![]() |
市場調査レポート
商品コード
1718084
データセンター向けGPU市場:製品、メモリ容量、導入モデル、エンドユーザー別-2025-2030年の世界予測Data Center GPU Market by Product, Memory Capacity, Deployment Model, End-User - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
データセンター向けGPU市場:製品、メモリ容量、導入モデル、エンドユーザー別-2025-2030年の世界予測 |
出版日: 2025年04月01日
発行: 360iResearch
ページ情報: 英文 196 Pages
納期: 即日から翌営業日
|
データセンター向けGPU市場の2024年の市場規模は251億3,000万米ドルで、2025年には304億4,000万米ドル、CAGR21.55%で成長し、2030年には810億7,000万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年 2024 | 251億3,000万米ドル |
推定年 2025 | 304億4,000万米ドル |
予測年 2030 | 810億7,000万米ドル |
CAGR(%) | 21.55% |
データセンターGPUは、高性能ワークロードを強化し、人工知能、ビッグデータ分析、クラウドコンピューティングの飛躍的進歩を推進する、現代のコンピューティングにおける極めて重要な資産として急速に台頭しています。スケーラビリティと効率性がますます重視される市場において、GPUはもはやニッチなアプリケーションに追いやられるのではなく、世界中のデータセンター運用に不可欠なものとなっています。これらのプロセッシング・ユニットの進化は、コンピューティング・インフラストラクチャにおける深い変革を浮き彫りにしており、高速処理と並列計算機能がデジタルトランスフォーメーションの高まる要求に応えています。ハードウェアアーキテクチャとシステム設計の革新により、企業は従来のボトルネックを克服し、リアルタイム分析から複雑なシミュレーションやモデリングまで、さまざまなタスクを高速化できるようになりました。
このイントロダクションでは、データセンターの展望を再定義する新たな動向と技術の進歩について概説します。競合や運用上の課題に対応するために企業が進化を続ける中、データセンターのGPUは現在、パフォーマンスと運用効率を高めるためのバックボーンとしての役割を果たしています。本レポートでは、データセンター向けGPU市場の堅調な成長と多様化を示す、変革要因、セグメンテーションの洞察、地域別ダイナミクス、主要企業、戦略的提言について解説します。
データセンターGPU導入における業界の変革的変化
業界における最近のシフトは、データセンターGPUが重要な技術システムにどのように統合されるかを再定義しています。汎用コンピューティングからアクセラレータベースの特化型アーキテクチャへの移行により、速度、効率、精度が最優先される環境が生まれました。人工知能、機械学習、リアルタイム画像処理などの新たなアプリケーションが技術革新に拍車をかけ、データセンターに不可欠な資産としてGPUに対する需要が急激に高まっています。
技術の進歩により、現在ではソフトウェアとハードウェアのシームレスな融合が可能になり、よりコスト効率とエネルギー効率の高いソリューションが生み出されています。この変革は、クラウドとオンプレミスの両モデルを統合したハイブリッド・システムの展開に顕著に表れており、企業はさまざまな運用ニーズに柔軟に対応できるようになっています。生産性は、ディスクリートと統合GPUソリューションの両方をサポートし、より高い計算密度と性能を推進する、カスタマイズされた設計によってさらに向上します。レガシーインフラストラクチャがこれらの最新アーキテクチャに移行するにつれ、意思決定者はGPUの強化された機能を活用したスループットの向上と合理化されたオペレーションを目の当たりにしています。
業界のリーダーたちは、技術的なハードルを克服し、GPUのイノベーションをビジネスクリティカルなアプリケーションにさらに統合するための研究開発に投資することで、デジタルトランスフォーメーションの原動力としてのGPUの役割を確固たるものにしています。このダイナミックな環境は、データセンターGPUの潜在能力を最大限に活用し、急速に進化する市場環境で競争優位性を確保するための俊敏な戦略の必要性を強調しています。
データセンターGPUの包括的なセグメンテーション洞察
データセンターGPU市場のセグメンテーションは、多面的なエコシステムとその多様なアプリケーションに関する貴重な洞察を提供します。製品タイプを分析すると、市場はディスクリートGPUソリューションと統合GPUソリューションで明確に観察され、それぞれが異なるエンドユースシナリオに対応し、目標とする性能強化を実現しています。メモリ容量の領域では、4GB~8GB搭載モデル、8GB~16GBで動作するもの、16GBを超える構成、さらには4GB以下の容量のオプションまで、セグメンテーションの幅が広いです。この差別化は、スピードとデータ処理能力のバランスが不可欠となる計算タスクの多様な要求に対応するために極めて重要です。
デプロイメント・モデルは、クラウド環境とオンプレミスのデータセンターでデプロイされるソリューションを区分し、市場セグメンテーションをさらに細分化します。この区分は、スケーラブルなリモート運用と専用の内部システムの両方をサポートするデータセンターGPUの適応性を強調し、企業が特定のインフラ設定に基づいて性能を最適化できることを保証します。さらに、エンドユーザー別の区分では、この技術がさまざまな業種でどのように活用されているかについての詳細な展望が開かれます。銀行、金融サービス、保険などの分野では、コンテンツ作成、合成データ生成、テキスト生成、画像や動画のリアルタイム分析、レコメンダー・システム、音声認識や翻訳に焦点を当てたカテゴリーにさらに細分化されています。同様に、教育分野もこのアプローチを反映しており、コンテンツ作成、合成データ生成、テキスト生成、リアルタイムの画像・動画処理、ディープラーニング・モデルのトレーニングや強化学習などの学習主導型アプリケーションに加え、レコメンダー機能のために設計されたシステムなど、詳細なサブカテゴリーが設けられています。
エネルギー・公共事業、政府、ヘルスケアといった他の主要産業も、コンテンツ生成、合成データ生成、豊富な推論分析に特化した強化された機能を提供することで、同様のパターンをたどっています。IT・通信、製造、メディア・エンターテインメント、小売の各分野では、業界固有の課題に対処しながら、共通のフレームワークを可能にするセグメンテーション戦略が並行して進められています。これらすべてのセグメントにおいて、多様な業務分野にわたる学習、推論、生成を包含する分析の粒度は、戦略的イニシアチブの立案に役立つ包括的な洞察を提供します。この細分化された視点は、テクノロジー・プロバイダーがダイナミックに革新し、各市場セグメント特有の要件に合わせたサービスを提供する必要性を強調しています。
