デフォルト表紙
市場調査レポート
商品コード
1465971

医療機器における3Dプリンティング市場:製品タイプ、技術、コンポーネント、エンドユーザー別-2024~2030年の世界予測

3D Printing in Medical Devices Market by Product Type, Technology, Component, End User - Global Forecast 2024-2030

出版日: | 発行: 360iResearch | ページ情報: 英文 187 Pages | 納期: 即日から翌営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=160.88円
医療機器における3Dプリンティング市場:製品タイプ、技術、コンポーネント、エンドユーザー別-2024~2030年の世界予測
出版日: 2024年04月17日
発行: 360iResearch
ページ情報: 英文 187 Pages
納期: 即日から翌営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 図表
  • 目次
概要

医療機器における3Dプリンティング市場規模は、2023年に70億9,000万米ドルと推定され、2024年には86億9,000万米ドルに達し、CAGR 22.99%で2030年には301億9,000万米ドルに達すると予測されています。

医療機器業界ではさまざまな3Dプリンティング技術が登場し、整形外科用インプラント、手術器具、患者専用モデルなどに革新的なソリューションを提供しています。3Dプリンティングの大きな利点は、個々の患者の解剖学的構造や要件に合わせて高度にカスタマイズされた機器を製造できることです。3Dプリントされた頭蓋インプラントは、スキャンやMRI画像からの正確な測定に基づいて設計できるため、手術中の合併症を最小限に抑えながら、正確な適合を確保できます。患者固有のガイドは、外科医が関節置換術などの複雑な手技を正確に計画し、より正確に実行するのに役立ちます。近年、3Dプリンティングは、カスタマイズやラピッドプロトタイピングに固有の利点を持つため、医療機器の技術革新の原動力として台頭してきました。個別化医療や患者固有の補綴物、整形外科用インプラント、歯科器具、手術器具にこの技術を使用する傾向が強まっています。これらの用途は、金属、ポリマー、セラミック、さらには組織工学用のハイドロゲルなどの生体適合性材料の進歩によって促進されています。多くの利点があるにもかかわらず、医療機器における3Dプリンティングの広範な採用は、3Dプリント医療機器に関連するコストの高さや、これらの機器を操作する専門知識の不足が抑制要因となっているため、課題に直面しています。さらに、医療目的の3Dプリント材料を進歩させるための市場企業による継続的な研究開発努力は、医療機器業界における3Dプリントに革命をもたらすと期待されています。

主な市場の統計
基準年[2023] 70億9,000万米ドル
予測年[2024] 86億9,000万米ドル
予測年 [2030] 301億9,000万米ドル
CAGR(%) 22.99%

製品タイプ治療満足度向上のための補綴物&インプラント需要の増加

骨・軟骨スカフォールドは、骨・軟骨組織の成長と再生をサポートする生体適合性と生分解性を備えた構造体であり、機械的強度を与えながら天然の細胞外マトリックスを模倣することで、組織の修復と再生を促進します。靭帯・腱スカフォールドは骨スカフォールドに似ており、細胞が成長するための一時的な枠組みを提供することで、靭帯や腱の再生を支援するように設計されています。3Dプリンティング技術は、個々の患者のニーズに合わせて特別にカスタマイズされたインプラントや補綴物を作成することができ、従来の製造方法と比較して、より正確なフィッティング、より優れた機能性、快適性の向上を可能にします。さらに、標準的なインプラントは、関節置換術のような一般的な病状に対する大量生産された既製のソリューションです。サージカルガイドは、外科医が複雑な外科手術を正確に計画し、実行するのに役立つ患者専用のツールです。サージカルガイドは、3Dプリンティング技術を使用して、各個人の解剖学的構造に正確に合わせることができます。頭蓋顎顔面ガイドは、骨の切断、位置決め、固定のための正確なテンプレートを提供することで、頭蓋骨と顔面骨の再建手術において外科医を支援します。

さらに、歯科用ガイドは、インプラント埋入や歯列矯正治療などの歯科処置において、歯科用コンポーネントの適切な位置決めと整列を確実にするために使用されます。整形外科用ガイドは、人工関節置換手術の際に整形外科用インプラントの正確な位置合わせを補助するために設計されており、骨表面の正確な準備を可能にし、インプラントと自然の骨構造との最適な接触を確保して安定性と寿命を向上させます。3Dプリンティング技術の手術器具は、リトラクター、メス、鉗子など様々な手術器具の作成に使用されています。3Dプリントされたリトラクターは、個々の患者の解剖学的形状や特定の手技要件に合わせてカスタマイズすることができます。3Dプリントメスの製造では、刃の設計を変更することで、切断効率を高めたり、手術中の組織損傷を減らしたりすることができます。さらに、クリップやステープルなどの3Dプリント外科用ファスナーは、最適な強度、柔軟性、生体適合性を提供するように設計できます。さらに、3Dプリントと組織工学技術を組み合わせることで、生きた細胞を含む生体工学的構築物の作成が可能になり、移植用の機能的な臓器や組織の開発など、再生医療への応用に大きな可能性があります。

技術:マイクロスケールデバイス製造のための光重合技術の採用増加

液滴堆積/押し出しベースの技術では、材料の小さな液滴や連続したフィラメントを堆積させて3D構造を作る。押出しベースの方法は、ハイドロゲル、ポリマー、複合材料など、さまざまなマテリアルの取り扱いに汎用性があるため、バイオプリンティングや複雑な医療機器の製造に理想的です。溶融積層造形法(FDM)は、熱可塑性材料を利用して物体を層ごとに造形する押出ベースのプロセスです。医療分野では、手術計画や患者教育、人工装具の製造に使用される解剖学的モデルを低コストで作成できるとして人気を博しています。低温堆積法(LDM)は、低温の押し出しプロセスを使用して材料の層を堆積させるもので、繊細な生体材料への熱応力を大幅に低減し、組織工学やドラッグデリバリーシステムに適しています。多相ジェット凝固法(MJS)は、冷却された基板と接触して液滴を凝固させるインクジェットのような技術で、移植可能なデバイスや微小流体部品に理想的な、複雑な特徴を持つ高度に複雑な構造の作成を可能にします。電子ビーム溶解(EBM)は、高エネルギーの電子ビームを使用して金属粒子を層ごとに選択的に融合させる粉末床融合技術です。EBMは、優れた機械的特性と生体適合性を提供するチタンなどの金属から作られたカスタムインプラントの製造に採用されています。レーザービーム溶融(LBM)は、集光されたレーザービームが粉末粒子を選択的に溶融する、もう一つの粉末床溶融法です。LBMは、歯科補綴物や整形外科用インプラントなど、複雑な形状と優れた機械的特性を持つ高品質の金属部品の製造に優れています。ダイレクトメタルレーザー焼結(DMLS)は、レーザーベースの粉末床融合技術であり、金属粒子を組み合わせて機能的な部品を作ります。DMLSは、補聴器や歯科修復物のような複雑な医療機器の製造能力で知られるように、迅速な製造とカスタマイズを提供します。選択的レーザー溶融(SLM)は、高出力レーザーを使用して金属粉末を完全に溶融させ、固体の3D構造体にします。この技術は、機械的特性が調整され、組織統合を促進する多孔質構造を持つ複雑なインプラントの製造に大きな可能性を示しています。選択的レーザー焼結(SLS)は、粉末材料を完全に溶融させることなく焼結させるためにレーザーを用いる粉末床融合プロセスです。SLSは、プラスチックの医療モデルの作製に広く使用されているが、骨補填用の生体適合性セラミック部品や、金属インプラント上のコーティングも作製することができます。光重合技術では、紫外線やその他の放射線源を使用して液体光重合樹脂を硬化させる。これらは、ドラッグデリバリー・システム用のマイクロニードルなど、マイクロスケールのデバイス製造に必要な高解像度印刷機能を提供します。デジタル・ライト・プロセッシング(DLP)は、デジタル・プロジェクターで感光性樹脂層に紫外線を選択的に照射するバット重合法です。DLPの速度と精度は、歯科修復物、手術ガイド、補聴器の製造に魅力的な選択肢となります。PolyJet 3Dプリンティング技術は、フォトポリマーの正確な液滴を造形プラットフォームに堆積させ、紫外線で硬化させるジェットベースのプロセスです。この技術は、複数の材料と色の同時プリントを可能にし、患者固有の解剖学的モデルや複数材料のインプラントなど、多用途の医療デバイスを可能にします。ステレオリソグラフィー(SLA)は、紫外線レーザーを用いて液状の光硬化性樹脂の表面にパターンをトレースする槽内重合法です。SLAは、初期の3Dプリンティング技術の1つとして、歯科用模型、手術計画ツール、カスタム補綴物などの医療用途に広く採用されています。二光子重合(2PP)は、多光子吸収プロセスに基づく超高解像度技術であり、感光性で複雑な3D微細構造の作製を可能にします。

