![]() |
市場調査レポート
商品コード
1804389
作物保護におけるRNAi市場:作物タイプ別、送達方法別、対象害虫別、用途別、エンドユーザー別 - 2025年~2030年の世界予測RNAi in Crop Protection Market by Crop Type, Delivery Method, Target Pest, Application, End user - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
作物保護におけるRNAi市場:作物タイプ別、送達方法別、対象害虫別、用途別、エンドユーザー別 - 2025年~2030年の世界予測 |
出版日: 2025年08月28日
発行: 360iResearch
ページ情報: 英文 192 Pages
納期: 即日から翌営業日
|
作物保護におけるRNAi市場は2024年に26億5,000万米ドルとなり、2025年にはCAGR13.69%で30億米ドルに成長し、2030年までには57億3,000万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年(2024年) | 26億5,000万米ドル |
推定年(2025年) | 30億米ドル |
予測年(2030年) | 57億3,000万米ドル |
CAGR(%) | 13.69% |
農業分野は、害虫抵抗性の進化や環境問題により、従来の作物保護方法にかつてないプレッシャーがかかるようになり、高まる課題に直面しています。これに対し、研究者や業界のリーダーたちは、生態系への影響を最小限に抑えながら収量の安定性を高めることができる精密技術に注目しています。RNA干渉は、このような状況において先駆的なアプローチであり、特異性の向上と非標的影響の低減を約束する標的遺伝子サイレンシング能力を提供します。
作物保護の情勢は、RNA干渉が実験室での研究から現場での応用へと移行するにつれて、変革的な変化を遂げつつあります。ナノ粒子を介した送達と種子処理製剤における最近のブレークスルーは、二本鎖RNA分子の安定性と取り込みを大幅に改善しました。同時に、葉面散布技術の進歩により、より均一な散布と投与量の削減が可能になり、効力とコスト効率の両方が向上しています。
2025年に発効が予定されている米国の関税政策は、RNAiベースの作物保護ソリューションの世界的展開に複雑さをもたらしています。歴史的に、特殊化学品と生物農薬成分に対する輸入関税は、地政学的な考慮と国内農業の優先順位に応じて変動してきました。関税の最新ラウンドは、特定のバイオテクノロジー商品と中間体を特に対象としており、国境を越えたサプライチェーンに依存している企業のコスト構造に影響を及ぼしています。
微妙なセグメンテーションの枠組みは、RNAi作物保護市場における多面的な促進要因と機会を明らかにします。作物タイプ別に見ると、主要な穀物や穀類、多様な果実作物、油糧種子品種、拡大する野菜品種と並んで、綿花やタバコのような換金作物への関心が顕著です。各作物カテゴリーにはそれぞれ特有の害虫の圧力と展開条件があり、それが目標とする製剤設計と散布のタイミングに影響を与えます。
地域別分析により、RNAiベースの作物保護剤の多様な採用パターンと成長機会が明らかになりました。南北アメリカでは、トウモロコシ、ダイズ、綿花などの高価値作物の栽培面積が拡大しており、規制の明確化や業界との強力なパートナーシップに支えられ、早期の商業化が進んでいます。さらに、北米とブラジルの主要な研究拠点が、市場の信頼を支える重要なフィールド検証データに貢献しています。
主要な業界参加者は、RNAi作物保護分野におけるリーダーシップを確保するため、様々な戦略を展開しています。既存の農薬会社や種子会社は、独自の送達プラットフォームに多額の投資を行い、合成生物学企業と提携して技術ポートフォリオを拡大しています。同時に、特化したバイオテクノロジー新興企業は、俊敏な研究開発パイプラインと個々のニーズに合わせた製剤の専門知識を活用し、高価値作物や対象とする害虫クラスに焦点を当てることでニッチを切り拓いています。
RNA干渉技術の勢いを利用するために、業界リーダーは、研究開発、薬事、商業の各機能を連携させる統合的パートナーシップを優先すべきです。公的研究機関や専門的なバイオテクノロジー企業との初期段階の協力関係を確立することで、企業は技術革新サイクルを加速し、製品開発経路のリスクを軽減することができます。
この分析は、一次情報と二次情報を組み合わせた厳密な調査手法に支えられています。バイオテクノロジー企業幹部、規制専門家、学術研究者、農学者との綿密なインタビューにより、技術採用、現場での実績、市場力学に関する生の洞察を提供しました。これらの定性的な情報は、包括的なカバレッジを確保するために、査読付き文献、特許出願、政策刊行物の広範なレビューを通じて相互検証されました。
調査結果を総合すると、RNA干渉が作物保護における新時代の最前線に立ち、従来の化学物質の追随を許さない精度、持続性、多用途性を提供することは明らかです。規制状況や貿易政策は進化を続けていますが、技術革新の軌道は依然として力強く、技術改良と共同研究の努力によって推進されています。
The RNAi in Crop Protection Market was valued at USD 2.65 billion in 2024 and is projected to grow to USD 3.00 billion in 2025, with a CAGR of 13.69%, reaching USD 5.73 billion by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 2.65 billion |
Estimated Year [2025] | USD 3.00 billion |
Forecast Year [2030] | USD 5.73 billion |
CAGR (%) | 13.69% |
The agricultural sector is confronting mounting challenges as evolving pest resistance and environmental concerns place unprecedented pressure on traditional crop protection methods. In response, researchers and industry leaders are turning to precision technologies that can enhance yield stability while minimizing ecological impact. RNA interference presents itself as a pioneering approach in this context, offering targeted gene silencing capabilities that promise enhanced specificity and reduced non-target effects.