TA
The Data Center GPU Market was valued at USD 25.13 billion in 2024 and is projected to grow to USD 30.44 billion in 2025, with a CAGR of 21.55%, reaching USD 81.07 billion by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 25.13 billion |
Estimated Year [2025] | USD 30.44 billion |
Forecast Year [2030] | USD 81.07 billion |
CAGR (%) | 21.55% |
Data center GPUs have rapidly ascended as pivotal assets in modern computing, powering high-performance workloads and driving breakthroughs in artificial intelligence, big data analytics, and cloud computing. With a market increasingly focused on scalability and efficiency, GPUs are no longer relegated to niche applications but have become integral to data center operations worldwide. The evolution of these processing units underscores a deep transformation in computing infrastructure, where accelerated processing and parallel computation capabilities meet the rising demands of digital transformation. Innovations in hardware architecture and system design have allowed enterprises to overcome traditional bottlenecks, accelerating tasks that range from real-time analytics to complex simulation and modeling.
This introduction outlines the emerging trends and technological advancements that are redefining the data center landscape. With enterprises continuously evolving to meet competitive and operational challenges, data center GPUs now serve as the backbone for enhancing performance and operational efficiency. In this narrative, we explore the transformative drivers, segmentation insights, regional dynamics, key players, and strategic recommendations that collectively delineate the robust growth and diversification within the data center GPU market.
Transformative Industry Shifts in Data Center GPU Deployment
Recent shifts in the industry have redefined how data center GPUs are integrated into critical technology systems. The shift from general-purpose computing to specialized, accelerator-based architectures has created an environment where speed, efficiency, and precision are paramount. Emerging applications in artificial intelligence, machine learning, and real-time image processing have spurred innovation, triggering an exponential demand for GPUs as indispensable assets in data centers.
Technological advancements now enable a seamless blend of software and hardware, generating solutions that are more cost-effective and energy-efficient. This transformation is evident in the deployment of hybrid systems that integrate both cloud and on-premise models, ensuring that organizations can flexibly adapt to varying operational needs. Productivity is further amplified by tailored designs that support both discrete and integrated GPU solutions, driving higher computational density and performance. As legacy infrastructures make way for these modern architectures, decision-makers are witnessing improved throughput and streamlined operations that capitalize on the enhanced capabilities of GPUs.
