表紙:量子ネットワークの事業機会:2022年~2031年
市場調査レポート
商品コード
1091007

量子ネットワークの事業機会:2022年~2031年

Opportunities in Quantum Networks: 2022 to 2031

出版日: | 発行: Inside Quantum Technology | ページ情報: 英文 67 Pages | 納期: 即納可能 即納可能とは

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=155.76円
量子ネットワークの事業機会:2022年~2031年
出版日: 2022年06月13日
発行: Inside Quantum Technology
ページ情報: 英文 67 Pages
納期: 即納可能 即納可能とは
  • 全表示
  • 概要
  • 目次
概要

当レポートでは、世界の量子ネットワークに関する事業機会を調査し、主要国における現況、官民による各種プログラム、プロジェクト、その他の取り組みなどをまとめています。

目次

第1章 イントロダクション

  • 今日の量子ネットワーク: 商用量子ネットワークへの道
    • QKDネットワーク
    • 量子センサーネットワーク
    • 分散型量子コンピューティング
  • 量子インターネット
  • 量子ネットワークと政治
    • 量子ネットワークと米中関係
    • ロシア・ウクライナ戦争の影響
    • ブレグジットの影響
  • サマリー:量子ネットワークの10カ年予測

第2章 北米の量子ネットワーク

  • 米国における量子ネットワーク:概要
  • カナダの量子ネットワーク
  • 最近資金提供を受けたNSF Quantum Networks
  • 技術(QuanNeCQT)
  • DOE量子ネットワーク
  • NASAの国立宇宙量子研究所プログラム
  • Quantum Xchange: Quantum on the Acela Route
  • AT&T、カリフォルニア工科大学、フェルミ研究所
  • MITリンカーンラボの量子ネットワークテストベッド
  • ハドソン研究所の役割
  • 米国国立研究所における最近の展開: The Chicago Quantum Exchange
  • この分野で活動している他の民間企業
  • サマリー

第3章 中国の量子ネットワーク

  • Jian-Wei Pan: 量子の父?
  • 中国の量子インフラ: 衛星と光ファイバー
  • 中国の衛星ネットワーク
  • 中国の量子ネットワークの注目の応用と成果
  • 中国の量子関連の商業活動
  • 中国における量子ネットワークのまとめ

第4章 アジアにおけるその他の量子ネットワーキングプロジェクト

  • シンガポール
  • 韓国
  • 日本
  • 中国以外のアジアの量子ネットワーキング活動のまとめ

第5章 オーストラリアの量子ネットワーク

  • オーストラリア
  • ニュージーランドにおける量子に関する注記
  • サマリー

第6章 EUにおける量子ネットワーク

  • EUにおける量子ネットワークへの資金提供
  • 量子インターネットアライアンス
  • スペイン: QuantumCat
  • オランダ: QuTech Research Institute
  • ドイツ
  • フランス
  • サマリー:EUにおける量子ネットワーキング

第7章 EU以外の欧州における量子ネットワーク

  • 英国における量子ネットワーキングへの資金提供
  • スイス
  • サマリー

第8章 ロシアの量子ネットワーク

  • ロシアの量子最先端技術
  • 量子ネットワークテストベッド
  • ロシア量子センター
  • ロシアの大学および学術施設での活動
  • その他のロシア量子ネットワーク関連プロジェクト
  • サマリー:量子ネットワーキングに関する調査結果

IQT Researchについて

アナリストについて

頭字語・略語

目次
Product Code: IQT-QN2022-0622

This report analyzes business opportunities in the quantum networking market as it makes its transition from QKD testbeds to full-service repeater-based quantum internets. The report identifies quantum networking market opportunities in a number of areas including the following:

  • #1. Opportunities prior to the quantum internet: For now, quantum networks and QKD networks are taken as more or less the same. This report analyzes the potential for both QKD chips and next generation of QKD boxes; pre-quantum internet networking. We show how QKD will be integrated into boxes along with other kinds of/additional functionalities. Another part of this story that we discuss is the use of distributed quantum computers to scale up quantum computing to handle "industrial scale" problems, perhaps beyond what can be handled in the current NISQ era. This part of the report draws on research and analysis that IQT Research has been doing in the QKD area for six years.
  • #2. Quantum sensor networks: A new type of quantum network is covered in the report - quantum sensor networks. Until recently, quantum sensors were used in a limited way and were mostly non-networked research devices. In the recent past year, however, researchers and startups are finding ways to deploy sensors in networks. We are, for example, seeing networked quantum sensors used for distributed clocking systems, seismic monitoring and weather networks and interferometry used in space exploration. Quantum sensor networks are also of growing interest to the defense industry since they provide mechanisms for targeting that are theoretically secure against jamming. This part of our quantum networking report considers both classical networks of quantum sensors and future end-to-end quantum sensors networks.
  • #3. Current business potential from the quantum internet: There are already quantum networks integrated with the existing Internet that have been demonstrated in China, the U.S. and the Netherlands. We discuss in this report, how the speed of innovation in this area, in collaboration with commercial equipment vendors, suggests significant commercial opportunities in the near term. For example, we are now seeing quantum networks with prototype quantum repeaters in both the U.S. and Europe. In this report we chronicle how the quantum internet will be born and how revenues will be generated from early products and networks during its early years.
  • #4. Satellites vs. fiber in quantum networks: Until commercial repeaters become widely available, satellites will play an important role in long-haul quantum networks. There are already impressive examples of satellite quantum communications in Canada (QEYSSat) and China (Micius). This report discusses how quantum satellite networks can prepare the way for tomorrow's long-haul quantum networks. The effectiveness of satellite quantum is illustrated by the fact that in China, 150 industrial users have already been connected to the Micius network in China, Also, satellites provide the opportunity to deploy novel value-added quantum services such as QKD-on-demand or entanglement on demand.
  • #5. The Geopolitics of quantum Networks: Coverage in this report comprises North America, the EU, non-EU Europe, China, Asia other than China, Australasia, and Russia. And as we discuss this report, policy and geopolitical issues are also creating new opportunities. Questions that we examine include whether the antipathy to QKD by the NSA and other intelligence services will hurt the QKD market as a whole and whether the war in the Ukraine, stimulate the quantum technology business as a whole. For example, recently the Defense Innovation Accelerator for the North Atlantic (DIANA) and Australian, U.K. and U.S. (AUKUS) agreements were announced to further strengthen quantum-related collaborations between western nations in response to both the Russian-Ukraine war and the growing threat of Chinese quantum related advances.

This report also discusses how major networking and electronics companies around the world are building product and marketing strategies for quantum networks. Some of the large commercial companies that we discuss include Airbus, AWS, BT, Cisco, Deutsche Telekom, Huawei, Juniper, Korea Telecom, LG, Mitsubishi, NEC, Nomura, NTT, Quantum Xchange, Raytheon, Thales, Toshiba, Verizon, and ID Quantique, to name just a few In addition, we examine the start-ups in the quantum networking space and their prospects for financing.

Finally, the report contains ten-year revenue forecasts of the quantum networking business, based on current and expected funding. The primary breakouts are quantum networked security/QKD, quantum repeater networks and quantum sensor networks. Some of the segments that are forecast beyond include QKD chips, repeater hardware and wireless networks of quantum sensors.