コンポーネント:材料適合性、生産速度に基づく様々な装置の利用拡大

革新的な3Dプリンターは、より高い精度と製品設計の柔軟性向上により、医療機器製造に革命をもたらしました。3Dプリンターによる医療機器の製造では、生体適合材料が重要な役割を果たします。チタンやステンレス鋼などの金属は、強度対重量比が高く、整形外科用インプラントや手術器具に最適です。さらに、ポリエーテルエーテルケトン(PEEK)などのポリマーは、軽量で化学薬品や摩耗に強いため、重要な代替品として浮上しています。医療機器製造をさらに最適化できるような、より優れた特性を持つ新素材を発見するために、継続的な研究が行われています。セラミック材料は、生体適合性、高硬度、耐食性、低熱伝導性といった独自の特性を有しており、いくつかの生物医学的用途に適しています。ジルコニアベースのセラミックは歯冠に広く使用されており、ハイドロキシアパタイトは骨移植材料として有効であることが証明されています。

さらに、現在進行中の研究では、組織再生やドラッグ・デリバリー・システム用の生分解性セラミック足場の開発に焦点が当てられています。医療機器製造における従来の選択肢ではないが、紙は低コストの医療機器を3Dプリントするための汎用性の高い材料として台頭してきました。3Dプリンティングの樹脂材料は、正確な医療モデルや複雑なインプラントを製造するのに不可欠な、高い解像度と滑らかな表面仕上げを提供します。さらに、SLAまたはデジタル光処理(DLP)技術で利用されるフォトポリマー樹脂は、手術計画や教育目的のための微細な解剖学的構造の作成を可能にしました。

さらに、生体適合性樹脂は、一時的なインプラントやドラッグデリバリーシステムへの応用が期待され、人気を集めています。オーダーメイドのサービスと高度なソフトウェアソリューションも、医療分野における3Dプリンティング・エコシステムの不可欠な要素となっています。ラピッドプロトタイピング、オンデマンド製造、後処理サポートなどのサービスは、製品開発サイクルを加速し、初期投資コストを削減します。さらに、先進的なCAD/CAMソフトウェアは、効率的な設計変更とシミュレーションを可能にし、最終的には患者の転帰を改善します。

エンドユーザー:患者ケアの向上と臨床ワークフローの効率的な合理化のため、病院全体に広く適用されます。

学術機関や研究所は、医療機器における3Dプリント技術の進歩の最前線にいます。これらの機関は、最先端の研究に積極的に取り組み、新しいアプリケーションを探求し、既存のアプリケーションを改良し、業界パートナーと協力してプロトタイプを開発し、新しいデバイス設計を検証しています。さらに、これらの機関は、医療機器における3Dプリンティングの分野を活用し、発展させる次世代の専門家の育成を担っています。さらに、外来手術センター(ASC)は、カスタムフィットのインプラント、補綴物、手術器具を作成する可能性を活用することで、患者ケアを向上させるために3Dプリント技術を採用しています。ASCは、効率性、費用対効果、および患者の転帰を改善するために、外来患者施設としての業務を合理化する必要があります。診断センターでは、主に3Dプリント技術を使用して、医療画像データ(CTやMRIなど)に基づいて患者固有の解剖学的モデルを作成しています。この技術は、複雑な内部構造を物理的に表現することで、診断能力に革命をもたらしました。この技術は、臨床医が特定の状態をよりよく理解し、治療戦略を計画し、健康問題について患者を教育する際に役立ちます。

さらに、最近のバイオプリンティングの進歩は、ヒトの組織反応を再現できる臓器オンチップ・プラットフォームの開発につながり、研究者は病気の進行を研究し、潜在的な薬剤候補をより正確にテストできるようになった。病院は医療機器における3Dプリンティングの採用において極めて重要な役割を担っており、この技術を活用してより良い患者ケアを提供し、臨床ワークフローを効率的に合理化しています。カスタム3Dプリントインプラントや補綴物は、その優れた適合性から広く採用され、より優れた機能的転帰と患者の回復時間の短縮を実現しています。さらに、3Dプリントされた手術器具やガイドは、手術中の精度を高め、合併症を減らし、全体的な手術成績を向上させる。

地域別の洞察

南北アメリカは、強力なヘルスケアインフラの存在、研究開発投資の増加、3Dプリンティングの技術革新を奨励する厳格なFDA規制により、医療機器市場における3Dプリンティングが高度に発展している地域です。オーストラリア、インド、韓国では、医療機器における3Dプリンティングを導入するための政府の取り組みや投資が好調で、アジア太平洋地域の市場成長に貢献しています。EMEA地域では、3Dプリンティングを支援する先端技術の大規模な存在と継続的な研究開発(R&D)活動が、斬新な3Dプリンティング医療機器の利用可能性を後押ししています。欧州では、EU諸国が医療機器規制(MDR)の下で規制を統一しており、3Dプリント医療機器製造の厳格な管理が義務付けられています。

FPNVポジショニング・マトリックス

FPNVポジショニングマトリックスは、医療機器における3Dプリンティング市場の評価において極めて重要です。事業戦略や製品満足度に関連する主要指標を調査し、ベンダーの包括的な評価を提供します。この綿密な分析により、ユーザーは各自の要件に沿った十分な情報に基づいた意思決定を行うことができます。評価に基づき、ベンダーは成功の度合いが異なる4つの象限に分類されます:フォアフロント(F)、パスファインダー(P)、ニッチ(N)、バイタル(V)です。

市場シェア分析

市場シェア分析は、医療機器における3Dプリンティング市場におけるベンダーの現状について、洞察に満ちた詳細な調査を提供する包括的なツールです。全体的な収益、顧客基盤、その他の主要指標についてベンダーの貢献度を綿密に比較・分析することで、企業の業績や市場シェア争いの際に直面する課題について理解を深めることができます。さらに、この分析により、調査対象基準年に観察された累積、断片化の優位性、合併の特徴などの要因を含む、この分野の競合特性に関する貴重な考察が得られます。このような詳細レベルの拡大により、ベンダーはより多くの情報に基づいた意思決定を行い、市場で競争優位に立つための効果的な戦略を考案することができます。

本レポートは、以下の側面に関する貴重な洞察を提供しています:

1.市場の浸透度:主要企業が提供する市場に関する包括的な情報を提示しています。

2.市場の開拓度:有利な新興市場を深く掘り下げ、成熟市場セグメントにおける浸透度を分析しています。

3.市場の多様化:新製品の発売、未開拓の地域、最近の開発、投資に関する詳細な情報を提供します。

4.競合の評価と情報:市場シェア、戦略、製品、認証、規制状況、特許状況、主要企業の製造能力などを網羅的に評価します。

5.製品開発およびイノベーション:将来の技術、研究開発活動、画期的な製品開発に関する知的洞察を提供します。

本レポートは、以下のような主要な質問に対応しています:

1.医療機器における3Dプリンティング市場の市場規模および予測は?