Industry leaders are channeling investments into research and development to overcome technical hurdles and further integrate GPU innovations into business-critical applications, thereby solidifying their role as engines of digital transformation. This dynamic environment emphasizes the need for agile strategies to harness the full potential of data center GPUs, ensuring competitive advantage in a fast-evolving market landscape.
Comprehensive Segmentation Insights for Data Center GPUs
The segmentation of the data center GPU market provides valuable insights into the multifaceted ecosystem and its diverse applications. When analyzing product types, the market is distinctly observed across discrete and integrated GPU solutions, each catering to different end-use scenarios and delivering targeted performance enhancements. In the realm of memory capacity, the segmentation ranges from models equipped with 4GB to 8GB, those that operate within 8GB to 16GB, configurations above 16GB, and even options with capacities below 4GB. This differentiation is crucial for addressing the varied demands of computational tasks, where the balancing of speed and data handling capability becomes essential.
Deployment models further refine market segmentation, delineating the solutions deployed in cloud environments and on-premise data centers. This division highlights the adaptability of data center GPUs to support both scalable remote operations and dedicated internal systems, ensuring that enterprises can optimize performance based on specific infrastructural setups. In addition, the segmentation by end-user opens an in-depth perspective on how this technology is being harnessed across distinct verticals. Sectors such as banking, financial services, and insurance are dissected further into categories focused on content creation, synthetic data generation, text generation, real-time analytics of imagery and video, recommender systems, as well as speech recognition and translation. Similarly, the education domain mirrors this approach, with detailed sub-categories for content creation, synthetic data generation, text generation, real-time image and video processing, and systems designed for recommender functionalities alongside learning-driven applications, including deep learning model training and reinforcement learning.
Other key industries like energy and utilities, government, and healthcare follow a similar pattern by providing enhanced capabilities tailored to content generation, synthetic data production, and rich inferential analytics. In the sphere of information technology and telecommunications, as well as manufacturing, media and entertainment, and retail sectors, companies are witnessing parallel segmentation strategies that allow a common framework while addressing industry-specific challenges. Across all these segments, the granularity of analysis-encompassing learning, inference, and generation across diverse operational fields-provides comprehensive insights that help in crafting strategic initiatives. This segmented perspective underscores the necessity for technology providers to innovate dynamically and to align their offerings with the unique requirements of each market segment.
Based on Product, market is studied across Discrete and Integrated.
Based on Memory Capacity, market is studied across 4GB to 8GB, 8GB to 16GB, Above 16GB, and Below 4 GB.
Based on Deployment Model, market is studied across Cloud and On-premise.
Based on End-User, market is studied across BFSI, Education, Energy & Utilities, Government, Healthcare, IT & Telecommunications, Manufacturing, Media & Entertainment, and Retail. The BFSI is further studied across BFSI - Generation - Content Creation, BFSI - Generation - Synthetic Data Generation, BFSI - Generation - Text Generation, BFSI - Inference - Real-time Image & Video Analytics, BFSI - Inference - Recommender Systems, BFSI - Inference - Speech Recognition & Translation, BFSI - Learning - Data Analytics & Big Data Processing, BFSI - Learning - Deep Learning Model Training, and BFSI - Learning - Reinforcement Learning. The Education is further studied across Education - Generation - Content Creation, Education - Generation - Synthetic Data Generation, Education - Generation - Text Generation, Education - Inference - Real-time Image & Video Analytics, Education - Inference - Recommender Systems, Education - Inference - Speech Recognition & Translation, Education - Learning - Data Analytics & Big Data Processing, Education - Learning - Deep Learning Model Training, and Education - Learning - Reinforcement Learning. The Energy & Utilities is further studied across Energy & Utilities - Generation - Content Creation, Energy & Utilities - Generation - Synthetic Data Generation, Energy & Utilities - Generation - Text Generation, Energy & Utilities - Inference - Real-time Image & Video Analytics, Energy & Utilities - Inference - Recommender Systems, Energy & Utilities - Inference - Speech Recognition & Translation, Energy & Utilities - Learning - Data Analytics & Big Data Processing, Energy & Utilities - Learning - Deep Learning Model Training, and Energy & Utilities - Learning - Reinforcement Learning. The Government is further studied across Government - Generation - Content Creation, Government - Generation - Synthetic Data Generation, Government - Generation - Text Generation, Government - Inference - Real-time Image & Video Analytics, Government - Inference - Recommender Systems, Government - Inference - Speech Recognition & Translation, Government - Learning - Data Analytics & Big Data Processing, Government - Learning - Deep Learning Model Training, and Government - Learning - Reinforcement Learning. The Healthcare is further studied across Healthcare - Generation - Content Creation, Healthcare - Generation - Synthetic Data Generation, Healthcare - Generation - Text Generation, Healthcare - Inference - Real-time Image & Video Analytics, Healthcare - Inference - Recommender Systems, Healthcare - Inference - Speech Recognition & Translation, Healthcare - Learning - Data Analytics & Big Data Processing, Healthcare - Learning - Deep Learning Model Training, and Healthcare - Learning - Reinforcement Learning. The IT & Telecommunications is further studied across IT & Telecommunications - Generation - Content Creation, IT & Telecommunications - Generation - Synthetic Data Generation, IT & Telecommunications - Generation - Text Generation, IT & Telecommunications - Inference - Real-time Image & Video Analytics, IT & Telecommunications - Inference - Recommender Systems, IT & Telecommunications - Inference - Speech Recognition & Translation, IT & Telecommunications - Learning - Data Analytics & Big Data Processing, IT & Telecommunications - Learning - Deep Learning Model Training, and IT & Telecommunications - Learning - Reinforcement Learning. The Manufacturing is further studied across Manufacturing - Generation - Content Creation, Manufacturing - Generation - Synthetic Data Generation, Manufacturing - Generation - Text Generation, Manufacturing - Inference - Real-time Image & Video Analytics, Manufacturing - Inference - Recommender Systems, Manufacturing - Inference - Speech Recognition & Translation, Manufacturing - Learning - Data Analytics & Big Data Processing, Manufacturing - Learning - Deep Learning Model Training, and Manufacturing - Learning - Reinforcement Learning. The Media & Entertainment is further studied across Media & Entertainment - Generation - Content Creation, Media & Entertainment - Generation - Synthetic Data Generation, Media & Entertainment - Generation - Text Generation, Media & Entertainment - Inference - Real-time Image & Video Analytics, Media & Entertainment - Inference - Recommender Systems, Media & Entertainment - Inference - Speech Recognition & Translation, Media & Entertainment - Learning - Data Analytics & Big Data Processing, Media & Entertainment - Learning - Deep Learning Model Training, and Media & Entertainment - Learning - Reinforcement Learning. The Retail is further studied across Retail - Generation - Content Creation, Retail - Generation - Synthetic Data Generation, Retail - Generation - Text Generation, Retail - Inference - Real-time Image & Video Analytics, Retail - Inference - Recommender Systems, Retail - Inference - Speech Recognition & Translation, Retail - Learning - Data Analytics & Big Data Processing, Retail - Learning - Deep Learning Model Training, and Retail - Learning - Reinforcement Learning.
Analyzing the regional landscape reveals a nuanced picture of data center GPU adoption across major global markets. In the Americas, the adoption has been robust, driven by strong investments in technology infrastructure and a continuous push for digital transformation. Strategic deployments are prevalent in developed economies where innovation meets high operational demand. Meanwhile, in the Europe, Middle East & Africa region, a growing emphasis on technological modernization and regulatory frameworks is fostering a fertile environment for GPU integration. This regional approach not only emphasizes growth in established economies but also highlights emerging opportunities driven by investments in high-tech manufacturing and service sectors.
In the Asia-Pacific, rapid industrialization coupled with increasing digitalization has accelerated the deployment of advanced GPU solutions across various sectors. The convergence of government initiatives and private sector investments in cutting-edge technology creates a landscape rich with opportunity, steadily positioning the region as an influential player in the global technology arena. Overall, the regional insights point to differentiated growth trajectories and localized strategies that cater to the specific requirements and challenges of each market environment.
Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.
