![]() |
市場調査レポート
商品コード
1804353
農業廃棄物サプライチェーン管理市場:サービスタイプ別、廃棄物タイプ別、処理プロセス別、展開モデル別、用途別、エンドユーザー別 - 2025~2030年世界予測Agri-Waste Supply Chain Management Market by Service-Type, Waste Type, Treatment Process, Deployment Model, Application, End-User - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
農業廃棄物サプライチェーン管理市場:サービスタイプ別、廃棄物タイプ別、処理プロセス別、展開モデル別、用途別、エンドユーザー別 - 2025~2030年世界予測 |
出版日: 2025年08月28日
発行: 360iResearch
ページ情報: 英文 194 Pages
納期: 即日から翌営業日
|
農業廃棄物サプライチェーン管理市場は、2024年には126億8,000万米ドルとなり、2025年には136億2,000万米ドル、CAGR 7.67%で成長し、2030年には197億6,000万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年、2024年 | 126億8,000万米ドル |
推定年、2025年 | 136億2,000万米ドル |
予測年、2030年 | 197億6,000万米ドル |
CAGR(%) | 7.67% |
農業廃棄物サプライチェーンは、近年、深刻化する環境問題、技術革新、進化する政策に後押しされ、大きな変貌を遂げています。世界的な食糧需要を満たすために農業生産が拡大するにつれ、廃棄物の量と多様性は飛躍的に増大しています。このイントロダクションでは、一次生産者から処理サービス・プロバイダーに至るまで、バリュー・チェーン全体の利害関係者が、収集、処理、加工、最終用途利用の複雑なネットワークをどのようにナビゲートしなければならないかを明らかにすることで、その舞台を整えます。
農業廃棄物サプライチェーンは、急速なデジタル化、革新的な処理手法、そして循環型社会への政策的重点の強化により、パラダイムシフトを経験しています。廃棄物の量と品質属性をリアルタイムで追跡できるデジタル・プラットフォームは、回収ネットワークに革命をもたらし、サービス・プロバイダーが経路を最適化し、物流コストを削減し、トレーサビリティを強化することを可能にしています。同時に、生物学的・熱的変換プロセスの進歩により、バイオ肥料から再生可能なバイオガスまで、最終用途のスペクトルが拡大し、民間セクターの投資が拡大しています。
米国が2025年に新たな関税を課すことで、農業廃棄物ロジスティクス、貿易ルート、供給力学に複雑な層がもたらされました。特定のバイオマス残渣とバイオベース中間体に対する輸入関税を引き上げることで、国内の加工産業を保護し、現地での有価化を奨励する意図があります。しかし、この保護主義的アプローチは海外サプライヤーの競合力を変化させ、調達戦略の転換や既存の貿易パートナーシップの再評価を促します。
農業廃棄物市場のセグメンテーションから得られた洞察は、利害関係者がナビゲートしなければならない明確な力学を明らかにします。サービスタイプの違いを検証すると、収集サービスは、農業生産者と輸送事業者を結びつけるデジタルマッチングプラットフォームによってますます推進されていること、処理サービスは、リサイクル業者とのパートナーシップを通じて埋立地の転換を優先していること、リサイクルサービスは、バイオ肥料や再生可能エネルギーソリューションなどの統合された最終製品の提供へと拡大していることがわかります。単純な廃棄物処理から付加価値処理への移行は、競合情勢を再構築しています。
農業廃棄物サプライチェーンの地域別分析により、優先事項、インフラの成熟度、規制の枠組みが異なることが明らかになりました。南北アメリカでは、再生可能エネルギーとバイオエコノミーの取り組みに対する強力な政策支援が、大規模な嫌気性消化と熱分解の設置を促進しました。北米と南米の利害関係者は、原料の異質性を管理するために収集ロジスティクスの改良を続けており、公的機関と民間企業は国境を越えた廃棄物利用プロジェクトで協力しています。
業界のリーダーは、戦略的パートナーシップ、的を絞った投資、継続的なイノベーションを通じて、その地位を確固たるものにしています。大手ロジスティクス・インテグレーターは、デジタル・プラットフォームを導入して回収ネットワークを調整し、効率化を推進する一方、テクノロジー・プロバイダーと協力して次世代残渣処理をテストしています。専門サービス・プロバイダーは、高純度のバイオ肥料や特殊化学品を生産するためにリサイクル事業を拡大し、大手産業企業との引取契約を確保することで市場での差別化を強化しています。
業界のリーダーは、農業廃棄物のサプライチェーン全体をエンド・ツー・エンドで可視化できるデジタル追跡・分析プラットフォームの統合を優先すべきです。データサイエンスを活用して原料の供給可能性を予測し、輸送ルートを最適化することで、意思決定者は業務効率を高め、カーボンフットプリントを削減することができます。同時に、生産者、サービス・プロバイダー、技術革新者、規制当局など、複数の利害関係者が連携することで、大規模な処理ハブや共有インフラの展開が加速し、コストが分散され、市場参入リスクが軽減されます。
本分析の基礎となる調査は、厳密性と信頼性を確保するために混合調査手法を採用しました。1次調査は、農業協同組合、廃棄物処理会社、技術開発、政策専門家の幹部との綿密なインタビューで構成されました。これらの会話から、多様な地域や最終用途セグメントにおける事業運営上の課題、投資の優先順位、規制への期待に関する定性的洞察が得られました。
本調査は、農業廃棄物利害関係者が直面する戦略的な必要性を強調する包括的な視点に結実しています。デジタル化が高度な治療技術や進化する政策枠組みと融合する中、統合されたサプライチェーンソリューションを編成する能力は、かつてないほど重要になっています。収集ロジスティクスの機敏な編成と、モジュール型および集中型の処理能力への的を絞った投資とが相まって、どの組織が業界のリーダーとして台頭するかが決まると思われます。
The Agri-Waste Supply Chain Management Market was valued at USD 12.68 billion in 2024 and is projected to grow to USD 13.62 billion in 2025, with a CAGR of 7.67%, reaching USD 19.76 billion by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 12.68 billion |
Estimated Year [2025] | USD 13.62 billion |
Forecast Year [2030] | USD 19.76 billion |
CAGR (%) | 7.67% |