2.医療機器における3Dプリンティング市場の予測期間中に投資を検討すべき製品、セグメント、用途、分野は何か?

3.医療機器における3Dプリンティング市場の技術動向と規制枠組みは?

4.医療機器における3Dプリンティング市場における主要ベンダーの市場シェアは?

5.医療機器における3Dプリンティング市場への参入に適した形態や戦略的手段は?

目次

第1章 序文

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 市場の概要

第5章 市場洞察

  • 市場力学
    • 促進要因
      • パーソナライズまたはカスタマイズされた医療機器の需要が高い
      • 規制当局が提供する医療機器の3Dプリントに関する認識
    • 抑制要因
      • 3Dプリント医療機器の高コストと品質への懸念
    • 機会
      • 印刷材料の進歩とバイオプリンティングの出現
      • ポイントオブケア診断製造における潜在能力の向上
    • 課題
      • 3Dプリント医療機器の使用に関する訓練を受けた専門家の不足
  • 市場セグメンテーション分析
    • 製品タイプ:医療治療の満足度向上のための補綴物およびインプラントの需要増加
    • テクノロジー:マイクロスケールデバイスの製造における光重合技術の採用増加
    • コンポーネント:材料の適合性、生産速度に基づいたさまざまな機器の利用の増加
    • エンドユーザー:病院全体での幅広いアプリケーションにより、患者ケアの向上と臨床ワークフローの効率的な合理化を実現
  • 市場動向分析
    • 南北アメリカで革新的な3Dプリント技術を提供する、現地の確立された医療機器市場ベンダーの存在
    • アジア太平洋地域における3D医療機器の製造と利用の拡大に向けた政府支援
    • 欧州と中東における医療機器向け3Dプリントの進歩、研究開発、投資
  • ロシア・ウクライナ紛争の累積的影響
  • 高インフレの累積的影響
  • ポーターのファイブフォース分析
  • バリューチェーンとクリティカルパス分析
  • 規制枠組みの分析

第6章 医療機器における3Dプリンティング市場:製品タイプ別

  • 骨および軟骨スキャフォールド
  • 靭帯と腱のスキャフォールド
  • 補綴およびインプラント
  • 外科用ガイド
  • 手術器具
  • 組織工学製品

第7章 医療機器における3Dプリンティング市場:技術別

  • 液滴堆積/押し出しベースの技術
  • 電子ビーム溶解
  • レーザービーム溶解
  • 光重合

第8章 医療機器における3Dプリンティング市場:コンポーネント別

  • 装置
  • 材料
  • サービスとソフトウェア

第9章 医療機器における3Dプリンティング市場:エンドユーザー別

  • 学術機関・調査機関
  • 外来手術センター
  • 診断センター
  • 病院

第10章 南北アメリカの医療機器における3Dプリンティング市場

  • アルゼンチン
  • ブラジル
  • カナダ
  • メキシコ
  • 米国

第11章 アジア太平洋地域の医療機器における3Dプリンティング市場

  • オーストラリア
  • 中国
  • インド
  • インドネシア
  • 日本
  • マレーシア
  • フィリピン
  • シンガポール
  • 韓国
  • 台湾
  • タイ
  • ベトナム

第12章 欧州・中東・アフリカの医療機器における3Dプリンティング市場

  • デンマーク
  • エジプト
  • フィンランド
  • フランス
  • ドイツ
  • イスラエル
  • イタリア
  • オランダ
  • ナイジェリア
  • ノルウェー
  • ポーランド
  • カタール
  • ロシア
  • サウジアラビア
  • 南アフリカ
  • スペイン
  • スウェーデン
  • スイス
  • トルコ
  • アラブ首長国連邦
  • 英国

第13章 競合情勢

  • 市場シェア分析2023
  • FPNVポジショニングマトリックス、2023
  • 競合シナリオ分析
    • restor3dが3Dプリント医療機器メーカーConformisを買収
    • EOS、Tecomet、Precision ADM、OICが提携し、医療機器3Dプリントのエンドツーエンドソリューションを提供
    • Formlabs、強度と耐衝撃性に優れた医療機器向けBioMed耐久性樹脂を発表
    • マテリアライズとVuzix、スマートアイウェアを消費者に提供するための提携を発表
    • ジンマー・バイオメット、医療機器メーカーOSSISを買収
    • ストラタシス、コベストロの積層造形材料事業の買収を完了
    • ストラタシス、オンデマンド印刷医療モデルに関してリコーUSA社と契約を締結
    • Desktop MetalとHenkelが、Xtreme 8kマシンにLoctiteブランドの配合を導入することを発表
    • ストライカー社、アイルランドに新たな付加製造施設を開設
    • 9T Labs、カーボンファイバー3Dプリントの発展に向けてシリーズA資金調達で1,700万米ドルを調達

第14章 競合ポートフォリオ

  • 主要企業プロファイル
  • 主要製品ポートフォリオ
図表

LIST OF FIGURES

  • FIGURE 1. 3D PRINTING IN MEDICAL DEVICES MARKET RESEARCH PROCESS
  • FIGURE 2. 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, 2023 VS 2030
  • FIGURE 3. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, 2018-2030 (USD MILLION)
  • FIGURE 4. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY REGION, 2023 VS 2030 (%)
  • FIGURE 5. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY REGION, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 6. 3D PRINTING IN MEDICAL DEVICES MARKET DYNAMICS
  • FIGURE 7. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2023 VS 2030 (%)
  • FIGURE 8. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 9. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2023 VS 2030 (%)
  • FIGURE 10. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 11. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2023 VS 2030 (%)
  • FIGURE 12. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 13. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2023 VS 2030 (%)
  • FIGURE 14. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 15. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 16. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 17. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY STATE, 2023 VS 2030 (%)
  • FIGURE 18. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY STATE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 19. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 20. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 21. EUROPE, MIDDLE EAST & AFRICA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 22. EUROPE, MIDDLE EAST & AFRICA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 23. 3D PRINTING IN MEDICAL DEVICES MARKET SHARE, BY KEY PLAYER, 2023
  • FIGURE 24. 3D PRINTING IN MEDICAL DEVICES MARKET, FPNV POSITIONING MATRIX, 2023

