デフォルト表紙
市場調査レポート
商品コード
1568918

燃料電池スタックのリサイクルと再利用の世界市場予測、2024年~2032年

Global Fuel Cell Stack Recycling and Reuse Market Forecast 2024-2032


出版日
ページ情報
英文 298 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.99円
燃料電池スタックのリサイクルと再利用の世界市場予測、2024年~2032年
出版日: 2024年10月12日
発行: Inkwood Research
ページ情報: 英文 298 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

主な調査結果

燃料電池スタックのリサイクルと再利用の世界市場は、2032年までに5億3,254万米ドルに達し、予測期間2024~2032年にCAGR 22.36%で成長すると予測されます。調査に考慮した基本年は2023年で、推定期間は2024年から2032年の間です。この市場調査では、COVID-19が燃料電池スタックのリサイクルと再利用市場に与える影響についても定性的・定量的に分析しています。

燃料電池は電気化学的な装置であり、燃料(通常は水素)からの化学エネルギーを酸素との反応によって電気に変換し、製品別として水と熱が生じる。従来の燃焼エンジンとは異なり、燃料電池は有害な汚染物質の代わりに水蒸気だけを排出する、よりクリーンな代替エネルギーを提供します。そのため、輸送、据置型発電、ポータブル電源など、さまざまな分野で非常に魅力的なものとなっています。

燃料電池の動作の中心となるのは燃料電池スタックであり、これは基本的に燃料電池システムの心臓部です。燃料電池スタックは、より高出力の電気を生成するために、複数の個々の燃料電池を重ねたものです。各燃料電池は、反応物の流れと電気的接続を管理するバイポーラプレートによって分離された、電気化学反応が行われる膜電極接合体(MEA)を含んでいます。中東・アフリカの主要材料は白金族金属(PGM)で、特に白金は反応プロセスで触媒として機能します。その他の重要な部品には、構造的安定性をもたらすステンレス鋼やアルミニウムなどの材料が含まれます。

プラチナのような希少で高価な金属に依存していることから、燃料電池スタックのリサイクルと再利用は、業界にとって重要な焦点となっています。リサイクルは貴重な材料を回収し、環境への影響を減らすと同時に、水素技術の持続可能な拡張をサポートします。水素経済が成長するにつれ、企業はコスト効率と資源の安全性を確保するため、これらの主要部品の回収と再利用への投資を増やしています。

市場インサイト

燃料電池スタックのリサイクルと再利用の世界市場成長の主な促進要因

  • 貴金属の希少性
  • 各業界で燃料電池車の採用が増加
  • リサイクル方法の技術的進歩

燃料電池スタックのリサイクル方法の技術的進歩は、この成長産業の持続可能性を高める上で極めて重要です。溶媒ベースのリサイクル・プロセスや高度な製錬技術の開発などの革新により、貴重な材料、特にプラチナやパラジウムなどの白金族金属(PGM)をより効率的に回収できるようになった。

ユミコアのような企業は、フッ化水素のような有害な副生成物を安全に捕捉するためにカルシウム塩を組み込んだ高温乾式製錬プロセスを導入し、リサイクルプロセスをより安全で環境に優しいものにしています。これらのプロセスは、金属と非金属成分の両方の回収を可能にし、バージン材料の必要性を減らし、循環型経済アプローチをサポートします。

さらに、ジョンソン・マッセイのような業界リーダーによって開発された溶剤や界面活性剤ベースのアプローチなどの代替方法は、焼却の必要性を回避する有望なソリューションを提供します。これらの進歩は、燃料電池膜からプラチナ触媒やその他の材料を分離・再利用することを可能にし、燃料電池リサイクルの実行可能性を大幅に高める。

このような技術革新は、材料の回収率を向上させるだけでなく、従来のリサイクル方法に関連する環境への影響を低減し、持続可能な燃料電池技術に対する需要の高まりに対応する業界を位置づけています。

世界の燃料電池スタックのリサイクルと再利用市場の主な成長抑制要因

  • リサイクルに伴う高コスト
  • 燃料電池リサイクルの技術的複雑性

燃料電池の複雑な設計と複雑な材料の使用は、分解に課題をもたらし、効率的なリサイクルの大きな障害となっています。

部品、特に白金触媒の分離には、しばしば時間とコストのかかる特殊な工程が必要であり、リサイクルへの取り組みにさらなる困難をもたらしています。

燃料電池スタックのリサイクルと再利用の世界市場|トップ動向

  • 燃料電池メーカーは、リサイクルをより効率的で費用対効果の高いものにするため、革新的なアプローチを採用するようになっています。主な進歩の1つは、燃料電池のモジュール設計で、ライフサイクルの終了時に簡単に分解できるようになっています。モジュラーコンポーネントは、白金族金属などの重要な材料をより効率的に回収できるようにすることで、リサイクルプロセスを簡素化します。
  • 政府の規制と政策は、燃料電池リサイクル技術の採用を促進する上で極めて重要な役割を果たしています。厳しい環境規制とグリーン技術へのインセンティブが相まって、企業は材料の回収と廃棄物の削減に力を入れるようになっています。