Against a backdrop of regulatory shifts and growing public demand for sustainable inputs, RNAi has emerged as a powerful mechanism to address insect pests, plant pathogens, and weed infestations. Drawing on decades of molecular biology research, this mechanism harnesses natural cellular pathways to disrupt key genetic processes in target organisms, thereby enabling highly efficient protection strategies.
This executive summary synthesizes the critical drivers and barriers shaping the adoption of RNAi in crop protection. It outlines transformative technological advances, regulatory and trade developments, detailed segmentation and regional insights, as well as competitive landscapes and actionable recommendations for industry leaders.
The landscape of crop protection is undergoing transformative shifts as RNA interference transitions from laboratory research to field applications. Recent breakthroughs in nanoparticle-mediated delivery and seed treatment formulations have significantly improved stability and uptake of double-stranded RNA molecules. Concurrently, advances in foliar spray technologies enable more uniform coverage and reduced dosages, driving both efficacy and cost efficiencies.
On the regulatory front, policy frameworks in key markets are evolving to accommodate RNAi-based products, reflecting a deeper understanding of their specificity and reduced environmental footprint compared to broad-spectrum pesticides. These developments have fostered greater collaboration between biotech firms, regulatory bodies, and academic institutions, accelerating the progression from proof of concept to commercial launch.
Moreover, digital agriculture platforms and precision crop monitoring tools are enhancing the ability to deploy RNAi solutions in a targeted manner, thereby maximizing impact while minimizing off-target effects. As a result, stakeholders across the value chain are rethinking integrated pest management strategies and recognizing RNA interference as a cornerstone technology for next-generation crop protection.
United States tariff policies scheduled to take effect in 2025 have introduced a layer of complexity to the global deployment of RNAi-based crop protection solutions. Historically, import duties on specialty chemicals and biopesticide ingredients have fluctuated in response to geopolitical considerations and domestic agricultural priorities. The latest round of tariffs specifically targets certain biotech commodities and intermediates, thereby affecting the cost structures of companies reliant on cross-border supply chains.
This cumulative impact has prompted both multinational corporations and smaller innovators to reassess manufacturing footprints, often favoring localized production hubs to mitigate tariff exposure. At the same time, research institutions have intensified efforts to develop platform technologies that reduce dependency on imported reagents, thereby enhancing resilience and ensuring continuity of field trials.
Despite these challenges, industry participants are leveraging strategic partnerships and toll manufacturing agreements to navigate tariff barriers. By diversifying supplier networks and optimizing logistics, they aim to preserve access to critical raw materials while safeguarding product affordability for end users. In this evolving trade environment, adaptive strategies will be essential to sustain momentum in RNAi commercialization and to secure long-term investment in this promising crop protection frontier.
A nuanced segmentation framework reveals the multifaceted drivers and opportunities within the RNAi crop protection market. Based on crop type, there is pronounced interest in cash crops such as cotton and tobacco, alongside major cereals and grains, diverse fruit crops, oilseed varieties, and an expanding array of vegetable cultivars. Each crop category presents unique pest pressures and deployment conditions that inform targeted formulation design and application timing.
In terms of delivery method, foliar spray remains the predominant channel, offering flexibility and rapid deployment, while seed treatment approaches are gaining traction for early-season protection. Meanwhile, soil drench tactics and cutting-edge nanoparticle-mediated delivery systems are emerging as promising avenues to enhance systemic uptake and extend longevity under field conditions.
Target pest segmentation highlights the predominance of insect pests, particularly coleopteran and lepidopteran species, as well as significant activity against bacterial, fungal, and viral plant pathogens. In addition, RNAi-based weed management solutions are under development to address herbicide-resistant species. Application-driven insights underscore a robust pipeline for fungal disease control and insect pest suppression, complemented by innovations in viral disease mitigation and comprehensive weed management protocols.
End users encompass a wide spectrum of stakeholders, including biotechnology firms advancing product pipelines, government and regulatory bodies establishing guidelines, research institutions and academic organizations driving basic and applied studies, and seed companies integrating RNAi traits into elite germplasm lines.