LIST OF TABLES

  • TABLE 1. 3D PRINTING IN MEDICAL DEVICES MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2023
  • TABLE 3. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, 2018-2023 (USD MILLION)
  • TABLE 4. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, 2024-2030 (USD MILLION)
  • TABLE 5. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 6. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 7. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2023 (USD MILLION)
  • TABLE 8. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2024-2030 (USD MILLION)
  • TABLE 9. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY BONE & CARTILAGE SCAFFOLDS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 10. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY BONE & CARTILAGE SCAFFOLDS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 11. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LIGAMENT & TENDON SCAFFOLDS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 12. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LIGAMENT & TENDON SCAFFOLDS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 13. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 14. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 15. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2018-2023 (USD MILLION)
  • TABLE 16. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2024-2030 (USD MILLION)
  • TABLE 17. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY CUSTOM IMPLANTS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 18. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY CUSTOM IMPLANTS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 19. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY STANDARD IMPLANTS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 20. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY STANDARD IMPLANTS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 21. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 22. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 23. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2018-2023 (USD MILLION)
  • TABLE 24. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2024-2030 (USD MILLION)
  • TABLE 25. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY CRANIOMAXILLOFACIAL GUIDES, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 26. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY CRANIOMAXILLOFACIAL GUIDES, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 27. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DENTAL GUIDES, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 28. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DENTAL GUIDES, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 29. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY ORTHOPEDIC GUIDES, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 30. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY ORTHOPEDIC GUIDES, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 31. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 32. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 33. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2018-2023 (USD MILLION)
  • TABLE 34. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2024-2030 (USD MILLION)
  • TABLE 35. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY RETRACTORS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 36. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY RETRACTORS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 37. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SCALPELS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 38. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SCALPELS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 39. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL FASTENERS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 40. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL FASTENERS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 41. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TISSUE ENGINEERING PRODUCTS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 42. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TISSUE ENGINEERING PRODUCTS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 43. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2018-2023 (USD MILLION)
  • TABLE 44. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2024-2030 (USD MILLION)
  • TABLE 45. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 46. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 47. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2018-2023 (USD MILLION)
  • TABLE 48. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2024-2030 (USD MILLION)
  • TABLE 49. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY FUSED DEPOSITION MODELING, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 50. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY FUSED DEPOSITION MODELING, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 51. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LOW-TEMPERATURE DEPOSITION MANUFACTURING, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 52. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LOW-TEMPERATURE DEPOSITION MANUFACTURING, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 53. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MULTIPHASE JET SOLIDIFICATION, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 54. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MULTIPHASE JET SOLIDIFICATION, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 55. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY ELECTRON BEAM MELTING, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 56. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY ELECTRON BEAM MELTING, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 57. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 58. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 59. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2018-2023 (USD MILLION)
  • TABLE 60. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2024-2030 (USD MILLION)
  • TABLE 61. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DIRECT METAL LASER SINTERING, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 62. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DIRECT METAL LASER SINTERING, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 63. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SELECTIVE LASER MELTING, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 64. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SELECTIVE LASER MELTING, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 65. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SELECTIVE LASER SINTERING, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 66. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SELECTIVE LASER SINTERING, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 67. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 68. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 69. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2018-2023 (USD MILLION)
  • TABLE 70. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2024-2030 (USD MILLION)
  • TABLE 71. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DIGITAL LIGHT PROCESSING, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 72. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DIGITAL LIGHT PROCESSING, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 73. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY POLYJET 3D PRINTING TECHNOLOGY, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 74. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY POLYJET 3D PRINTING TECHNOLOGY, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 75. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY STEREOLITHOGRAPHY, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 76. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY STEREOLITHOGRAPHY, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 77. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TWO-PHOTON POLYMERIZATION, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 78. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TWO-PHOTON POLYMERIZATION, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 79. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2018-2023 (USD MILLION)
  • TABLE 80. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2024-2030 (USD MILLION)
  • TABLE 81. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY EQUIPMENT, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 82. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY EQUIPMENT, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 83. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 84. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 85. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2018-2023 (USD MILLION)
  • TABLE 86. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2024-2030 (USD MILLION)
  • TABLE 87. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY CERAMICS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 88. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY CERAMICS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 89. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PAPER, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 90. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PAPER, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 91. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY RESIN, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 92. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY RESIN, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 93. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SERVICES & SOFTWARE, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 94. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SERVICES & SOFTWARE, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 95. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2018-2023 (USD MILLION)
  • TABLE 96. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 97. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY ACADEMIC INSTITUTIONS & RESEARCH LABORATORIES, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 98. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY ACADEMIC INSTITUTIONS & RESEARCH LABORATORIES, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 99. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY AMBULATORY SURGICAL CENTERS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 100. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY AMBULATORY SURGICAL CENTERS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 101. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DIAGNOSTIC CENTERS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 102. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DIAGNOSTIC CENTERS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 103. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY HOSPITALS, BY REGION, 2018-2023 (USD MILLION)
  • TABLE 104. GLOBAL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY HOSPITALS, BY REGION, 2024-2030 (USD MILLION)
  • TABLE 105. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2023 (USD MILLION)
  • TABLE 106. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2024-2030 (USD MILLION)
  • TABLE 107. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2018-2023 (USD MILLION)
  • TABLE 108. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2024-2030 (USD MILLION)
  • TABLE 109. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2018-2023 (USD MILLION)
  • TABLE 110. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2024-2030 (USD MILLION)
  • TABLE 111. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2018-2023 (USD MILLION)
  • TABLE 112. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2024-2030 (USD MILLION)
  • TABLE 113. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2018-2023 (USD MILLION)
  • TABLE 114. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2024-2030 (USD MILLION)
  • TABLE 115. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2018-2023 (USD MILLION)
  • TABLE 116. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2024-2030 (USD MILLION)
  • TABLE 117. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2018-2023 (USD MILLION)
  • TABLE 118. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2024-2030 (USD MILLION)
  • TABLE 119. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2018-2023 (USD MILLION)
  • TABLE 120. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2024-2030 (USD MILLION)
  • TABLE 121. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2018-2023 (USD MILLION)
  • TABLE 122. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2024-2030 (USD MILLION)
  • TABLE 123. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2018-2023 (USD MILLION)
  • TABLE 124. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2024-2030 (USD MILLION)
  • TABLE 125. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2018-2023 (USD MILLION)
  • TABLE 126. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 127. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COUNTRY, 2018-2023 (USD MILLION)
  • TABLE 128. AMERICAS 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 129. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2023 (USD MILLION)
  • TABLE 130. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2024-2030 (USD MILLION)
  • TABLE 131. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2018-2023 (USD MILLION)
  • TABLE 132. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2024-2030 (USD MILLION)
  • TABLE 133. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2018-2023 (USD MILLION)
  • TABLE 134. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2024-2030 (USD MILLION)
  • TABLE 135. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2018-2023 (USD MILLION)
  • TABLE 136. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2024-2030 (USD MILLION)
  • TABLE 137. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2018-2023 (USD MILLION)