セグメンテーション分析

市場セグメンテーション:タイプ別、リサイクルプロセス別、最終用途産業別

タイプ別市場

  • 固体高分子形燃料電池(PEMFC)
  • 固体酸化物形燃料電池(SOFC)
  • 溶融炭酸塩燃料電池(MCFC)
  • リン酸型燃料電池(PAFC)
  • その他のタイプ

リサイクルプロセス別市場

  • 乾式リサイクル
  • 湿式冶金リサイクル

湿式冶金プロセスは、使用済み燃料電池スタックから貴重な金属を回収するために水性化学を使用します。このプロセスには通常、浸出が含まれ、酸または他の溶媒が金属成分を溶解し、沈殿、溶媒抽出、電解紡糸などのステップを経て金属が分離・精製されます。

高温に依存する乾式製錬とは異なり、湿式製錬は低温で行われるため、エネルギー消費が少ないです。このプロセスは、プラチナ、パラジウム、その他燃料電池によく見られる貴重な材料など、特定の金属を選択的にターゲットにすることができ、これらの貴重な資源を回収するための効果的な方法となります。

水素冶金プロセスは、環境への影響が少なく、金属回収の効率が高いため、水素燃料電池のリサイクルにおいてより普及しています。化学的環境を正確に制御できるため、回収金属の純度が高く、収率も高いです。

さらに、必要なエネルギーが少ないため、特に持続可能なリサイクルソリューションへの需要が高まる中、湿式冶金法は費用対効果が高くなります。このプロセスはまた、乾式冶金に比べて有害物質の排出が少なく、環境規制や持続可能性の目標により合致しています。

  • 機械的リサイクル
  • その他のリサイクルプロセス

最終用途産業別市場

  • 輸送
  • 据置型発電
  • ポータブル発電

地域分析

主要4地域に基づく地域別調査

  • 北米:米国、カナダ
  • 欧州ドイツ、英国、フランス、イタリア、スペイン、ポーランド、ベルギー、その他欧州
  • アジア太平洋:中国、日本、韓国、オーストラリア・ニュージーランド、インド、シンガポール、マレーシア、その他アジア太平洋地域。

アジア太平洋、特に日本、韓国、中国などは、燃料電池技術導入の最前線にあります。燃料電池自動車(FCV)や据置型電源システムの普及により、燃料電池の使用済みサイクルを管理する効率的なリサイクル・プロセスの必要性が高まっています。

中国は、特に水素自動車分野で主要企業をリードしており、長城汽車のような企業がリサイクルプロセスを水素戦略に組み込んでいます。2025年までに、中国は、使用済み燃料電池をリサイクルし、プラチナなどの重要な材料を回収するための国内インフラに支えられながら、1万台以上の燃料電池自動車を走らせることを目指しています。

  • 世界のその他の地域:ラテンアメリカ、中東・アフリカ

競合考察

世界の燃料電池スタックのリサイクルと再利用市場の主要企業

  • Ballard Power Systems Inc
  • Cummins Inc
  • Bloom Energy Corporation
  • Doosan Corporation
  • Gannon & Scott Inc
  • Johnson Matthey Plc

これらの企業が採用した主な戦略

  • 2023年、ネッドスタックはZBTと水素燃料電池技術の共同開発と工業化で提携し、両社の能力を大幅に強化することを目指しました。この提携は、2027年までに燃料電池の製造能力を1ギガワット(GW)スタックまで拡大する戦略的取り組みの一環です。この提携は、ZBTの燃料電池の研究・試験に関する専門知識と、Nedstackの先進的な製造インフラを活用するもので、据置型および海上用途の固体高分子形(PEM)燃料電池の開発に重点を置いています。
  • ジョンソン・マッセイ社は、HyRefine技術により、燃料電池スタックのリサイクルと再利用市場で大きな進歩を実証しました。2023年11月にラボスケールで発表されたこの革新的プロセスは、使用済み燃料電池と電解槽から白金族金属(PGM)とアイオノマーの両方を効果的にリサイクルします。これは、これらの重要な部品の循環性を実現する世界初の試みです。また、リサイクル材料は新材料の性能に匹敵することが証明されており、持続可能性に大きなメリットをもたらし、循環型水素経済をサポートします。

10%の無料カスタマイズと3ヶ月のアナリスト・サポートを提供します。

よくある質問(FAQ):

  • 燃料電池スタックのリサイクルと再利用の市場規模と成長率の予測は?
  • A:世界の燃料電池スタックのリサイクルと再利用市場は、2032年までに5億3,254万米ドルに達し、予測期間中のCAGRは22.36%で成長すると予想されています。
  • 燃料電池スタックのリサイクルで回収される主な材料は何ですか?

A:白金族金属(PGM)やパラジウム(Pd)、ロジウム(Rh)などのPGM、ステンレス鋼、アルミニウム、燃料電池スタックに使用されるその他の構造材料が、リサイクル過程で回収されます。

  • 世界の燃料電池スタックのリサイクル・リユース市場で最も急成長している地域はどこですか?