The agri-waste supply chain has undergone a profound metamorphosis in recent years, driven by escalating environmental imperatives, technological breakthroughs, and evolving policies. As agricultural production intensifies to meet global food demands, the volume and diversity of waste streams have grown exponentially. This introduction sets the stage by highlighting how stakeholders across the value chain-from primary producers to treatment service providers-must navigate a complex network of collection, handling, processing, and end-use utilization.
At its core, agri-waste management is more than disposing of residual biomass; it entails capturing value through recycling, energy recovery, and the generation of bio-based products. Emerging consumer awareness and corporate sustainability commitments further accentuate the urgency for robust frameworks that transform by-products into revenue-generating streams. Moreover, regulatory bodies worldwide are tightening controls on landfill usage and waste emissions, compelling participants to rethink traditional disposal methods.
In this evolving context, understanding the intersection of market forces, technological advancements, and regulatory landscapes is critical. This section will unpack the foundational significance of efficient agri-waste supply chains, illustrating why optimizing each node-collection, transport, treatment, and distribution-can unlock economic, environmental, and social benefits. By framing the challenges and opportunities ahead, we establish a lens through which the subsequent analysis will reveal strategic imperatives for decision-makers seeking sustainable growth in the agri-waste ecosystem.
The agri-waste supply chain is experiencing a paradigm shift driven by rapid digitalization, innovative processing methodologies, and a stronger policy focus on circularity. Digital platforms that enable real-time tracking of waste volumes and quality attributes are revolutionizing collection networks, allowing service providers to optimize routing, reduce logistical costs, and enhance traceability. Simultaneously, advances in biological and thermal conversion processes are expanding the spectrum of viable end-use applications, from biofertilizers to renewable biogas, thereby attracting greater private sector investment.
Policy landscapes have also undergone transformative shifts. Governments are introducing incentive mechanisms to stimulate recycling infrastructure and penalize landfill usage, while trade agreements are increasingly incorporating environmental clauses that impact cross-border movements of agri-residues. Public-private collaborations have emerged as a cornerstone for developing shared facilities and knowledge-transfer platforms, catalyzing innovation across the value chain.
These changes converge to create an environment where agility and strategic foresight are paramount. Organizations must embrace integrated digital solutions, foster partnerships that bridge technology and logistics expertise, and stay attuned to shifting regulatory requirements. This section delves into the critical transformational vectors-digital integration, advanced treatment techniques, and policy evolution-that are reshaping how agri-waste is managed, traded, and valorized globally.