  • TABLE 138. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2024-2030 (USD MILLION)
  • TABLE 139. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2018-2023 (USD MILLION)
  • TABLE 140. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2024-2030 (USD MILLION)
  • TABLE 141. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2018-2023 (USD MILLION)
  • TABLE 142. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2024-2030 (USD MILLION)
  • TABLE 143. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2018-2023 (USD MILLION)
  • TABLE 144. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2024-2030 (USD MILLION)
  • TABLE 145. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2018-2023 (USD MILLION)
  • TABLE 146. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2024-2030 (USD MILLION)
  • TABLE 147. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2018-2023 (USD MILLION)
  • TABLE 148. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2024-2030 (USD MILLION)
  • TABLE 149. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2018-2023 (USD MILLION)
  • TABLE 150. ARGENTINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 151. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2023 (USD MILLION)
  • TABLE 152. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2024-2030 (USD MILLION)
  • TABLE 153. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2018-2023 (USD MILLION)
  • TABLE 154. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2024-2030 (USD MILLION)
  • TABLE 155. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2018-2023 (USD MILLION)
  • TABLE 156. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2024-2030 (USD MILLION)
  • TABLE 157. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2018-2023 (USD MILLION)
  • TABLE 158. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2024-2030 (USD MILLION)
  • TABLE 159. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2018-2023 (USD MILLION)
  • TABLE 160. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2024-2030 (USD MILLION)
  • TABLE 161. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2018-2023 (USD MILLION)
  • TABLE 162. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2024-2030 (USD MILLION)
  • TABLE 163. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2018-2023 (USD MILLION)
  • TABLE 164. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2024-2030 (USD MILLION)
  • TABLE 165. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2018-2023 (USD MILLION)
  • TABLE 166. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2024-2030 (USD MILLION)
  • TABLE 167. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2018-2023 (USD MILLION)
  • TABLE 168. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2024-2030 (USD MILLION)
  • TABLE 169. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2018-2023 (USD MILLION)
  • TABLE 170. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2024-2030 (USD MILLION)
  • TABLE 171. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2018-2023 (USD MILLION)
  • TABLE 172. BRAZIL 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 173. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2023 (USD MILLION)
  • TABLE 174. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2024-2030 (USD MILLION)
  • TABLE 175. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2018-2023 (USD MILLION)
  • TABLE 176. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2024-2030 (USD MILLION)
  • TABLE 177. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2018-2023 (USD MILLION)
  • TABLE 178. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2024-2030 (USD MILLION)
  • TABLE 179. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2018-2023 (USD MILLION)
  • TABLE 180. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2024-2030 (USD MILLION)
  • TABLE 181. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2018-2023 (USD MILLION)
  • TABLE 182. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2024-2030 (USD MILLION)
  • TABLE 183. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2018-2023 (USD MILLION)
  • TABLE 184. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2024-2030 (USD MILLION)
  • TABLE 185. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2018-2023 (USD MILLION)
  • TABLE 186. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2024-2030 (USD MILLION)
  • TABLE 187. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2018-2023 (USD MILLION)
  • TABLE 188. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2024-2030 (USD MILLION)
  • TABLE 189. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2018-2023 (USD MILLION)
  • TABLE 190. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2024-2030 (USD MILLION)
  • TABLE 191. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2018-2023 (USD MILLION)
  • TABLE 192. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2024-2030 (USD MILLION)
  • TABLE 193. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2018-2023 (USD MILLION)
  • TABLE 194. CANADA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 195. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2023 (USD MILLION)
  • TABLE 196. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2024-2030 (USD MILLION)
  • TABLE 197. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2018-2023 (USD MILLION)
  • TABLE 198. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2024-2030 (USD MILLION)
  • TABLE 199. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2018-2023 (USD MILLION)
  • TABLE 200. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2024-2030 (USD MILLION)
  • TABLE 201. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2018-2023 (USD MILLION)
  • TABLE 202. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2024-2030 (USD MILLION)
  • TABLE 203. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2018-2023 (USD MILLION)
  • TABLE 204. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2024-2030 (USD MILLION)
  • TABLE 205. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2018-2023 (USD MILLION)
  • TABLE 206. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2024-2030 (USD MILLION)
  • TABLE 207. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2018-2023 (USD MILLION)
  • TABLE 208. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2024-2030 (USD MILLION)
  • TABLE 209. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2018-2023 (USD MILLION)
  • TABLE 210. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2024-2030 (USD MILLION)
  • TABLE 211. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2018-2023 (USD MILLION)
  • TABLE 212. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2024-2030 (USD MILLION)
  • TABLE 213. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2018-2023 (USD MILLION)
  • TABLE 214. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2024-2030 (USD MILLION)
  • TABLE 215. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2018-2023 (USD MILLION)
  • TABLE 216. MEXICO 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 217. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2023 (USD MILLION)
  • TABLE 218. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2024-2030 (USD MILLION)
  • TABLE 219. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2018-2023 (USD MILLION)
  • TABLE 220. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2024-2030 (USD MILLION)
  • TABLE 221. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2018-2023 (USD MILLION)
  • TABLE 222. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2024-2030 (USD MILLION)
  • TABLE 223. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2018-2023 (USD MILLION)
  • TABLE 224. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2024-2030 (USD MILLION)
  • TABLE 225. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2018-2023 (USD MILLION)
  • TABLE 226. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2024-2030 (USD MILLION)
  • TABLE 227. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2018-2023 (USD MILLION)
  • TABLE 228. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2024-2030 (USD MILLION)
  • TABLE 229. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2018-2023 (USD MILLION)
  • TABLE 230. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2024-2030 (USD MILLION)
  • TABLE 231. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2018-2023 (USD MILLION)
  • TABLE 232. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2024-2030 (USD MILLION)
  • TABLE 233. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2018-2023 (USD MILLION)
  • TABLE 234. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2024-2030 (USD MILLION)
  • TABLE 235. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2018-2023 (USD MILLION)
  • TABLE 236. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2024-2030 (USD MILLION)
  • TABLE 237. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2018-2023 (USD MILLION)
  • TABLE 238. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 239. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY STATE, 2018-2023 (USD MILLION)
  • TABLE 240. UNITED STATES 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY STATE, 2024-2030 (USD MILLION)
  • TABLE 241. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2023 (USD MILLION)
  • TABLE 242. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2024-2030 (USD MILLION)
  • TABLE 243. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2018-2023 (USD MILLION)
  • TABLE 244. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2024-2030 (USD MILLION)
  • TABLE 245. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2018-2023 (USD MILLION)
  • TABLE 246. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2024-2030 (USD MILLION)
  • TABLE 247. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2018-2023 (USD MILLION)
  • TABLE 248. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2024-2030 (USD MILLION)
  • TABLE 249. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2018-2023 (USD MILLION)
  • TABLE 250. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2024-2030 (USD MILLION)
  • TABLE 251. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2018-2023 (USD MILLION)
  • TABLE 252. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2024-2030 (USD MILLION)
  • TABLE 253. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2018-2023 (USD MILLION)
  • TABLE 254. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2024-2030 (USD MILLION)
  • TABLE 255. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2018-2023 (USD MILLION)
  • TABLE 256. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2024-2030 (USD MILLION)
  • TABLE 257. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2018-2023 (USD MILLION)
  • TABLE 258. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2024-2030 (USD MILLION)
  • TABLE 259. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2018-2023 (USD MILLION)
  • TABLE 260. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2024-2030 (USD MILLION)
  • TABLE 261. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2018-2023 (USD MILLION)
  • TABLE 262. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 263. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COUNTRY, 2018-2023 (USD MILLION)
  • TABLE 264. ASIA-PACIFIC 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COUNTRY, 2024-2030 (USD MILLION)
  • TABLE 265. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2023 (USD MILLION)
  • TABLE 266. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2024-2030 (USD MILLION)
  • TABLE 267. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2018-2023 (USD MILLION)
  • TABLE 268. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2024-2030 (USD MILLION)
  • TABLE 269. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2018-2023 (USD MILLION)
  • TABLE 270. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2024-2030 (USD MILLION)
  • TABLE 271. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2018-2023 (USD MILLION)
  • TABLE 272. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL INSTRUMENTS, 2024-2030 (USD MILLION)
  • TABLE 273. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2018-2023 (USD MILLION)
  • TABLE 274. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY TECHNOLOGY, 2024-2030 (USD MILLION)
  • TABLE 275. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2018-2023 (USD MILLION)
  • TABLE 276. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY DROPLET DEPOSITION/EXTRUSION-BASED TECHNOLOGIES, 2024-2030 (USD MILLION)
  • TABLE 277. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2018-2023 (USD MILLION)
  • TABLE 278. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY LASER BEAM MELTING, 2024-2030 (USD MILLION)
  • TABLE 279. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2018-2023 (USD MILLION)
  • TABLE 280. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PHOTOPOLYMERIZATION, 2024-2030 (USD MILLION)
  • TABLE 281. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2018-2023 (USD MILLION)
  • TABLE 282. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY COMPONENT, 2024-2030 (USD MILLION)
  • TABLE 283. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2018-2023 (USD MILLION)
  • TABLE 284. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY MATERIALS, 2024-2030 (USD MILLION)
  • TABLE 285. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2018-2023 (USD MILLION)
  • TABLE 286. AUSTRALIA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY END USER, 2024-2030 (USD MILLION)
  • TABLE 287. CHINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2023 (USD MILLION)
  • TABLE 288. CHINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PRODUCT TYPE, 2024-2030 (USD MILLION)
  • TABLE 289. CHINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2018-2023 (USD MILLION)
  • TABLE 290. CHINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY PROSTHETICS & IMPLANTS, 2024-2030 (USD MILLION)
  • TABLE 291. CHINA 3D PRINTING IN MEDICAL DEVICES MARKET SIZE, BY SURGICAL GUIDES, 2018-2023 (USD MILLION)
  • TABLE 292. CHINA 3D PRIN
目次
Product Code: MRR-430D3EB728CA