A:アジア太平洋地域は、燃料電池スタックのリサイクルと再利用の世界市場で最も急成長している地域です。

目次

第1章 調査範囲と調査手法

第2章 エグゼクティブサマリー

  • 市場規模・推計
  • 市場概要
  • 調査範囲
  • 危機シナリオ分析
  • 主な市場調査結果

第3章 市場力学

  • 主な促進要因
    • 貴金属の希少性
    • 各業界で燃料電池自動車の採用が増加
    • リサイクル方法の技術的進歩
  • 主な阻害要因
    • リサイクルに伴う高コスト
    • 燃料電池のリサイクルの技術的複雑さ

第4章 主要分析

  • 親市場分析
  • 主要市場動向
    • リサイクルに適した製造技術の開発
    • 規制が燃料電池リサイクルを促進し、材料回収と持続可能な技術への投資を促す
  • ポーターのファイブフォース分析
  • 成長見通しマッピング
    • 北米の成長見通しマッピング
    • 欧州の成長展望マッピング
    • アジア太平洋地域の成長展望マッピング
    • 世界のその他の地域の成長プロスペクトマッピング
  • 市場成熟度分析
  • 市場集中度分析
  • バリューチェーン分析
  • 主要購買基準
    • 費用対効果
    • 環境への影響
    • 規制遵守
    • 技術とプロセスの効率性
    • 信頼性と一貫性
  • 燃料電池スタックのリサイクルと再利用市場規制の枠組み

第5章 タイプ別市場

  • 固体高分子形燃料電池(PEMFC)
    • 市場予測図
    • セグメント分析
  • 固体酸化物形燃料電池(SOFC)
    • 市場予測図
    • セグメント分析
  • 溶融炭酸塩燃料電池(MCFC)
    • 市場予測図
    • セグメント分析
  • リン酸型燃料電池(PAFC)
    • 市場予測図
    • セグメント分析
  • その他のタイプ
    • 市場予測図
    • セグメント分析

第6章 リサイクルプロセス別市場

  • 乾式リサイクル
    • 市場予測図
    • セグメント分析
  • 湿式冶金リサイクル
    • 市場予測図
    • セグメント分析
  • 機械式リサイクル
    • 市場予測図
    • セグメント分析
  • その他のリサイクルプロセス
    • 市場予測図
    • セグメント分析

第7章 最終用途産業別市場

  • 輸送
    • 市場予測図
    • セグメント分析
  • 据置型発電
    • 市場予測図
    • セグメント分析
  • ポータブル発電
    • 市場予測図
    • セグメント分析

第8章 地域分析

  • 北米
    • 米国
    • カナダ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • ポーランド
    • ベルギー
    • その他欧州
  • アジア太平洋
    • 中国
    • 日本
    • 韓国
    • オーストラリア・ニュージーランド
    • インド
    • シンガポール
    • マレーシア
    • その他アジア太平洋地域
  • 世界のその他の地域
    • ラテンアメリカ
    • 中東・アフリカ

第9章 競合情勢

  • 主な戦略的発展
    • MERGERS & ACQUISITIONS
    • PRODUCT LAUNCHES & DEVELOPMENTS
    • PARTNERSHIPS & AGREEMENTS
    • BUSINESS EXPANSIONS & DIVESTITURES
  • 企業プロファイル
    • BALLARD POWER
    • BLOOM ENERGY
    • CUMINS INC
    • DOOSAN CORPORATION
    • GANNON & SCOTT
    • HENSEL RECYCLING
    • JOHNSON MATTHEY
    • NEDSTACK FUEL CELL TECHNOLOGY BV
    • PLUG POWER INC
    • ROBERT BOSCH GMBH
図表

LIST OF TABLES

  • TABLE 1: MARKET SNAPSHOT - FUEL CELL STACK RECYCLING
  • TABLE 2: REGULATORY FRAMEWORK
  • TABLE 3: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY TYPE, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 4: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY TYPE, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 5: GLOBAL PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 6: GLOBAL PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 7: GLOBAL SOLID OXIDE FUEL CELLS (SOFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 8: GLOBAL SOLID OXIDE FUEL CELLS (SOFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 9: GLOBAL MOLTEN CARBONATE FUEL CELLS (MCFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 10: GLOBAL MOLTEN CARBONATE FUEL CELLS (MCFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 11: GLOBAL PHOSPHORIC ACID FUEL CELLS (PAFCS) MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 12: GLOBAL PHOSPHORIC ACID FUEL CELLS (PAFCS) MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 13: GLOBAL OTHER TYPES MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 14: GLOBAL OTHER TYPES MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 15: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY RECYCLING PROCESS, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 16: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY RECYCLING PROCESS, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 17: GLOBAL PYROMETALLURGICAL RECYCLING MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 18: GLOBAL PYROMETALLURGICAL RECYCLING MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 19: GLOBAL HYDROMETALLURGICAL RECYCLING MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 20: GLOBAL HYDROMETALLURGICAL RECYCLING MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 21: GLOBAL MECHANICAL RECYCLING MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 22: GLOBAL MECHANICAL RECYCLING MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 23: GLOBAL OTHER RECYCLING PROCESSES MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 24: GLOBAL OTHER RECYCLING PROCESSES MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 25: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY END USE INDUSTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 26: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY END USE INDUSTRY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 27: GLOBAL TRANSPORTATION MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 28: GLOBAL TRANSPORTATION MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 29: GLOBAL STATIONARY POWER GENERATION MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 30: GLOBAL STATIONARY POWER GENERATION MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 31: GLOBAL PORTABLE POWER GENERATION MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 32: GLOBAL PORTABLE POWER GENERATION MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 33: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY GEOGRAPHY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 34: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY GEOGRAPHY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 35: NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 36: NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 37: KEY PLAYERS OPERATING IN NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 38: EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 39: EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, FORECAST YEARS, 2020-2032 (IN $ MILLION)
  • TABLE 40: KEY PLAYERS OPERATING IN EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 41: ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 42: ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, BY COUNTRY, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 43: KEY PLAYERS OPERATING IN ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 44: REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET, BY REGION, HISTORICAL YEARS, 2018-2022 (IN $ MILLION)
  • TABLE 45: REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET, BY REGION, FORECAST YEARS, 2024-2032 (IN $ MILLION)
  • TABLE 46: KEY PLAYERS OPERATING IN REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET
  • TABLE 47: LIST OF MERGERS & ACQUISITIONS
  • TABLE 48: LIST OF PRODUCT LAUNCHES & DEVELOPMENTS
  • TABLE 49: LIST OF PARTNERSHIPS & AGREEMENTS
  • TABLE 50: LIST OF BUSINESS EXPANSIONS & DIVESTITURES

