デフォルト表紙
市場調査レポート
商品コード
1701948

フィールドプログラマブルゲートアレイ(FPGA)市場:アーキテクチャー別、構成別、最終用途産業別、地域別、2025-2033年

Field Programmable Gate Array Market Report by Architecture, Configuration, End Use Industry, and Region 2025-2033


出版日
発行
IMARC
ページ情報
英文 146 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.99円
フィールドプログラマブルゲートアレイ(FPGA)市場:アーキテクチャー別、構成別、最終用途産業別、地域別、2025-2033年
出版日: 2025年04月01日
発行: IMARC
ページ情報: 英文 146 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

フィールドプログラマブルゲートアレイ(FPGA)の世界市場規模は2024年に134億米ドルに達しました。今後、IMARC Groupは、2033年には255億米ドルに達し、2025~2033年の成長率(CAGR)は7.37%になると予測しています。人工知能(AI)と機械学習(ML)の統合の進展、エレクトロニクスシステムの複雑化、エネルギー効率とコスト削減ソリューションへのニーズの高まりが、市場成長を後押しする主な要因のいくつかです。

フィールドプログラマブルゲートアレイ(FPGA)は、集積回路(IC)の一種で、製造後にユーザーや設計者がプログラムしたり構成したりできます。FPGAはプログラマブルロジックブロック(PLB)とプログラマブル相互接続で構成され、カスタムデジタル回路を作成できます。PLBにはルックアップテーブル(LUT)、フリップフロップ、その他の論理素子が含まれ、相互接続することでさまざまな論理演算を実行できます。また、VHDLやVerilogなどのハードウェア記述言語(HDL)を使用して、目的の回路設計を指定する必要があります。独自のデジタル回路や論理関数を定義・実装できるため、FPGAの需要は世界中で高まっています。

現在、FPGAは高性能コンピューティング機能を提供し、複雑なアルゴリズムと計算を効率的に処理できるため、FPGAの需要が高まっており、市場の見通しは良好です。これに加えて、FPGAは並列処理を提供し、複数のタスクを同時に実行できるため、人工知能(AI)、データセンター、高性能コンピューティングなどの要求の厳しいアプリケーションに適しています。これに加えて、製造後にハードウェア機能をカスタマイズして再プログラムするためにFPGAの利用が増加していることも、市場の成長を後押ししています。また、通信、航空宇宙、自動車、防衛産業では、迅速なプロトタイピング、設計変更、反復開発サイクルのためにFPGAの採用が増加しており、市場の成長を強化しています。さらに、従来の特定用途向け集積回路(ASIC)に比べて市場投入までの時間が短縮されるため、FPGAに対する需要の高まりが市場にプラスの影響を与えています。

フィールドプログラマブルゲートアレイ(FPGA)の市場動向と促進要因:

人工知能(AI)と機械学習(ML)への需要の高まり

人工知能(AI)および機械学習(ML)アプリケーションの利用増加が、高性能コンピューティング・プラットフォームの需要を喚起しています。さらに、これらのテクノロジーは大量のデータを処理し、複雑な計算を同時に実行します。並列処理能力を持つFPGAは、AIやMLのワークロードを高速化し、グラフィック・プロセッシング・ユニット(GPU)やアプリケーション固有のアクセラレータに代わる現実的な選択肢を提供することができます。FPGAは、特定のアルゴリズムやタスク用にプログラムして最適化できるため、効率的な並列処理と性能の加速が可能になります。さらに、開発者はFPGAでカスタムハードウェアアクセラレーターを設計・実装できるため、AIやMLタスクの性能と効率を大幅に向上させることができます。

複雑化する電子システム

電子システムの複雑性は、さまざまな業界で継続的に増大しています。FPGAは、複数の機能とインターフェイスを単一のデバイスに統合する汎用的なプラットフォームを提供し、複数のコンポーネントの必要性を減らし、システム設計を簡素化します。FPGAは並列処理機能とカスタムロジックを実装する能力の両方を提供するため、設計者は特定のアプリケーション向けに性能を最適化できます。システムの複雑さが増すにつれ、FPGAは複雑なアルゴリズムの実装や大量のデータのリアルタイム処理も支援します。さらに、電子システムはもはや独立した存在ではなく、より大規模なシステムやネットワークに接続され、統合されることが多くなっています。その結果、FPGAは高速トランシーバー、メモリインタフェース、ペリフェラルインタフェースなどの機能を内蔵し、システムレベルの統合に適しています。

エネルギー効率とコスト節約ソリューションへの需要の高まり

FPGAは汎用プロセッサやASICに比べて電力効率が高いです。特定のタスクに最適化し、消費電力とシステム全体のコストを削減できます。このため、エッジコンピューティング、モノのインターネット(IoT)、組み込みシステムなど、電力効率が重要なアプリケーションに有用です。さらに、FPGAは並列計算を行うように設計されており、複数の演算を同時に実行することができます。この並列性により、逐次プロセッサと比較して少ないクロックサイクルで同じタスクを達成できるため、全体的な消費電力が削減され、エネルギーの節約につながります。さらに、FPGAは開発プロセス中に何度も再プログラムや再構成が可能で、高価で時間のかかる製造工程が不要なため、コスト効率も高いです。