[187 Pages Report] The 3D Printing in Medical Devices Market size was estimated at USD 7.09 billion in 2023 and expected to reach USD 8.69 billion in 2024, at a CAGR 22.99% to reach USD 30.19 billion by 2030.

Various 3D printing technologies have emerged in the medical device industry, offering innovative solutions for orthopedic implants, surgical instruments, and patient-specific models. The significant advantage of 3D printing is its ability to manufacture highly-customized devices tailored to individual patient's anatomy and requirements. 3D-printed cranial implants can be designed based on precise measurements from scans or MRI images, ensuring an accurate fit while minimizing complications during surgery. Patient-specific guides help surgeons accurately plan and execute complex procedures, such as joint replacement surgeries, with greater precision. In recent years, 3D printing has emerged as a driving force for innovation in medical devices owing to its inherent benefits in customization and rapid prototyping. There is an increasing trend toward using this technology for personalized medicine and patient-specific prosthetics, orthopedic implants, dental appliances, and surgical instruments. These applications have been facilitated by advancements in biocompatible materials such as metals, polymers, ceramics, and even biological substances, such as hydrogels, for tissue engineering. Despite its numerous benefits, the widespread adoption of 3D printing in medical devices faces challenges owing to higher costs associated with the 3D printed medical devices, and a lack of expertise to operate these devices act as a restraining factor. Moreover, ongoing R&D efforts by market companies to advance 3D printing materials for medical purposes are expected to revolutionize 3D printing in the medical device industry.

KEY MARKET STATISTICS
Base Year [2023] USD 7.09 billion
Estimated Year [2024] USD 8.69 billion
Forecast Year [2030] USD 30.19 billion
CAGR (%) 22.99%

Product Type: Increasing demand for prosthetics & implants for increased satisfaction with medical treatments

Bone & cartilage scaffolds are biocompatible and biodegradable structures that support the growth and regeneration of bone and cartilage tissues, which mimic the natural extracellular matrix while providing mechanical strength, thereby promoting tissue repair and regeneration. Ligament & tendon scaffolds are similar to bone scaffolds, which are designed to assist in the regeneration of ligaments and tendons by providing a temporary framework for cells to grow on. 3D printing technology can create customized implants and prosthetics specifically tailored to individual patient needs, allowing for more precise fitting, better functionality, and improved comfort compared to traditional manufacturing methods. Moreover, standard implants are mass-produced, off-the-shelf solutions for common medical conditions such as joint replacements. Surgical guides are patient-specific tools that help surgeons plan and execute complex surgical procedures accurately. Surgical guides can be precisely tailored to each individual's anatomy using 3D printing technology. Craniomaxillofacial guides assist surgeons in reconstructive surgeries of the skull and facial bones by providing accurate templates for bone cutting, positioning, and fixation.

Moreover, dental guides are used in dental procedures, such as implant placement or orthodontic treatments, to ensure proper positioning and alignment of dental components. Orthopedic guides are designed to assist in the accurate alignment of orthopedic implants during joint replacement surgeries that allow for precise preparation of the bone surface, ensuring optimal contact between the implant and natural bone structure for improved stability and longevity. The surgical instruments in 3D printing technology have been used to create various surgical instruments such as retractors, scalpels, and forceps. 3D-printed retractors can be customized to suit individual patient anatomies or specific procedural requirements. The production of 3D printed scalpels allows for modifications in blade design that can enhance cutting efficiency or reduce tissue damage during surgery. Furthermore, 3D printed surgical fasteners such as clips or staples can be designed to provide optimal strength, flexibility, and biocompatibility. Additionally, combining 3D printing with tissue engineering techniques has allowed the creation of bioengineered constructs containing living cells, which hold significant potential for regenerative medicine applications, including developing functional organs or tissues for transplantation.

Technology: Rising adoption of photopolymerization technology for manufacturing microscale devices

Droplet deposition/extrusion-based technologies involve depositing small droplets or continuous filaments of material to create 3D structures. Extrusion-based methods are ideal for bioprinting and fabricating complex medical devices owing to their versatility in handling various materials, such as hydrogels, polymers, and composites. Fused deposition modeling (FDM) is an extrusion-based process that utilizes thermoplastic materials to build objects layer by layer. It has gained popularity in the medical field for creating low-cost anatomical models used in surgical planning, patient education, and prosthetics manufacturing. Low-temperature deposition manufacturing (LDM) uses a low-temperature extrusion process to deposit layers of material, significantly reducing thermal stress on sensitive biomaterials and making it suitable for tissue engineering and drug delivery systems. Multiphase jet solidification (MJS) is an inkjet-like technology that solidifies liquid droplets upon contact with a cooling substrate, which enables the creation of highly complex structures with intricate features ideal for implantable devices and microfluidic components. Electron beam melting (EBM) is a powder bed fusion technique that uses a high-energy electron beam to selectively fuse metal particles layer by layer. EBM has been employed for producing customized implants made from metals, such as titanium, offering superior mechanical properties and biocompatibility. Laser beam melting (LBM) is another powder bed fusion method wherein a focused laser beam selectively melts powder particles. LBM excels at producing high-quality metal parts, such as dental prosthetics and orthopedic implants, with complex geometries and excellent mechanical properties. Direct metal laser sintering (DMLS) is a laser-based powder bed fusion technology that combines metal particles to create functional components. DMLS offers rapid production and customization as it is known for its ability to fabricate intricate medical devices, such as hearing aids and dental restorations. Selective laser melting (SLM) uses a high-power laser to fully melt metal powders into solid 3D structures. This technology has demonstrated great potential in producing complex implants with tailored mechanical properties and porous structures that promote tissue integration. Selective laser sintering (SLS) is a powder bed fusion process that employs a laser to sinter powdered materials without fully melting them. Widely used for creating plastic medical models, SLS can also produce biocompatible ceramic components for bone replacements or coatings on metallic implants. The photopolymerization technique involves hardening liquid photopolymer resins using ultraviolet light or other radiation sources. These offer high-resolution printing capabilities required for manufacturing microscale devices, such as microneedles for drug delivery systems. Digital light processing (DLP) is a vat polymerization method in which a digital projector selectively exposes photosensitive resin layers to ultraviolet light. DLP's speed and accuracy make it an attractive option for producing dental restorations, surgical guides, and hearing aids. PolyJet 3D printing technology is a jetting-based process that deposits precise droplets of photopolymers onto the build platform and cures them with ultraviolet light. This technology enables the simultaneous printing of multiple materials and colors, allowing for versatile medical devices, such as patient-specific anatomical models or multi-material implants. Stereolithography (SLA) is a vat polymerization method that uses ultraviolet lasers to trace patterns on the surface of a liquid photopolymer resin. SLA has been widely adopted in medical applications, such as dental models, surgical planning tools, and custom prosthetics, as one of the earliest 3D printing techniques. Two-photon polymerization (2PP) is an ultra-high-resolution technology based on multiphoton absorption processes that allow for fabricating intricate 3D microstructures in photosensitive.