LIST OF FIGURES

  • FIGURE 1: KEY MARKET TRENDS
  • FIGURE 2: PORTER'S FIVE FORCES ANALYSIS
  • FIGURE 3: GROWTH PROSPECT MAPPING FOR NORTH AMERICA
  • FIGURE 4: GROWTH PROSPECT MAPPING FOR EUROPE
  • FIGURE 5: GROWTH PROSPECT MAPPING FOR ASIA-PACIFIC
  • FIGURE 6: GROWTH PROSPECT MAPPING FOR REST OF WORLD
  • FIGURE 7: MARKET MATURITY ANALYSIS
  • FIGURE 8: MARKET CONCENTRATION ANALYSIS
  • FIGURE 9: VALUE CHAIN ANALYSIS
  • FIGURE 10: KEY BUYING CRITERIA
  • FIGURE 11: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, GROWTH POTENTIAL, BY TYPE, IN 2023
  • FIGURE 12: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 13: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY SOLID OXIDE FUEL CELLS (SOFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 14: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY MOLTEN CARBONATE FUEL CELLS (MCFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 15: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PHOSPHORIC ACID FUEL CELLS (PAFCS), 2024-2032 (IN $ MILLION)
  • FIGURE 16: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY OTHER TYPES, 2024-2032 (IN $ MILLION)
  • FIGURE 17: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, GROWTH POTENTIAL, BY RECYCLING PROCESS, IN 2023
  • FIGURE 18: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PYROMETALLURGICAL RECYCLING, 2024-2032 (IN $ MILLION)
  • FIGURE 19: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY HYDROMETALLURGICAL RECYCLING, 2024-2032 (IN $ MILLION)
  • FIGURE 20: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY MECHANICAL RECYCLING, 2024-2032 (IN $ MILLION)
  • FIGURE 21: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY OTHER RECYCLING PROCESSES, 2024-2032 (IN $ MILLION)
  • FIGURE 22: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, GROWTH POTENTIAL, BY END USE INDUSTRY, IN 2023
  • FIGURE 23: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY TRANSPORTATION, 2024-2032 (IN $ MILLION)
  • FIGURE 24: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY STATIONARY POWER GENERATION, 2024-2032 (IN $ MILLION)
  • FIGURE 25: GLOBAL FUEL CELL STACK RECYCLING AND REUSE MARKET, BY PORTABLE POWER GENERATION, 2024-2032 (IN $ MILLION)
  • FIGURE 26: NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, COUNTRY OUTLOOK, 2023 & 2032 (IN %)
  • FIGURE 27: UNITED STATES FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 28: CANADA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 29: EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, COUNTRY OUTLOOK, 2023 & 2032 (IN %)
  • FIGURE 30: GERMANY FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 31: UNITED KINGDOM FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 32: FRANCE FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 33: ITALY FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 34: SPAIN FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 35: POLAND FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 36: BELGIUM FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 37: REST OF EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 38: ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, COUNTRY OUTLOOK, 2023 & 2032 (IN%)
  • FIGURE 39: CHINA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 40: JAPAN FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 41: SOUTH KOREA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 42: AUSTRALIA & NEW ZEALAND FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 43: INDIA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 44: SINGAPORE FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 45: MALAYSIA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 46: REST OF ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 47: REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET, REGIONAL OUTLOOK, 2023 & 2032 (IN %)
  • FIGURE 48: LATIN AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
  • FIGURE 49: MIDDLE EAST & AFRICA FUEL CELL STACK RECYCLING AND REUSE MARKET, 2024-2032 (IN $ MILLION)
目次
Product Code: 94848

KEY FINDINGS

The global fuel cell stack recycling and reuse market is expected to reach $532.54 million by 2032, growing at a CAGR of 22.36% during the forecast period, 2024-2032. The base year considered for the study is 2023, and the estimated period is between 2024 and 2032. The market study has also analyzed the impact of COVID-19 on the fuel cell stack recycling and reuse market qualitatively and quantitatively.

