![]() |
市場調査レポート
商品コード
1701948
フィールドプログラマブルゲートアレイ(FPGA)市場:アーキテクチャー別、構成別、最終用途産業別、地域別、2025-2033年Field Programmable Gate Array Market Report by Architecture, Configuration, End Use Industry, and Region 2025-2033 |
||||||
カスタマイズ可能
|
フィールドプログラマブルゲートアレイ(FPGA)市場:アーキテクチャー別、構成別、最終用途産業別、地域別、2025-2033年 |
出版日: 2025年04月01日
発行: IMARC
ページ情報: 英文 146 Pages
納期: 2~3営業日
|
フィールドプログラマブルゲートアレイ(FPGA)の世界市場規模は2024年に134億米ドルに達しました。今後、IMARC Groupは、2033年には255億米ドルに達し、2025~2033年の成長率(CAGR)は7.37%になると予測しています。人工知能(AI)と機械学習(ML)の統合の進展、エレクトロニクスシステムの複雑化、エネルギー効率とコスト削減ソリューションへのニーズの高まりが、市場成長を後押しする主な要因のいくつかです。
フィールドプログラマブルゲートアレイ(FPGA)は、集積回路(IC)の一種で、製造後にユーザーや設計者がプログラムしたり構成したりできます。FPGAはプログラマブルロジックブロック(PLB)とプログラマブル相互接続で構成され、カスタムデジタル回路を作成できます。PLBにはルックアップテーブル(LUT)、フリップフロップ、その他の論理素子が含まれ、相互接続することでさまざまな論理演算を実行できます。また、VHDLやVerilogなどのハードウェア記述言語(HDL)を使用して、目的の回路設計を指定する必要があります。独自のデジタル回路や論理関数を定義・実装できるため、FPGAの需要は世界中で高まっています。
現在、FPGAは高性能コンピューティング機能を提供し、複雑なアルゴリズムと計算を効率的に処理できるため、FPGAの需要が高まっており、市場の見通しは良好です。これに加えて、FPGAは並列処理を提供し、複数のタスクを同時に実行できるため、人工知能(AI)、データセンター、高性能コンピューティングなどの要求の厳しいアプリケーションに適しています。これに加えて、製造後にハードウェア機能をカスタマイズして再プログラムするためにFPGAの利用が増加していることも、市場の成長を後押ししています。また、通信、航空宇宙、自動車、防衛産業では、迅速なプロトタイピング、設計変更、反復開発サイクルのためにFPGAの採用が増加しており、市場の成長を強化しています。さらに、従来の特定用途向け集積回路(ASIC)に比べて市場投入までの時間が短縮されるため、FPGAに対する需要の高まりが市場にプラスの影響を与えています。
人工知能(AI)と機械学習(ML)への需要の高まり
人工知能(AI)および機械学習(ML)アプリケーションの利用増加が、高性能コンピューティング・プラットフォームの需要を喚起しています。さらに、これらのテクノロジーは大量のデータを処理し、複雑な計算を同時に実行します。並列処理能力を持つFPGAは、AIやMLのワークロードを高速化し、グラフィック・プロセッシング・ユニット(GPU)やアプリケーション固有のアクセラレータに代わる現実的な選択肢を提供することができます。FPGAは、特定のアルゴリズムやタスク用にプログラムして最適化できるため、効率的な並列処理と性能の加速が可能になります。さらに、開発者はFPGAでカスタムハードウェアアクセラレーターを設計・実装できるため、AIやMLタスクの性能と効率を大幅に向上させることができます。
複雑化する電子システム
電子システムの複雑性は、さまざまな業界で継続的に増大しています。FPGAは、複数の機能とインターフェイスを単一のデバイスに統合する汎用的なプラットフォームを提供し、複数のコンポーネントの必要性を減らし、システム設計を簡素化します。FPGAは並列処理機能とカスタムロジックを実装する能力の両方を提供するため、設計者は特定のアプリケーション向けに性能を最適化できます。システムの複雑さが増すにつれ、FPGAは複雑なアルゴリズムの実装や大量のデータのリアルタイム処理も支援します。さらに、電子システムはもはや独立した存在ではなく、より大規模なシステムやネットワークに接続され、統合されることが多くなっています。その結果、FPGAは高速トランシーバー、メモリインタフェース、ペリフェラルインタフェースなどの機能を内蔵し、システムレベルの統合に適しています。
エネルギー効率とコスト節約ソリューションへの需要の高まり
FPGAは汎用プロセッサやASICに比べて電力効率が高いです。特定のタスクに最適化し、消費電力とシステム全体のコストを削減できます。このため、エッジコンピューティング、モノのインターネット(IoT)、組み込みシステムなど、電力効率が重要なアプリケーションに有用です。さらに、FPGAは並列計算を行うように設計されており、複数の演算を同時に実行することができます。この並列性により、逐次プロセッサと比較して少ないクロックサイクルで同じタスクを達成できるため、全体的な消費電力が削減され、エネルギーの節約につながります。さらに、FPGAは開発プロセス中に何度も再プログラムや再構成が可能で、高価で時間のかかる製造工程が不要なため、コスト効率も高いです。
The global field programmable gate array (FPGA) market size reached USD 13.4 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 25.5 Billion by 2033, exhibiting a growth rate (CAGR) of 7.37% during 2025-2033. The growing integration of artificial intelligence (AI) and machine learning (ML), increasing complexity of electronics systems, and rising need for energy efficient and cost saving solutions represent some of the key factors propelling the market growth.