The imposition of new tariffs by the United States in 2025 has introduced a layer of complexity to agri-waste logistics, trade routes, and supply dynamics. By raising import duties on select biomass residues and bio-based intermediates, the intent is to protect domestic processing industries and incentivize local valorization. However, this protectionist approach alters the competitiveness of foreign suppliers, prompting shifts in sourcing strategies and the reevaluation of existing trade partnerships.
Exporters from traditional regions are now facing higher duties, which can erode margins and compel some to seek tariff mitigation strategies, such as establishing on-the-ground collection hubs within the United States or forming joint ventures with domestic logistics operators. Concurrently, some end-users are pivoting toward alternative feedstocks or on-site recycling solutions to mitigate cost increases, accelerating investment into modular treatment units that bypass import restrictions.
While the long-term efficacy of these tariffs remains a topic of debate, their immediate impact underscores the interdependence of trade policy and supply chain resilience. The reconfiguration of trade flows could foster near-source processing clusters, but might also reduce the availability of specialized biomass types that are not widely generated domestically. This section evaluates how these tariff measures are influencing stakeholder decisions, trade balances, and infrastructure planning across the agri-waste sector.
Insights derived from segmenting the agri-waste market reveal distinct dynamics that stakeholders must navigate. Examining service-type distinctions shows that collection services are increasingly driven by digital matching platforms that link agricultural producers with transport operators, disposal services are prioritizing landfill diversion through partnerships with recyclers, and recycling services are expanding into integrated end-product offerings such as biofertilizers and renewable energy solutions. Transitioning from simple waste removal to value-added processing is reshaping competitive landscapes.
A deeper look at waste-type segmentation highlights how different feedstocks command unique handling, treatment, and end-market requirements. Animal waste, encompassing manure, poultry litter, and slurry, is leveraged increasingly for anaerobic digestion to produce biogas and nutrient-rich digestate. Crop residues like husk, stalk, and straw are finding new life in thermal conversion systems that generate biochar and syngas. Food processing wastes-including dairy by-products, fruit peels, and vegetable offcuts-are channeled into composting or acid hydrolysis routes, while forestry residues such as bark, branches, and sawdust are processed via gasification or pyrolysis to produce heat and power.
The treatment process dimension further reveals how biological methods, chemical pathways, and thermal conversion technologies converge. Anaerobic digestion and composting are scaling rapidly to meet renewable energy targets and soil health demands. Acid hydrolysis, alkali treatment, and advanced oxidation are unlocking novel biopolymer streams, and gasification, incineration, and pyrolysis are delivering flexible energy outputs and carbon sequestration co-benefits.
When considering deployment models, off-site facilities are gaining traction for high-capacity centralized processing, while on-site units appeal to users seeking lower transportation costs and rapid turnaround. Application segmentation shows that outputs are spread across the animal feed sector, biofertilizer markets, energy generators, and industrial chemical manufacturers. Finally, understanding end-user segments-from farmers and agricultural cooperatives to waste management companies, renewable energy firms, food and beverage processors, governments, and fertilizer producers-is vital for aligning service offerings with real-world demand patterns.
Regional analysis of the agri-waste supply chain underscores varying priorities, infrastructure maturity, and regulatory frameworks. In the Americas, strong policy support for renewable energy and bioeconomy initiatives has catalyzed large-scale anaerobic digestion and pyrolysis installations. North and South American stakeholders continue to refine collection logistics to manage the heterogeneity of feedstocks, while public institutions and private enterprises collaborate on cross-border waste utilization projects.
Across Europe, the Middle East, and Africa, European Union directives on circularity and waste hierarchy are setting high standards for recycling quotas, spurring the development of integrated biomass resource parks. Middle Eastern nations, endowed with land availability, are piloting solar-powered thermal conversion units to address seasonal surpluses of crop residues. Meanwhile, parts of Africa are leveraging decentralized composting systems to improve soil health, with support from international development organizations.
In the Asia-Pacific region, rapid urbanization, land constraints, and stringent environmental policies are driving the adoption of compact, modular treatment technologies. Industrial clusters in Southeast Asia are integrating chemical and thermal processes to valorize food processing waste domestically. In Australia and New Zealand, collaboration between agricultural cooperatives and energy firms is creating new models for co-digestion that optimize resource utilization and reduce greenhouse gas emissions.
Industry leaders are solidifying their positions through strategic partnerships, targeted investments, and continuous innovation. Major logistics integrators are deploying digital platforms to coordinate collection networks and drive efficiencies while collaborating with technology providers to test next-generation treatment residues. Specialized service providers are scaling recycling operations to produce high-purity biofertilizers and specialty chemicals, reinforcing their market differentiation by securing off-take agreements with leading industrial firms.