Table of Contents

Chapter One: Introduction

  • 1.1. Quantum Networks Today: Paths to the Commercial Quantum Networks
    • 1.1.1. QKD Networks
    • 1.1.2. Quantum Sensor Networks
    • 1.1.3. Distributed Quantum Computing
  • 1.2. The Quantum Internet
  • 1.3. The Politics of Quantum Networks
    • 1.3.1. Quantum Networks and Sino-American Relations
    • 1.3.2. Impact of Russia and the Ukraine War
    • 1.3.3. Impact of Brexit
  • 1.4. Summary of Ten-year Forecasts for Quantum Networks

Chapter Two: Quantum Networks in North America

  • 2.1. Overview of Quantum Networks in the U.S.
    • 2.1.1. National Quantum Initiative Act
    • 2.1.2. Quantum Networking and Security/Defense in the U.S.
    • 2.1.3. NIST, QED-C and Networking
  • 2.2. Canadian Quantum Networks
    • 2.2.1. Canada Quantum Encryption Science Satellite (QEYSSat)
  • 2.3. Recently Funded NSF Quantum Networks
    • 2.3.1. Midwest Collaboration (HQAN)
    • 2.3.2. Mid-Atlantic Region Quantum Network
    • 2.3.3. Mid-Atlantic Region Quantum Network-Quantum Networks to Connect Quantum
  • Technology (QuanNeCQT)
    • 2.3.4. Center for Quantum Networking (CQN)
  • 2.4. DOE Quantum Networks
    • 2.4.1. Q-NEXT
    • 2.4.2. Lawrence Berkeley National Lab (LBNL)
    • 2.4.3. Oak Ridge National Lab (ORNL) and Los Alamos National Lab (LANL)
    • 2.4.4. Brookhaven National Lab (BNL) and Stony Brook University (SBU)
  • 2.5. NASA's National Space Quantum Laboratory Program
    • 2.5.1. MIT Lincoln Labs
    • 2.5.2. The Space Entanglement and Annealing Quantum Experiment (SEA0QUE)
  • 2.6. Quantum Xchange: Quantum on the Acela Route
    • 2.6.1. Network Architecture
    • 2.6.2. Services Offered
  • 2.7. AT&T, Caltech and Fermi Lab
  • 2.8. The MIT Lincoln Lab Quantum Network Testbed
  • 2.9. The Role of the Hudson Institute
  • 2.10. Recent Developments at the U.S. National Laboratories: The Chicago Quantum Exchange
  • 2.11. Other Private Companies Active in this Space
    • 2.11.1. Xanadu
    • 2.11.2. Aliro
  • 2.12. Summary of this Chapter

Chapter Three: Quantum Networks in China

  • 3.1. Jian-Wei Pan: The Father of Quantum?
    • 3.1.1. Military Orientation of Chinese Quantum Research
  • 3.2. Chinese Quantum Infrastructure: Satellites and Fiber
    • 3.2.1. Hefei Quantum Network
    • 3.2.2. Jinan Quantum Network
    • 3.2.3. Wuhan Quantum Network
    • 3.2.4. Qingdao Quantum Network
  • 3.3. Chinese Satellite Networks
  • 3.4. Notable Applications and Achievements of Chinese Quantum Networks
    • 3.4.1. Recent Achievements - 2021
  • 3.5. China's Quantum-related Commercial Activity
  • 3.6. Summary of Quantum Networks in China

Chapter Four: Other Quantum Networking Projects in Asia

  • 4.1. Singapore
    • 4.1.1. National University of Singapore: Centre for Quantum Technologies
    • 4.1.2. Singapore's Quantum Engineering Program (QEP)
    • 4.1.3. National Quantum-Safe Network (NQSN)
  • 4.2. Quantum Networks in South Korea: SK Telecom
    • 4.2.1. South Korean Telecom Companies
    • 4.2.2. More on SKT
    • 4.2.3. KT and Toshiba
    • 4.2.4. SK Broadband and IDQ
  • 4.3. Quantum Networks in Japan
    • 4.3.1. NICT
    • 4.3.2. NTT
    • 4.3.3. Toshiba
    • 4.3.4. Global Quantum Cryptography Communications Network
    • 4.3.5. Q-STAR-Quantum Strategic Industry Alliance for Revolution
    • 4.3.6. Nomura
  • 4.4. Summary of Asian Quantum Networking Activity Outside of China

