gain a competitive edge in an environment shaped by evolving trade dynamics.
A multidimensional segmentation framework reveals nuances in demand patterns and customization requirements for non-propulsion electric motor systems. When classified by motor type, Anchor Windlass Motors, Ballast Pump Motors, Bilge Pump Motors, Deck Crane Hoist Motors, Fire Pump Motors, Mooring Winch Motors, Steering Gear Motors, and Ventilation Fan Motors each present unique torque, speed, and environmental protection demands, guiding OEMs toward differentiated product portfolios and aftermarket support strategies.
Examining power rating segments-below 10 HP, 10-100 HP, and more than 100 HP-uncovers distinct use cases in small coastal vessels, mainstream commercial shipping, and major offshore platforms, respectively. Voltage rating categories of low voltage, medium voltage, and high voltage further influence system architecture decisions, affecting cable sizing, switchgear selection, and insulation protocols.
Cooling methods, whether air-cooled motors for simplified installation or water-cooled variants for high-power applications, determine thermal management strategies and space requirements within machinery spaces. Vessel type segmentation across commercial shipping, ferries, naval and defense assets, offshore oil and gas installations, passenger vessels and cruise ships, specialty vessels, and yachts and pleasure craft underscores the importance of tailored compliance, certification, and onboard integration services. Finally, sales channels-aftermarket services versus OEM contracts-shape lifecycle revenue models, with aftermarket penetration offering recurring service opportunities and OEM engagements fostering design-in partnerships at the project inception stage.
Regional dynamics exert significant influence on the adoption curve for non-propulsion electric motor systems. In the Americas, a combination of retrofit initiatives in aging fleets and port emission control area regulations drive investment in electric auxiliaries, with an emphasis on aftersales service networks and rapid parts availability. Moving to Europe, Middle East & Africa, stringent environmental directives coupled with high vessel traffic volumes in major trade routes create a robust market for both newbuild and retrofit solutions, with classification societies playing a pivotal role in defining acceptance criteria.
In the Asia-Pacific region, surging shipbuilding activity, expanding ferry and cruise industries, and government incentives for green shipping foster a dynamic environment for motor OEMs. Local content requirements in certain markets promote joint ventures and technology transfer agreements, while strategic port electrification projects in key hub cities underscore the region's commitment to decarbonization. Across these geographies, partnerships between system integrators, power electronics specialists, and service providers are instrumental in addressing regional idiosyncrasies and ensuring operational readiness.
The competitive landscape for non-propulsion electric motor systems is characterized by a mix of global OEMs and specialized manufacturers. Established corporations invest heavily in R&D to achieve incremental efficiency gains, while smaller players leverage agility to introduce niche solutions and rapid customization capabilities. Collaborative alliances between motor manufacturers and automation providers enable integrated drive packages that simplify procurement and installation for shipbuilders.
Key market participants differentiate themselves through extended warranty programs, remote diagnostics portals, and circular economy initiatives, such as motor refurbishment and remanufacturing services that enhance sustainability credentials. Strategic acquisitions and joint ventures expand geographic reach, enhance product portfolios, and facilitate access to emerging markets. Service excellence, including 24/7 technical support and performance benchmarking tools, serves as a critical competitive lever, as vessel operators increasingly value total cost of ownership and operational transparency.
Innovation pipelines focus on advanced motor topologies, next-generation bearing systems, and eco-friendly insulation materials. By monitoring pilot projects in advanced vessel designs-such as hybrid ferries, crew transfer vessels, and autonomous research platforms-companies gain insights into new performance benchmarks and customer experience requirements that inform long-term strategic roadmaps.
Industry leaders should prioritize continuous investment in high-efficiency motor technologies and smart control platforms to deliver demonstrable lifecycle cost advantages. Establishing collaborative research partnerships with academic institutions and classification societies can accelerate the validation of novel motor designs and certify compliance with evolving safety and environmental standards. At the same time, developing flexible manufacturing processes and modular product architectures enables rapid customization and scalability to address diverse vessel types and power requirements.
Additionally, cultivating resilient, multi-tier supply chains with dual sourcing strategies can mitigate the impact of trade policy shifts and raw material shortages. Embracing digital twins and predictive analytics platforms enhances service offerings by providing real-time insights into motor health, energy consumption trends, and maintenance forecasts. Training programs for shipyard technicians and end-users foster higher utilization rates and reduce installation errors, while integrated aftermarket support packages-encompassing remote troubleshooting, performance benchmarking, and condition-based maintenance contracts-create recurring revenue streams.
Finally, aligning corporate sustainability goals with product roadmaps and transparent reporting structures strengthens brand reputation and supports customer commitments to decarbonization. By adopting these actionable measures, motor manufacturers and shipbuilders can secure leadership positions in a market defined by technological disruption and regulatory evolution.
This analysis employs a rigorous mixed-methodology approach combining primary and secondary research channels. Primary insights derive from structured interviews with decision-makers at shipyards, vessel operators, electric motor OEMs, and system integrators, ensuring a comprehensive understanding of operational challenges and investment priorities. Secondary research sources include industry publications, regulatory filings, technical standards from classification societies, and patent databases to validate technology trends and competitive activity.
To ensure data integrity, inputs have undergone triangulation through multiple validation steps, cross-referencing supply chain intelligence, capital expenditure announcements, and aftermarket service performance indicators. Segmentation frameworks have been defined based on motor type, power rating, voltage class, cooling method, vessel application, and sales channel dynamics, providing actionable granularity. Analytical techniques encompass SWOT analysis, scenario planning for tariff impacts, regional opportunity mapping, and strategic benchmarking of R&D pipelines.
Quality assurance protocols include peer review by industry experts, iterative feedback loops with stakeholders, and consistency checks against historical trends and known market events. While every effort has been made to ensure factual accuracy and timeliness, the dynamic nature of trade policies and technological innovation necessitates periodic updates to maintain relevance.
The evolution of non-propulsion electric motor systems underscores a broader maritime transformation driven by environmental mandates, digitalization, and demands for operational efficiency. Technological advancements in motor design, power electronics, and intelligent control systems are enabling shipbuilders and operators to meet stringent emissions targets while optimizing lifecycle costs. At the same time, emerging trade policies-such as the United States tariffs slated for 2025-require proactive supply chain strategies and resilient sourcing models.
A nuanced segmentation analysis reveals that tailoring product offerings across motor types, power and voltage ratings, cooling methods, vessel classifications, and sales channels is key to addressing specific customer needs and unlocking new revenue streams. Regional insights highlight that the Americas, Europe, Middle East & Africa, and Asia-Pacific present distinct regulatory landscapes and market drivers, each fostering unique collaboration models between motor OEMs and maritime stakeholders.
As competition intensifies, leading companies distinguish themselves through integrated service models, strategic partnerships, and sustainability-focused innovation roadmaps. By embracing the strategic recommendations outlined herein-including investment in smart motor platforms, supply chain diversification, predictive maintenance adoption, and workforce training-industry participants can secure a competitive advantage and navigate the complex dynamics shaping this rapidly evolving market.