A fuel cell is an electrochemical device that converts chemical energy from a fuel, typically hydrogen, into electricity through a reaction with oxygen, with water and heat as by-products. Unlike traditional combustion engines, fuel cells offer a cleaner energy alternative, emitting only water vapor instead of harmful pollutants. This makes them highly attractive for various sectors, including transportation, stationary power generation, and portable power applications.

Central to the operation of a fuel cell is the fuel cell stack, which is essentially the heart of the fuel cell system. A fuel cell stack consists of multiple individual fuel cells layered together to generate a higher output of electricity. Each fuel cell contains a membrane electrode assembly (MEA), where the electrochemical reactions take place, separated by bipolar plates that manage the flow of reactants and electrical connections. The key materials involved in the MEA are platinum group metals (PGMs), especially platinum, which serve as catalysts in the reaction process. Other critical components include materials like stainless steel and aluminum that provide structural stability.

Given the reliance on rare and expensive metals like platinum, the recycling and reuse of fuel cell stacks have become a critical focus for the industry. Recycling recovers valuable materials and reduces environmental impacts, while supporting the sustainable scaling of hydrogen technologies. As the hydrogen economy grows, companies are increasingly investing in the recovery and reuse of these key components to ensure cost-efficiency and resource security.

MARKET INSIGHTS

Key enablers of the global fuel cell stack recycling and reuse market growth:

  • Scarcity of precious metals
  • Rising adoption of fuel cell vehicles across industries
  • Technological advancements in recycling methods

Technological advancements in recycling methods for fuel cell stacks are critical to enhancing the sustainability of this growing industry. Innovations such as the development of solvent-based recycling processes and advanced smelting techniques have allowed for more efficient recovery of valuable materials, particularly platinum group metals (PGMs) like platinum and palladium.

Companies like Umicore have implemented high-temperature pyrometallurgical processes, which incorporate calcium salts to safely capture hazardous by-products like hydrogen fluoride, making the recycling process safer and more environmentally friendly. These processes enable the recovery of both metals and non-metallic components, reducing the need for virgin materials and supporting a circular economy approach.

Moreover, alternative methods such as solvent and surfactant-based approaches, as developed by industry leaders like Johnson Matthey, offer promising solutions that avoid the need for incineration. These advancements allow for the separation and reuse of platinum catalysts and other materials from fuel cell membranes, significantly enhancing the viability of fuel cell recycling.

Such innovations not only improve material recovery rates but also reduce the environmental impact associated with traditional recycling methods, positioning the industry to meet the rising demand for sustainable fuel cell technologies.

Key growth restraining factors of the global fuel cell stack recycling and reuse market:

  • High costs associated with recycling
  • Technical complexity of recycling fuel cells

The intricate design and the use of complex materials in fuel cells create challenges for disassembly, posing a major obstacle to efficient recycling.

Separating the components, particularly the platinum catalyst, involves specialized processes that are often time-consuming and expensive, adding further difficulty to recycling efforts.

Global Fuel Cell Stack Recycling and Reuse Market | Top Trends

  • Fuel cell manufacturers are increasingly adopting innovative approaches to make recycling more efficient and cost-effective. One key advancement is the modular design of fuel cells, which allows for easier disassembly at the end of their lifecycle. Modular components simplify the recycling process by enabling the recovery of critical materials, such as platinum group metals, with greater efficiency.
  • Government regulations and policies are playing a pivotal role in driving the adoption of fuel cell recycling technologies. Stringent environmental regulations, coupled with incentives for green technologies, are pushing companies to focus on material recovery and the reduction of waste

SEGMENTATION ANALYSIS

Market Segmentation - Type, Recycling Process, and End Use Industry -

Market by Type:

  • Proton Exchange Membrane Fuel Cells (PEMFCs)
  • Solid Oxide Fuel Cells (SOFCs)
  • Molten Carbonate Fuel Cells (MCFCs)
  • Phosphoric Acid Fuel Cells (PAFCs)
  • Other Types

Market by Recycling Process:

  • Pyrometallurgical Recycling
  • Hydrometallurgical Recycling

The hydrometallurgical process involves the use of aqueous chemistry to recover valuable metals from spent fuel cell stacks. This process typically includes leaching, where acids or other solvents dissolve the metal components, followed by steps like precipitation, solvent extraction, and electro-winning to isolate and purify the metals.

Unlike pyrometallurgy, which relies on high temperatures, hydrometallurgy operates at lower temperatures, making it less energy-intensive. The process is capable of selectively targeting specific metals, such as platinum, palladium, and other precious materials commonly found in fuel cells, making it an effective method for recovering these valuable resources.

Hydrometallurgical processes are more popular in hydrogen fuel cell recycling due to their lower environmental impact and greater efficiency in metal recovery. The ability to precisely control the chemical environment allows for higher purity and better yields of recovered metals.