Insights on Leading Global Companies in the Data Center GPU Space
Key industry players are shaping the narrative of the data center GPU market through their persistent innovation and strategic investments. Leading companies such as Advanced Micro Devices, Inc. and Analog Devices, Inc. are consistently pushing the boundaries of performance, while Arm Holdings PLC plays a critical role in crafting the architectures that underpin emerging GPU strategies. Technology firms like ASUSTeK Computer Inc. and Broadcom Inc. have significantly contributed by developing novel solutions that resonate with today's high-demand computational tasks.
Global giants including Fujitsu Limited and Google LLC by Alphabet Inc. are leveraging their expansive research and development capabilities to pioneer custom solutions that cater to diverse data center requirements. Corporations such as Hewlett Packard Enterprise Company, Huawei Investment & Holding Co., Ltd., and Imagination Technologies Limited maintain a competitive edge through advanced technological integration and strategic market positioning. Meanwhile, stalwarts like Intel Corporation and International Business Machines Corporation have a long-standing legacy of driving innovation in data processing and hardware acceleration, further solidifying the market landscape.
In the realm of software and hardware convergence, Microsoft Corporation and Oracle Corporation are redefining enterprise solutions, bolstering the capabilities of data center GPUs. Dominating the market with cutting-edge designs and rigorous performance standards, NVIDIA Corporation stands out as a formidable force driving industry standards. Complemented by VeriSilicon Microelectronics (Shanghai) Co., Ltd., these companies are collectively steering the industry towards enhanced performance, greater efficiency, and expanded market reach.
The report delves into recent significant developments in the Data Center GPU Market, highlighting leading vendors and their innovative profiles. These include Advanced Micro Devices, Inc., Analog Devices, Inc., Arm Holdings PLC, ASUSTeK Computer Inc., Broadcom Inc., Fujitsu Limited, Google LLC by Alphabet Inc., Hewlett Packard Enterprise Company, Huawei Investment & Holding Co., Ltd., Imagination Technologies Limited, Intel Corporation, International Business Machines Corporation, Microsoft Corporation, NVIDIA Corporation, Oracle Corporation, and VeriSilicon Microelectronics (Shanghai) Co., Ltd.. Actionable Recommendations for Industry Leaders in Evolving GPU Markets
Industry leaders are advised to emphasize agility and robust innovation in response to the continuous evolution within the data center GPU market. First and foremost, it is essential to invest in research that explores both incremental improvements and disruptive technologies, ensuring that product portfolios are versatile enough to meet varying computational needs. Fostering strategic partnerships with technology providers and integrating college and industry research can help bridge the gap between emerging trends and market applications.
Organizations should focus on tailoring products by leveraging detailed segmentation insights, ensuring that offerings resonate with the specific requirements of each market segment. For instance, designing solutions that cater to both discrete and integrated products while optimizing for a broad range of memory capacities will open avenues to capture diverse customer segments. In parallel, enhancing cloud and on-premise deployment capabilities provides an operational advantage by offering scalable and flexible solutions.
Furthermore, adopting a regional strategy that addresses localized demands and regulatory nuances will be key. This includes optimizing operational efficiencies in the Americas, Europe, Middle East & Africa, and Asia-Pacific by developing customized deployment models that align with regional economic dynamics and technological maturity. Lastly, continuous competitive analysis of key companies within the market will provide invaluable insights that can drive proactive decision-making and provide a sustainable competitive edge over time.
Conclusion: Strategic Outlook for the Data Center GPU Market
In conclusion, the evolving landscape of data center GPUs demonstrates a compelling convergence of innovation, market segmentation, and regional cooperation. Through strategic refinements in product development, deployment models, and market segmentation, the sector is poised for significant growth. The insights derived from detailed segmentation analysis not only reveal the heterogeneous demands across various industries but also provide a pathway for enhanced value propositions and technology integration strategies.
The ongoing advancements in GPU technology are reshaping computing infrastructure, offering unparalleled benefits in terms of scalability, performance, and efficiency. As traditional systems give way to next-generation solutions, organizations are increasingly focusing on aligning their operational and strategic initiatives with emerging technological trends. This comprehensive overview underscores the transformative potential embedded in the market, highlighting the importance of adopting agile and visionary strategies to maintain a competitive edge in a rapidly evolving technological environment.