A field programmable gate array (FPGA) is a type of integrated circuit (IC) that can be programmed and configured by the user or designer after manufacturing. It comprises programmable logic blocks (PLBs) and programmable interconnects that can be configured to create custom digital circuits, wherein PLBs contain look-up tables (LUTs), flip-flops, and other logic elements that can be interconnected to perform various logical operations. It also involves specifying the desired circuit design using a hardware description language (HDL), such as VHDL or Verilog. As it allows users to define and implement their own digital circuits and logic functions, the demand for FPGA is rising around the world.
At present, the growing demand for FPGAs, as they can provide high-performance computing capabilities and can handle complex algorithms and computations efficiently, is offering a favorable market outlook. Besides this, FPGAs offer parallel processing and can execute multiple tasks simultaneously, which makes them suitable for demanding applications like artificial intelligence (AI), data centers, and high-performance computing. This, along with the rising utilization of FPGAs to customize and reprogram the hardware functionality after fabrication, is propelling the growth of the market. In addition, the increasing adoption of FPGAs in the telecommunications, aerospace, automotive, and defense industries for rapid prototyping, design modifications, and iterative development cycles is strengthening the growth of the market. Moreover, the growing demand for FPGAs, as they offer a faster time-to-market compared to traditional application-specific integrated circuits (ASICs), is positively influencing the market.
Growing demand for artificial intelligence (AI) and machine learning (ML)
A rise in the use of artificial intelligence (AI) and machine learning (ML) applications is catalyzing the demand for high-performance computing platforms. Moreover, these technologies process a large amount of data and perform complex calculations simultaneously. FPGAs, with their parallel processing capabilities, can accelerate AI and ML workloads and offer a viable alternative to graphics processing units (GPUs) or application-specific accelerators. They can be programmed and optimized for specific algorithms and tasks, thereby allowing efficient parallel processing and accelerated performance. In addition, developers can design and implement custom hardware accelerators with FPGAs, which can significantly enhance the performance and efficiency of AI and ML tasks.
Increasing complexity of electronics systems
The complexity of electronic systems is continuously growing across various industries. FPGAs provide a versatile platform for integrating multiple functions and interfaces into a single device, reducing the need for multiple components, and simplifying system design. They offer both parallel processing capabilities and the ability to implement custom logic, which allows designers to optimize performance for specific applications. As system complexity increases, FPGAs also assist in implementing complex algorithms and processing large amounts of data in real time. In addition, electronic systems are no longer standalone entities but are increasingly connected and integrated into larger systems or networks. As a result, FPGAs offer built-in features, such as high-speed transceivers, memory interfaces, and peripheral interfaces, which makes them suitable for system-level integration.