Additionally, the lower energy requirements make hydrometallurgy more cost-effective, especially as the demand for sustainable recycling solutions grows. The process also generates fewer hazardous emissions compared to pyrometallurgy, aligning better with environmental regulations and sustainability goals

  • Mechanical Recycling
  • Other Recycling Processes

Market by End Use Industry:

  • Transportation
  • Stationary Power Generation
  • Portable Power Generation

REGIONAL ANALYSIS

Geographical Study Based on Four Major Regions:

  • North America: The United States and Canada
  • Europe: Germany, the United Kingdom, France, Italy, Spain, Poland, Belgium, and Rest of Europe
  • Asia-Pacific: China, Japan, South Korea, Australia & New Zealand, India, Singapore, Malaysia, and Rest of Asia-Pacific.

The Asia-Pacific, particularly countries like Japan, South Korea, and China, is at the forefront of adopting fuel cell technology. This widespread deployment of fuel cell vehicles (FCVs) and stationary power systems leads to a growing need for efficient recycling processes to manage the end-of-life cycle of these cells.

China is leading the charge, particularly in the hydrogen vehicle sector, with companies like Great Wall Motor integrating recycling processes into their hydrogen strategy. By 2025, the country aims to have over 10,000 fuel cell vehicles on the road, underpinned by domestic infrastructure for recycling end-of-life fuel cells and recovering critical materials such as platinum.

  • Rest of World: Latin America, the Middle East & Africa

COMPETITIVE INSIGHTS

Major players in the global fuel cell stack recycling and reuse market:

  • Ballard Power Systems Inc
  • Cummins Inc
  • Bloom Energy Corporation
  • Doosan Corporation
  • Gannon & Scott Inc
  • Johnson Matthey Plc

Key strategies adopted by some of these companies:

  • In 2023, Nedstack partnered with ZBT to co-develop and industrialize hydrogen fuel cell technology, aiming to enhance their capabilities significantly. This collaboration is part of a strategic effort to scale up their fuel cell manufacturing capacity to a 1-gigawatt (GW) stack power rating by 2027. The partnership leverages ZBT's expertise in fuel cell research and testing alongside Nedstack's advanced manufacturing infrastructure, with a focus on developing Proton Exchange Membrane (PEM) fuel cells for stationary and maritime applications.
  • Johnson Matthey has demonstrated a significant advancement in the fuel cell stack recycling and reuse market with its HyRefine technology. This innovative process, shown at a lab scale in November 2023, effectively recycles both platinum group metals (PGMs) and ionomers from spent fuel cells and electrolyzers. This marks a world-first in achieving circularity for these critical components. Also, the recycled materials have been proven to match the performance of new materials, offering substantial sustainability benefits and supporting a circular hydrogen economy.

We Offer 10% Free Customization and 3 Months Analyst Support

Frequently Asked Questions (FAQs):

  • What is the projected fuel cell stack recycling and reuse market size and growth rate?
  • A: The global fuel cell stack recycling and reuse market is expected to reach $532.54 million by 2032, growing at a CAGR of 22.36% during the forecast period.
  • What are the key materials recovered in fuel cell stack recycling?

A: Platinum group metals (PGMs) and other PGMs like palladium (Pd) and rhodium (Rh), as well as stainless steel, aluminum, and other structural materials used in the fuel cell stack, are recovered during the recycling process.

  • Which is the fastest-growing region in the global fuel cell stack recycling and reuse market?

A: Asia-Pacific is the fastest-growing region in the global fuel cell stack recycling and reuse market.

TABLE OF CONTENTS

1. RESEARCH SCOPE & METHODOLOGY

  • 1.1. STUDY OBJECTIVES
  • 1.2. METHODOLOGY
  • 1.3. ASSUMPTIONS & LIMITATIONS

2. EXECUTIVE SUMMARY

  • 2.1. MARKET SIZE & ESTIMATES
  • 2.2. MARKET OVERVIEW
  • 2.3. SCOPE OF STUDY
  • 2.4. CRISIS SCENARIO ANALYSIS
    • 2.4.1. IMPACT OF COVID-19 ON THE FUEL CELL STACK RECYCLING AND REUSE MARKET
  • 2.5. MAJOR MARKET FINDINGS
    • 2.5.1. STANDARDIZATION AND DESIGN FOR RECYCLING
    • 2.5.2. PROTON EXCHANGE MEMBRANE FUEL CELLS ARE THE MOST COMMONLY RECYCLED AND REUSED TYPE OF FUEL CELL
    • 2.5.3. PYROMETALLURGICAL RECYCLING IS THE PRIMARY PROCESS UTILIZED FOR FUEL CELL STACK RECYCLING AND REUSE
    • 2.5.4. TRANSPORTATION IS THE LEADING END USE INDUSTRY FOR FUEL CELL STACK RECYCLING AND REUSE

3. MARKET DYNAMICS

  • 3.1. KEY DRIVERS
    • 3.1.1. SCARCITY OF PRECIOUS METALS
    • 3.1.2. RISING ADOPTION OF FUEL CELL VEHICLES ACROSS INDUSTRIES
    • 3.1.3. TECHNOLOGICAL ADVANCEMENTS IN RECYCLING METHODS
  • 3.2. KEY RESTRAINTS
    • 3.2.1. HIGH COSTS ASSOCIATED WITH RECYCLING
    • 3.2.2. TECHNICAL COMPLEXITY OF RECYCLING FUEL CELLS