Chapter Five: Quantum Networks in Australasia

  • 5.1. Australia
    • 5.1.1. Domestic Commercial Activity in Quantum
    • 5.1.2. Quintessence Labs
    • 5.1.3. Project Q-Peace and Security in a Quantum Age
    • 5.1.4. CQC2T
  • 5.2. A Note on Quantum in New Zealand
  • 5.3. Summary

Chapter Six: Quantum Networks in the EU

  • 6.1. Funding Quantum Networks in the EU
    • 6.1.1. CiViQ
    • 6.1.2. UNIQORN
    • 6.1.3. OPENQKD
    • 6.1.4. EuroQCI
    • 6.1.5. QSAFE
  • 6.2. The Quantum Internet Alliance
  • 6.3. Spain: QuantumCat
  • 6.4. The Netherlands: QuTech Research Institute
  • 6.5. Germany
  • 6.6. France
  • 6.7. Summary of Quantum Networking in the EU

Chapter Seven: Quantum Networks in Europe Outside the EU

  • 7.1. Funding for Quantum Networking in the U.K.
    • 7.1.1. U.K. Metropolitan Area Networks
    • 7.1.2. Quantum Network in Cambridge
    • 7.1.3. The UK Communications Hub
    • 7.1.4. ArQit
    • 7.1.5. BT QKD programs
    • 7.1.6. University of Strathclyde Glasgow
  • 7.2. Switzerland
    • 7.2.1. University of Geneva
    • 7.2.2. University of Basel
    • 7.2.3. EPFL
  • 7.3. Summary of this Chapter

Chapter Eight: Quantum Networks in Russia

  • 8.1. Quantum State of the Art in Russia
    • 8.1.1. The Russian QKD Industry
    • 8.1.2. Russian Quantum Efforts in the Wake of the War in the Ukraine
  • 8.2. Quantum Network Testbeds
  • 8.3. Russian Quantum Center
    • 8.3.1. Current Situation at RQC
    • 8.3.2. Current Networking-related Projects
  • 8.4. Activities in Russian Universities and Academic Facilities
    • 8.4.1. Moscow State University - QKD projects
    • 8.4.2. ITMO
    • 8.4.3. Kazan--The Zavoisky Physical-Technical Institute and the Kazan Quantum Center
    • 8.4.4. Quantum Hacking Lab
    • 8.4.5. National Technology Initiative: Center for Quantum Communication
    • 8.4.6. Quantum Satellite Activities
  • 8.5. Other Russian Quantum Network-related Projects
    • 8.5.1. Rostelcom
    • 8.5.2. Russian Railways
  • 8.6. Summary of our Findings on Quantum Networking

About IQT Research

About the Analyst

Acronyms and Abbreviations Used In this Report

List of Exhibits

  • Exhibit 1-1: Timetable for the Evolution of Quantum Networks
  • Exhibit 1-2: Market for Quantum Networking Systems by Type and Products Used ($ Millions)
  • Exhibit 2-1: Hudson Institute Quantum Alliance Initiative: Membership
  • Exhibit 3-1: Notable Chinese Quantum Networking Achievements
  • Exhibit 3-2: Chinese Quantum Companies
  • Exhibit 4-1: Asian Quantum Networking Activity Outside of China
  • Exhibit 4-2: Toshiba Quantum Networking Projects
  • Exhibit 5-1: Australian Quantum Start-ups
  • Exhibit 6-1: EU Quantum Networking Activities
  • Exhibit 7-1: BT's Commercial-grade Quantum Links
  • Exhibit 7-2: UK Communications Hub Participants
  • Exhibit 7-3: BT QKD Programs
  • Exhibit 8-1: Russian Quantum Networking-Related Development Directions
  • Exhibit 8-2: Structure of the Russian QKD Sector
  • Exhibit 8-3: Russian Quantum Testbeds
  • Exhibit 8-4: Moscow State University-Areas of Quantum Networking Related
  • Exhibit 8-5: Quantum Network Research in Kazan-Areas of Quantum Networking Related
  • Exhibit 8-6: Russian Quantum Satellite Activities