Component: Growing utilization of various equipments based on material compatibility, and production speed

Innovative 3D printers have revolutionized medical device manufacturing by providing higher precision and enhanced flexibility in product design. Biocompatible materials play a crucial role in the creation of 3D-printed medical devices. Metals, such as titanium and stainless steel, provide high strength-to-weight ratios, making them ideal choices for orthopedic implants and surgical instruments. Additionally, polymers such as polyether ether ketone (PEEK) have emerged as a significant alternative owing to their lightweight nature and resistance to chemicals or wear. Continuous research is being conducted to discover newer materials with enhanced properties that could further optimize medical device manufacturing. Ceramic materials possess unique characteristics such as biocompatibility, high hardness, corrosion resistance, and low thermal conductivity, which make them suitable for several biomedical applications. Zirconia-based ceramics are widely used for dental crowns, while hydroxyapatite has proven effective as bone graft material.

Moreover, ongoing research focuses on developing biodegradable ceramic scaffolds for tissue regeneration and drug delivery systems. Although not a conventional choice in medical device production, paper has emerged as a versatile material for 3D printing low-cost medical devices. Resin materials in 3D printing offer high resolution and smooth surface finish, critical for producing accurate medical models and complex implants. In addition, photopolymer resins utilized in SLA or digital light processing (DLP) techniques have enabled the creation of finely detailed anatomical structures for surgical planning and education purposes.

Furthermore, biocompatible resins are gaining traction for their potential applications in temporary implants or drug delivery systems. Bespoke services and advanced software solutions have also become indispensable components of the 3D printing ecosystem within the medical field. Services, including rapid prototyping, on-demand manufacturing, and post-processing support, accelerate product development cycles while eliminating upfront investment costs. Moreover, advanced CAD/CAM software allows efficient design modification and simulation, ultimately improving patient outcomes.

End User: Wider application across the hospitals for better patient care and efficiently streamline clinical workflows

Academic institutions & research laboratories are at the forefront of advancing 3D printing technology in medical devices. These institutions actively engage in cutting-edge research, exploring novel applications and refining existing ones, collaborating with industry partners to develop prototypes and validate new device designs. Additionally, these institutions are responsible for training the next generation of professionals utilizing and advancing the field of 3D printing in medical devices. Furthermore, ambulatory surgical centers (ASCs) have embraced 3D printing technology to improve patient care by leveraging its potential to create custom-fit implants, prosthetics, and surgical instruments. ASCs need to streamline their operations as outpatient facilities for efficiency, cost-effectiveness, and better patient outcomes. Diagnostic centers primarily use 3D printing technology to create patient-specific anatomical models based on medical imaging data (such as CT or MRI). This technology has revolutionized diagnostic capabilities by producing physical representations of complex internal structures that can aid clinicians in better understanding specific conditions, planning treatment strategies, or educating patients about their health issues.

Moreover, recent advancements in bioprinting have led to the development of organ-on-a-chip platforms that can replicate human tissue responses, enabling researchers to study disease progression and test potential drug candidates more accurately. Hospitals have a pivotal role in adopting 3D printing in medical devices, utilizing this technology to offer better patient care and efficiently streamline clinical workflows. Custom 3D-printed implants and prosthetics have been widely adopted for their superior fit, resulting in better functional outcomes and reduced patient recovery times. Furthermore, 3D-printed surgical instruments and guides enable precision during surgeries, reducing complications and improving overall surgical outcomes.

Regional Insights

The Americas represents a highly developing landscape for 3D printing in the medical devices market due to the presence of strong healthcare infrastructure, rising R&D investments, and strict FDA regulations that encourage innovation in 3D printing. The favorable government initiatives and investments for introducing 3D printing in medical devices across Australia, India, and South Korea is benefiting the market growth in the Asia-Pacific. The massive presence of advanced technologies that assist in 3D printing with ongoing research and development (R&D) activities encourages the availability of novel 3D printing medical devices in the EMEA region. In Europe, EU countries have unified their regulations under the Medical Device Regulation (MDR), which mandates strict control over 3D-printed medical device manufacturing.

FPNV Positioning Matrix

The FPNV Positioning Matrix is pivotal in evaluating the 3D Printing in Medical Devices Market. It offers a comprehensive assessment of vendors, examining key metrics related to Business Strategy and Product Satisfaction. This in-depth analysis empowers users to make well-informed decisions aligned with their requirements. Based on the evaluation, the vendors are then categorized into four distinct quadrants representing varying levels of success: Forefront (F), Pathfinder (P), Niche (N), or Vital (V).

Market Share Analysis

The Market Share Analysis is a comprehensive tool that provides an insightful and in-depth examination of the current state of vendors in the 3D Printing in Medical Devices Market. By meticulously comparing and analyzing vendor contributions in terms of overall revenue, customer base, and other key metrics, we can offer companies a greater understanding of their performance and the challenges they face when competing for market share. Additionally, this analysis provides valuable insights into the competitive nature of the sector, including factors such as accumulation, fragmentation dominance, and amalgamation traits observed over the base year period studied. With this expanded level of detail, vendors can make more informed decisions and devise effective strategies to gain a competitive edge in the market.

Key Company Profiles

The report delves into recent significant developments in the 3D Printing in Medical Devices Market, highlighting leading vendors and their innovative profiles. These include 3D Systems Corporation, Abbott Laboratories, Anatomics Pty Ltd., Anisoprint SARL, Ansys, Inc., Apium Additive Technologies GmbH, Arkema SA, BICO Group, Biomedical Modeling Inc., Carbon, Inc., EOS GmbH, Evonik Industries AG, Formlabs Inc., GE HealthCare Technologies Inc., Henkel AG & Co. KGaA, Johnson & Johnson Services, Inc., Materialise NV, Organovo Holdings Inc., Prodways Group, Proto Labs, Inc., RapidMade Inc., Renishaw PLC, Restor3d, Inc., Siemens AG, SLM Solutions Group AG, Smith & Nephew PLC, Solvay S.A., Stratasys Ltd., Stryker Corporation, Thermo Fisher Scientific Inc., Zimmer Biomet Holdings, Inc., and Zortrax S.A..