Rising demand for energy efficient and cost saving solutions
FPGAs can be power-efficient compared to general-purpose processors or ASICs. They can be optimized for specific tasks and reduce power consumption and overall system costs. This makes them useful for applications wherein power efficiency is critical, such as edge computing, the Internet of Things (IoT), and embedded systems. In addition, FPGAs are designed to perform parallel computations, allowing multiple operations to be executed simultaneously. This parallelism can lead to energy savings, as the same task can be accomplished with fewer clock cycles as compared to a sequential processor, which reduces overall power consumption. Moreover, FPGAs are more cost-effective, as they can be reprogrammed and reconfigured multiple times during the development process, eliminating the need for expensive and time-consuming fabrication processes.
SRAM-based FPGA dominate the market
Moreover, SRAM-based FPGAs offer high-performance capabilities, as they use static random-access memory (SRAM) cells for configuration storage. SRAM cells can be quickly and easily reprogrammed, which allows for the efficient implementation of complex logic functions, memory structures, and high-speed interfaces. They also provide the ability to reprogram the device on the fly and enables designers to perform design iterations and debugging at the hardware level. The flexibility of SRAM-based FPGAs also allows for faster time-to-market. With SRAM-based FPGAs, designers can implement and validate their designs without the need for custom ASIC development or lengthy fabrication processes.
Low-range FPGA holds the biggest market share
It consumes less power as compared to high-end FPGA. This lower power consumption can be advantageous in applications wherein power efficiency is critical, such as battery-powered devices or embedded systems. Moreover, it has simpler architecture and fewer features compared to high-end FPGAs, which can make it easier to understand, program, and integrate into designs, especially for beginners or projects with less complex requirements. It is also available in smaller form factors and makes them suitable for space-constrained applications.
IT and telecommunication accounts for the majority of the market share
FPGAs offer a high degree of flexibility in hardware design and functionality. They can be reprogrammed or reconfigured after manufacturing, allowing for quick prototyping, iterative design changes, and customization to meet specific application requirements. This flexibility is particularly valuable in the IT and telecommunication industry that experiences rapid technological advancements and evolving standards. FPGAs also provide parallel processing capabilities that can be tailored to match the requirements of specific applications, making them suitable for demanding tasks, such as signal processing, data analytics, cryptography, and high-speed networking. Moreover, in telecommunications, they can be used in network switches, routers, and base stations to handle data packet routing and processing with minimal delay.
Asia Pacific exhibits a clear dominance, accounting for the largest field programmable gate array (FPGA) market share
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa.
Asia Pacific held the biggest market share as it is a major manufacturing hub for electronic devices and components. As FPGAs are crucial components in various electronic systems, the demand for FPGAs is increasing in parallel with the growth of the semiconductor industry. Moreover, the growing adoption of advanced technologies and automation in industries, such as telecommunications, automotive, consumer electronics, and healthcare, is catalyzing the demand for FPGAs in the region, as they offer flexible and customizable solutions for these industries, which enables them to implement complex functionalities, enhance performance, and reduce time-to-market for their products.
The level of competition in the market is moderate with a moderate threat of new entrants. Established players have a long history of developing and refining FPGA technologies, which provides them with a competitive advantage. As for the threat of new entrants, it can be somewhat challenging for new companies to enter the FPGA market, as developing FPGA technology requires significant research and development (R&D) investments, as well as expertise in semiconductor design and manufacturing. The established players in the market have made substantial investments in these areas over many years, giving them a strong technological advantage. However, numerous advancements in technology and evolving market dynamics can create opportunities for new entrants, such as hybrid FPGAs, machine learning (ML) accelerators, and high-performance computing solutions.