Regional analysis underscores the diverse adoption patterns and growth opportunities for RNAi-based crop protection. In the Americas, extensive acreage under high-value crops such as corn, soybean, and cotton has catalyzed early commercialization efforts, supported by favorable regulatory clarity and strong industry partnerships. Additionally, key research clusters in North America and Brazil are contributing significant field validation data that underpin market confidence.
Within Europe, the Middle East, and Africa, regulatory frameworks are evolving to accommodate the unique safety and environmental profiles of RNAi solutions. Several countries have instituted pilot programs and public-private consortia to explore RNAi efficacy under distinct climatic regimes and cropping systems. Meanwhile, demand drivers in the Middle East and Africa are closely tied to food security initiatives and sustainable intensification goals.
The Asia-Pacific region stands out for its potential scale, driven by population growth, rising food demand, and government investments in agricultural biotechnology. China, India, and Australia are leading national research agendas, with strategic emphasis on controlling resistant insect pests and fungal diseases in rice, wheat, and horticultural crops. Across these regions, local adaptation and stakeholder collaboration remain pivotal to translating laboratory breakthroughs into field success.
Key industry participants are deploying a range of strategies to secure leadership in the RNAi crop protection space. Established agrochemical and seed companies have invested heavily in proprietary delivery platforms and partnered with synthetic biology firms to broaden their technology portfolios. Concurrently, specialized biotech startups are carving out niches by focusing on high-value crops and targeted pest classes, leveraging agile R&D pipelines and tailored formulation expertise.
Strategic collaborations between multinational corporates and academic consortia have accelerated the translation of gene silencing research into scalable field solutions. Intellectual property portfolios are increasingly centered on novel dsRNA constructs, innovative encapsulation techniques, and data-driven application protocols. In parallel, contract research organizations and toll manufacturers are scaling up production capabilities, ensuring that supply chain bottlenecks do not impede market entry.
Competitive positioning is further defined by geographic coverage, with some players emphasizing market access in the Americas and Asia-Pacific through local partnerships, while others focus on regulatory engagement in Europe, the Middle East, and Africa. Ultimately, agility in navigating cross-border regulations and speed in demonstrating field efficacy will be decisive factors in determining market leadership.
To capitalize on the growing momentum behind RNA interference technologies, industry leaders should prioritize integrated partnerships that align R&D, regulatory affairs, and commercial functions. By establishing early-stage collaborations with public research entities and specialized biotech firms, organizations can accelerate innovation cycles and de-risk product development pathways.
In addition, engaging proactively with policy makers and industry associations will help shape transparent regulatory frameworks, fostering stakeholder confidence and smoothing pathways to market authorization. Companies should also invest in scalable manufacturing platforms, exploring options for onshore production to mitigate trade-related uncertainties and ensure supply chain resilience.
Adoption of advanced digital agriculture tools, such as precision application systems and real-time crop monitoring, can enhance the efficacy of RNAi solutions and demonstrate clear value propositions to growers. Finally, ongoing education and outreach initiatives will be critical to building farmer awareness and acceptance, particularly in regions where RNAi represents a novel mode of action. Through these strategic actions, industry players can secure competitive advantage and contribute to a more sustainable agricultural future.
This analysis is underpinned by a rigorous research methodology combining primary and secondary information sources. In-depth interviews with biotech executives, regulatory experts, academic researchers, and agronomists provided first-hand insights into technology adoption, field performance, and market dynamics. These qualitative inputs were cross-validated through extensive review of peer-reviewed literature, patent filings, and policy publications to ensure comprehensive coverage.
Secondary research drew upon scientific databases, industry white papers, and regulatory filings to map the evolution of RNAi technologies and to identify key legislative developments across major agricultural markets. Quantitative data points were triangulated against independent third-party reports and proprietary databases to verify trends and growth vectors.
Through iterative analysis and stakeholder validation, the research team distilled critical segmentation frameworks, regional priorities, and competitive landscapes. Case studies and real-world trial data were incorporated to illustrate practical applications and to highlight performance benchmarks. This multi-layered approach ensures that the findings reflect the latest industry advancements and provide actionable intelligence for decision makers.
In synthesizing the findings, it is clear that RNA interference stands at the forefront of a new era in crop protection, offering precision, sustainability, and versatility unrivaled by traditional chemistries. While regulatory landscapes and trade policies continue to evolve, the trajectory of innovation remains strong, driven by technological refinements and collaborative research efforts.
The segmentation and regional insights presented herein underscore the importance of tailoring RNAi solutions to specific crop types, delivery methods, and pest pressures across diverse geographies. Moreover, competitive analysis reveals that strategic partnerships and robust intellectual property strategies are key determinants of market leadership.
As growers and stakeholders seek to balance productivity gains with environmental stewardship, RNAi technologies will play a pivotal role in integrated pest management programs. By embracing the recommendations and leveraging the data contained in this report, decision makers can position their organizations to benefit from the transformative potential of gene-silencing approaches in agriculture.