4. KEY ANALYTICS

  • 4.1. PARENT MARKET ANALYSIS
  • 4.2. KEY MARKET TRENDS
    • 4.2.1. DEVELOPMENT OF RECYCLING-FRIENDLY MANUFACTURING TECHNOLOGIES
    • 4.2.2. REGULATIONS DRIVE FUEL CELL RECYCLING, ENCOURAGING MATERIAL RECOVERY AND SUSTAINABLE TECH INVESTMENTS
  • 4.3. PORTER'S FIVE FORCES ANALYSIS
    • 4.3.1. BUYERS POWER
    • 4.3.2. SUPPLIERS POWER
    • 4.3.3. SUBSTITUTION
    • 4.3.4. NEW ENTRANTS
    • 4.3.5. INDUSTRY RIVALRY
  • 4.4. GROWTH PROSPECT MAPPING
    • 4.4.1. GROWTH PROSPECT MAPPING FOR NORTH AMERICA
    • 4.4.2. GROWTH PROSPECT MAPPING FOR EUROPE
    • 4.4.3. GROWTH PROSPECT MAPPING FOR ASIA-PACIFIC
    • 4.4.4. GROWTH PROSPECT MAPPING FOR REST OF WORLD
  • 4.5. MARKET MATURITY ANALYSIS
  • 4.6. MARKET CONCENTRATION ANALYSIS
  • 4.7. VALUE CHAIN ANALYSIS
    • 4.7.1. RAW MATERIAL PROCUREMENT
    • 4.7.2. FUEL CELL MANUFACTURING
    • 4.7.3. FUEL CELL USAGE
    • 4.7.4. END-OF-LIFE MANAGEMENT
    • 4.7.5. DISMANTLING & RECYCLING
    • 4.7.6. SECONDARY MARKET AND REUSE
    • 4.7.7. DISPOSAL OF NON-RECYCLABLE MATERIALS
  • 4.8. KEY BUYING CRITERIA
    • 4.8.1. COST EFFECTIVENESS
    • 4.8.2. ENVIRONMENTAL IMPACT
    • 4.8.3. REGULATORY COMPLIANCE
    • 4.8.4. TECHNOLOGY AND PROCESS EFFICIENCY
    • 4.8.5. RELIABILITY AND CONSISTENCY
  • 4.9. FUEL CELL STACK RECYCLING AND REUSE MARKET REGULATORY FRAMEWORK

5. MARKET BY TYPE

  • 5.1. PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCS)
    • 5.1.1. MARKET FORECAST FIGURE
    • 5.1.2. SEGMENT ANALYSIS
  • 5.2. SOLID OXIDE FUEL CELLS (SOFCS)
    • 5.2.1. MARKET FORECAST FIGURE
    • 5.2.2. SEGMENT ANALYSIS
  • 5.3. MOLTEN CARBONATE FUEL CELLS (MCFCS)
    • 5.3.1. MARKET FORECAST FIGURE
    • 5.3.2. SEGMENT ANALYSIS
  • 5.4. PHOSPHORIC ACID FUEL CELLS (PAFCS)
    • 5.4.1. MARKET FORECAST FIGURE
    • 5.4.2. SEGMENT ANALYSIS
  • 5.5. OTHER TYPES
    • 5.5.1. MARKET FORECAST FIGURE
    • 5.5.2. SEGMENT ANALYSIS

6. MARKET BY RECYCLING PROCESS

  • 6.1. PYROMETALLURGICAL RECYCLING
    • 6.1.1. MARKET FORECAST FIGURE
    • 6.1.2. SEGMENT ANALYSIS
  • 6.2. HYDROMETALLURGICAL RECYCLING
    • 6.2.1. MARKET FORECAST FIGURE
    • 6.2.2. SEGMENT ANALYSIS
  • 6.3. MECHANICAL RECYCLING
    • 6.3.1. MARKET FORECAST FIGURE
    • 6.3.2. SEGMENT ANALYSIS
  • 6.4. OTHER RECYCLING PROCESSES
    • 6.4.1. MARKET FORECAST FIGURE
    • 6.4.2. SEGMENT ANALYSIS

7. MARKET BY END USE INDUSTRY

  • 7.1. TRANSPORTATION
    • 7.1.1. MARKET FORECAST FIGURE
    • 7.1.2. SEGMENT ANALYSIS
  • 7.2. STATIONARY POWER GENERATION
    • 7.2.1. MARKET FORECAST FIGURE
    • 7.2.2. SEGMENT ANALYSIS
  • 7.3. PORTABLE POWER GENERATION
    • 7.3.1. MARKET FORECAST FIGURE
    • 7.3.2. SEGMENT ANALYSIS