Technology innovators are focusing on modular, scalable solutions that address feedstock variability and meet evolving policy requirements. Partnerships between equipment manufacturers and design consultancies are accelerating the commercialization of advanced thermal conversion modules, which can be rapidly deployed at generation sites. In parallel, collaborative research consortia comprising universities, public research institutes, and private firms are advancing chemical treatment pathways that convert biomass into high-value intermediates for bio-plastics and bio-fuels.
These companies are also investing in end-use marketing channels, forging alliances with fertilizer distributors, energy utilities, and agricultural supply chains to ensure that recycled products gain traction. Meanwhile, established waste management conglomerates are acquiring niche technology firms to broaden their service portfolios and gain access to specialized processing capabilities. This section highlights how leading players are orchestrating cross-sector collaborations, investing in scalable technologies, and aligning their strategies with sustainability mandates to capture emerging opportunities.
Industry leaders should prioritize the integration of digital tracking and analytics platforms that enable end-to-end visibility across the agri-waste supply chain. By leveraging data science to forecast feedstock availability and optimize transportation routes, decision-makers can enhance operational efficiency and reduce carbon footprints. Concurrently, forging multi-stakeholder coalitions-including producers, service providers, technology innovators, and regulators-will accelerate the deployment of large-scale processing hubs and shared infrastructure, distributing costs and mitigating market entry risks.
Investment in flexible modular treatment units offers a compelling hedge against feedstock variability and tariff disruptions. Companies can deploy mobile biogas digesters or containerized pyrolysis reactors at generation sites to capture value on-site, reducing reliance on external processing facilities. Furthermore, establishing strategic alliances with chemical and energy offtakers can de-risk product commercialization and secure stable revenue streams.
To navigate evolving policy landscapes, leaders must engage proactively with regulatory bodies, contributing technical expertise to shape incentive frameworks and environmental standards. This collaborative approach enhances compliance readiness and enables organizations to influence the design of subsidy programs and trade conditions. Finally, continuous capability building-through workforce training, R&D investment, and pilot-scale experimentation-will ensure that organizations remain at the vanguard of emerging treatment technologies and circular economy paradigms.
The research underpinning this analysis employed a blended methodology to ensure rigor and credibility. Primary research comprised in-depth interviews with executives from agricultural cooperatives, waste management firms, technology developers, and policy experts. These conversations provided qualitative insights into operational challenges, investment priorities, and regulatory expectations across diverse geographies and end-use segments.
Secondary data analysis involved the systematic review of industry reports, academic studies, trade publications, and regulatory filings. This process enabled the triangulation of market trends, technology adoption rates, and policy developments, ensuring that conclusions were grounded in a comprehensive information set. To further validate findings, a quantitative verification approach leveraged data points from customs databases, proprietary logistics trackers, and financial disclosures to confirm the prevalence of key processing routes and trade flows.
Throughout the research process, cross-validation exercises were conducted to reconcile divergent viewpoints, reduce biases, and strengthen the overall analysis. The combination of expert interviews, robust data synthesis, and statistical corroboration resulted in a holistic perspective on agri-waste supply chain management, offering actionable insights and strategic guidance for decision-makers.
This study culminates in a comprehensive perspective that underscores the strategic imperatives facing agri-waste stakeholders. As digitalization converges with advanced treatment technologies and evolving policy frameworks, the ability to orchestrate integrated supply chain solutions has never been more critical. Agile orchestration of collection logistics, coupled with targeted investments in modular and centralized processing capacities, will determine which organizations emerge as industry leaders.
Navigating the implications of trade measures-such as the 2025 tariff adjustments-and capitalizing on regional policy incentives will require stakeholder collaboration and proactive engagement with regulators. The segmentation insights highlight the necessity of tailoring service offerings to specific feedstock characteristics and end-market demands, while regional analysis demonstrates that solutions must be calibrated to local infrastructural capabilities and regulatory contexts.
Ultimately, the path to sustainable agri-waste management demands a clear alignment of commercial objectives with environmental stewardship. By embracing circular economy principles and fostering partnerships across the ecosystem, organizations can unlock new revenue streams, strengthen supply chain resilience, and contribute meaningfully to decarbonization goals. This conclusive synthesis provides the strategic pathways for leaders committed to driving the next wave of innovation in agri-waste supply chains.