Market Segmentation & Coverage

This research report categorizes the 3D Printing in Medical Devices Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Product Type
    • Bone & Cartilage Scaffolds
    • Ligament & Tendon Scaffolds
    • Prosthetics & Implants
      • Custom Implants
      • Standard Implants
    • Surgical Guides
      • Craniomaxillofacial Guides
      • Dental Guides
      • Orthopedic Guides
    • Surgical Instruments
      • Retractors
      • Scalpels
      • Surgical Fasteners
    • Tissue Engineering Products
  • Technology
    • Droplet Deposition/Extrusion-Based Technologies
      • Fused Deposition Modeling
      • Low-Temperature Deposition Manufacturing
      • Multiphase Jet Solidification
    • Electron Beam Melting
    • Laser Beam Melting
      • Direct Metal Laser Sintering
      • Selective Laser Melting
      • Selective Laser Sintering
    • Photopolymerization
      • Digital Light Processing
      • Polyjet 3D Printing Technology
      • Stereolithography
      • Two-Photon Polymerization
  • Component
    • Equipment
    • Materials
      • Ceramics
      • Paper
      • Resin
    • Services & Software
  • End User
    • Academic Institutions & Research Laboratories
    • Ambulatory Surgical Centers
    • Diagnostic Centers
    • Hospitals
  • Region
    • Americas
      • Argentina
      • Brazil
      • Canada
      • Mexico
      • United States
        • California
        • Florida
        • Illinois
        • New York
        • Ohio
        • Pennsylvania
        • Texas
    • Asia-Pacific
      • Australia
      • China
      • India
      • Indonesia
      • Japan
      • Malaysia
      • Philippines
      • Singapore
      • South Korea
      • Taiwan
      • Thailand
      • Vietnam
    • Europe, Middle East & Africa
      • Denmark
      • Egypt
      • Finland
      • France
      • Germany
      • Israel
      • Italy
      • Netherlands
      • Nigeria
      • Norway
      • Poland
      • Qatar
      • Russia
      • Saudi Arabia
      • South Africa
      • Spain
      • Sweden
      • Switzerland
      • Turkey
      • United Arab Emirates
      • United Kingdom

The report offers valuable insights on the following aspects:

1. Market Penetration: It presents comprehensive information on the market provided by key players.

2. Market Development: It delves deep into lucrative emerging markets and analyzes the penetration across mature market segments.

3. Market Diversification: It provides detailed information on new product launches, untapped geographic regions, recent developments, and investments.

4. Competitive Assessment & Intelligence: It conducts an exhaustive assessment of market shares, strategies, products, certifications, regulatory approvals, patent landscape, and manufacturing capabilities of the leading players.

5. Product Development & Innovation: It offers intelligent insights on future technologies, R&D activities, and breakthrough product developments.

The report addresses key questions such as:

1. What is the market size and forecast of the 3D Printing in Medical Devices Market?

2. Which products, segments, applications, and areas should one consider investing in over the forecast period in the 3D Printing in Medical Devices Market?

3. What are the technology trends and regulatory frameworks in the 3D Printing in Medical Devices Market?

4. What is the market share of the leading vendors in the 3D Printing in Medical Devices Market?

5. Which modes and strategic moves are suitable for entering the 3D Printing in Medical Devices Market?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. High demand for personalized or customized medical devices
      • 5.1.1.2. Awareness about 3D printing of medical devices provided by regulatory authorities
    • 5.1.2. Restraints
      • 5.1.2.1. High cost and quality concerns of 3D printed medical device
    • 5.1.3. Opportunities
      • 5.1.3.1. Advancements in printing materials and emergence of bioprinting
      • 5.1.3.2. Enhanced potential in point-of-care diagnostics manufacturing
    • 5.1.4. Challenges
      • 5.1.4.1. Dearth of trained professionals for using 3D-printed medical device
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Product Type: Increasing demand for prosthetics & implants for increased satisfaction with medical treatments
    • 5.2.2. Technology: Rising adoption of photopolymerization technology for manufacturing microscale devices
    • 5.2.3. Component: Growing utilization of various equipments based on material compatibility, and production speed
    • 5.2.4. End User: Wider application across the hospitals for better patient care and efficiently streamline clinical workflows
  • 5.3. Market Trend Analysis
    • 5.3.1. Presence of native and established medical device market vendors offering innovative 3D printing technologies in the Americas
    • 5.3.2. Government support to increase the manufacturing and usage of 3D medical devices in Asia-Pacific region
    • 5.3.3. Advancements, Research and Development, and Investments in 3D Printing for Medical Devices in Europe and Middle East
  • 5.4. Cumulative Impact of Russia-Ukraine Conflict
  • 5.5. Cumulative Impact of High Inflation
  • 5.6. Porter's Five Forces Analysis
    • 5.6.1. Threat of New Entrants
    • 5.6.2. Threat of Substitutes
    • 5.6.3. Bargaining Power of Customers
    • 5.6.4. Bargaining Power of Suppliers
    • 5.6.5. Industry Rivalry
  • 5.7. Value Chain & Critical Path Analysis
  • 5.8. Regulatory Framework Analysis

6. 3D Printing in Medical Devices Market, by Product Type

  • 6.1. Introduction
  • 6.2. Bone & Cartilage Scaffolds
  • 6.3. Ligament & Tendon Scaffolds
  • 6.4. Prosthetics & Implants
  • 6.5. Surgical Guides
  • 6.6. Surgical Instruments
  • 6.7. Tissue Engineering Products

7. 3D Printing in Medical Devices Market, by Technology

  • 7.1. Introduction
  • 7.2. Droplet Deposition/Extrusion-Based Technologies
  • 7.3. Electron Beam Melting
  • 7.4. Laser Beam Melting
  • 7.5. Photopolymerization

8. 3D Printing in Medical Devices Market, by Component

  • 8.1. Introduction
  • 8.2. Equipment
  • 8.3. Materials
  • 8.4. Services & Software

9. 3D Printing in Medical Devices Market, by End User

  • 9.1. Introduction
  • 9.2. Academic Institutions & Research Laboratories
  • 9.3. Ambulatory Surgical Centers
  • 9.4. Diagnostic Centers
  • 9.5. Hospitals

10. Americas 3D Printing in Medical Devices Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific 3D Printing in Medical Devices Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa 3D Printing in Medical Devices Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. restor3d to acquire fellow 3D printed medical device firm Conformis
    • 13.3.2. EOS, Tecomet, Precision ADM, and OIC partner to provide end-to-end solution for medical device 3D printing
    • 13.3.3. Formlabs Introduces BioMed Durable Resin for Strong, Impact-Resistant Medical Devices
    • 13.3.4. Materialise and Vuzix Announce Collaboration to Bring Smart Eyewear to Consumers
    • 13.3.5. Zimmer Biomet to acquire medical device company OSSIS
    • 13.3.6. Stratasys Completes Acquisition of Covestro's Additive Manufacturing Materials Business
    • 13.3.7. Stratasys Signs Agreement with Ricoh USA, Inc. for Print-On-Demand Medical Models
    • 13.3.8. Desktop Metal and Henkel announce the onboarding of Loctite branded formulations on the Xtreme 8k machine
    • 13.3.9. Stryker Corporation opens new Additive Manufacturing facility in Ireland
    • 13.3.10. 9T Labs raises USD 17 million in Series A funding to advance carbon fiber 3D printing

14. Competitive Portfolio

  • 14.1. Key Company Profiles
  • 14.2. Key Product Portfolio