8. GEOGRAPHICAL ANALYSIS

  • 8.1. NORTH AMERICA
    • 8.1.1. MARKET SIZE & ESTIMATES
    • 8.1.2. NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.1.3. NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.1.4. KEY PLAYERS IN NORTH AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.1.5. COUNTRY ANALYSIS
      • 8.1.5.1. UNITED STATES
      • 8.1.5.1.1. UNITED STATES FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.1.5.2. CANADA
      • 8.1.5.2.1. CANADA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
  • 8.2. EUROPE
    • 8.2.1. MARKET SIZE & ESTIMATES
    • 8.2.2. EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.2.3. EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.2.4. KEY PLAYERS IN EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.2.5. COUNTRY ANALYSIS
      • 8.2.5.1. GERMANY
      • 8.2.5.1.1. GERMANY FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.2. UNITED KINGDOM
      • 8.2.5.2.1. UNITED KINGDOM FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.3. FRANCE
      • 8.2.5.3.1. FRANCE FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.4. ITALY
      • 8.2.5.4.1. ITALY FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.5. SPAIN
      • 8.2.5.5.1. SPAIN FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.6. POLAND
      • 8.2.5.6.1. POLAND FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.7. BELGIUM
      • 8.2.5.7.1. BELGIUM FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.2.5.8. REST OF EUROPE
      • 8.2.5.8.1. REST OF EUROPE FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
  • 8.3. ASIA-PACIFIC
    • 8.3.1. MARKET SIZE & ESTIMATES
    • 8.3.2. ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.3.3. ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.3.4. KEY PLAYERS IN ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.3.5. COUNTRY ANALYSIS
      • 8.3.5.1. CHINA
      • 8.3.5.1.1. CHINA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.2. JAPAN
      • 8.3.5.2.1. JAPAN FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.3. SOUTH KOREA
      • 8.3.5.3.1. SOUTH KOREA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.4. AUSTRALIA & NEW ZEALAND
      • 8.3.5.4.1. AUSTRALIA & NEW ZEALAND FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.5. INDIA
      • 8.3.5.5.1. INDIA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.6. SINGAPORE
      • 8.3.5.6.1. SINGAPORE FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.7. MALAYSIA
      • 8.3.5.7.1. MALAYSIA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.3.5.8. REST OF ASIA-PACIFIC
      • 8.3.5.8.1. REST OF ASIA-PACIFIC FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
  • 8.4. REST OF WORLD
    • 8.4.1. MARKET SIZE & ESTIMATES
    • 8.4.2. REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET DRIVERS
    • 8.4.3. REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET CHALLENGES
    • 8.4.4. KEY PLAYERS IN REST OF WORLD FUEL CELL STACK RECYCLING AND REUSE MARKET
    • 8.4.5. REGIONAL ANALYSIS
      • 8.4.5.1. LATIN AMERICA
      • 8.4.5.1.1. LATIN AMERICA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES
      • 8.4.5.2. MIDDLE EAST & AFRICA
      • 8.4.5.2.1. MIDDLE EAST & AFRICA FUEL CELL STACK RECYCLING AND REUSE MARKET SIZE & OPPORTUNITIES

9. COMPETITIVE LANDSCAPE

  • 9.1. KEY STRATEGIC DEVELOPMENTS
    • 9.1.1. MERGERS & ACQUISITIONS
    • 9.1.2. PRODUCT LAUNCHES & DEVELOPMENTS
    • 9.1.3. PARTNERSHIPS & AGREEMENTS
    • 9.1.4. BUSINESS EXPANSIONS & DIVESTITURES
  • 9.2. COMPANY PROFILES
    • 9.2.1. BALLARD POWER
      • 9.2.1.1. COMPANY OVERVIEW
      • 9.2.1.2. PRODUCTS
      • 9.2.1.3. STRENGTHS & CHALLENGES
    • 9.2.2. BLOOM ENERGY
      • 9.2.2.1. COMPANY OVERVIEW
      • 9.2.2.2. PRODUCTS
      • 9.2.2.3. STRENGTHS & CHALLENGES
    • 9.2.3. CUMINS INC
      • 9.2.3.1. COMPANY OVERVIEW
      • 9.2.3.2. PRODUCTS
      • 9.2.3.3. STRENGTHS & CHALLENGES
    • 9.2.4. DOOSAN CORPORATION
      • 9.2.4.1. COMPANY OVERVIEW
      • 9.2.4.2. PRODUCTS
      • 9.2.4.3. STRENGTHS & CHALLENGES
    • 9.2.5. GANNON & SCOTT
      • 9.2.5.1. COMPANY OVERVIEW
      • 9.2.5.2. PRODUCTS
      • 9.2.5.3. STRENGTHS & CHALLENGES
    • 9.2.6. HENSEL RECYCLING
      • 9.2.6.1. COMPANY OVERVIEW
      • 9.2.6.2. PRODUCTS
      • 9.2.6.3. STRENGTHS & CHALLENGES
    • 9.2.7. JOHNSON MATTHEY
      • 9.2.7.1. COMPANY OVERVIEW
      • 9.2.7.2. PRODUCTS
      • 9.2.7.3. STRENGTHS & CHALLENGES
    • 9.2.8. NEDSTACK FUEL CELL TECHNOLOGY BV
      • 9.2.8.1. COMPANY OVERVIEW
      • 9.2.8.2. PRODUCTS
      • 9.2.8.3. STRENGTHS & CHALLENGES
    • 9.2.9. PLUG POWER INC
      • 9.2.9.1. COMPANY OVERVIEW
      • 9.2.9.2. PRODUCTS
      • 9.2.9.3. STRENGTHS & CHALLENGES
    • 9.2.10. ROBERT BOSCH GMBH
      • 9.2.10.1. COMPANY OVERVIEW
      • 9.2.10.2. PRODUCTS
      • 9.2.10.3. STRENGTHS & CHALLENGES