目次

第1章 序文

第2章 調査範囲と調査手法

  • 調査の目的
  • ステークホルダー
  • データソース
    • 一次情報
    • 二次情報
  • 市場推定
    • ボトムアップアプローチ
    • トップダウンアプローチ
  • 調査手法

第3章 エグゼクティブサマリー

第4章 イントロダクション

  • 概要
  • 主要業界動向

第5章 世界のフィールドプログラマブルゲートアレイ(FPGA)市場

  • 市場概要
  • 市場実績
  • COVID-19の影響
  • 市場予測

第6章 市場内訳:アーキテクチャー別

  • SRAMベースFPGA
  • アンチヒューズベースFPGA
  • フラッシュベースFPGA

第7章 市場内訳:構成別

  • ローレンジFPGA
  • ミッドレンジFPGA
  • ハイレンジFPGA

第8章 市場内訳:最終用途産業別

  • IT・通信
  • コンシューマーエレクトロニクス
  • 自動車
  • 工業
  • 軍事・航空宇宙
  • その他

第9章 市場内訳:地域別

  • 北米
    • 米国
    • カナダ
  • アジア太平洋地域
    • 中国
    • 日本
    • インド
    • 韓国
    • オーストラリア
    • インドネシア
    • その他
  • 欧州
    • ドイツ
    • フランス
    • 英国
    • イタリア
    • スペイン
    • ロシア
    • その他
  • ラテンアメリカ
    • ブラジル
    • メキシコ
    • その他
  • 中東・アフリカ
    • 市場内訳:国別

第10章 SWOT分析

  • 概要
  • 強み
  • 弱み
  • 機会
  • 脅威

第11章 バリューチェーン分析

第12章 ポーターのファイブフォース分析

  • 概要
  • 買い手の交渉力
  • 供給企業の交渉力
  • 競合の程度
  • 新規参入業者の脅威
  • 代替品の脅威

第13章 価格分析

第14章 競合情勢

  • 市場構造
  • 主要企業
  • 主要企業のプロファイル
    • Achronix Semiconductor
    • Cypress Semiconductor Corporation(Infineon Technologies AG)
    • Efinix Inc.
    • EnSilica Limited
    • Flex Logix Technologies Inc.
    • Gidel Inc.
    • Intel Corporation
    • Lattice Semiconductor Corporation
    • Microsemi Corporation(Microchip Technology Inc.)
    • Quicklogic Corporation
    • Taiwan Semiconductor Manufacturing Company
    • Xilinx Inc.
図表

List of Figures

  • Figure 1: Global: Field Programmable Gate Array Market: Major Drivers and Challenges
  • Figure 2: Global: Field Programmable Gate Array Market: Sales Value (in Billion USD), 2019-2024
  • Figure 3: Global: Field Programmable Gate Array Market Forecast: Sales Value (in Billion USD), 2025-2033
  • Figure 4: Global: Field Programmable Gate Array Market: Breakup by Architecture (in %), 2024
  • Figure 5: Global: Field Programmable Gate Array Market: Breakup by Configuration (in %), 2024
  • Figure 6: Global: Field Programmable Gate Array Market: Breakup by End Use Industry (in %), 2024
  • Figure 7: Global: Field Programmable Gate Array Market: Breakup by Region (in %), 2024
  • Figure 8: Global: Field Programmable Gate Array (SRAM-Based FPGA) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 9: Global: Field Programmable Gate Array (SRAM-Based FPGA) (High-End FPGA) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 10: Global: Field Programmable Gate Array (Anti-Fuse Based FPGA) (High-End FPGA) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 11: Global: Field Programmable Gate Array (Anti-Fuse Based FPGA) (High-End FPGA) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 12: Global: Field Programmable Gate Array (Flash-Based FPGA) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 13: Global: Field Programmable Gate Array (Flash-Based FPGA) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 14: Global: Field Programmable Gate Array (Low-range FPGA) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 15: Global: Field Programmable Gate Array (Low-range FPGA) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 16: Global: Field Programmable Gate Array (Mid-range FPGA) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 17: Global: Field Programmable Gate Array (Mid-range FPGA) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 18: Global: Field Programmable Gate Array (High-range FPGA) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 19: Global: Field Programmable Gate Array (High-range FPGA) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 20: Global: Field Programmable Gate Array (IT and Telecommunication) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 21: Global: Field Programmable Gate Array (IT and Telecommunication) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 22: Global: Field Programmable Gate Array (Consumer Electronics) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 23: Global: Field Programmable Gate Array (Consumer Electronics) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 24: Global: Field Programmable Gate Array (Automotive) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 25: Global: Field Programmable Gate Array (Automotive) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 26: Global: Field Programmable Gate Array (Industrial) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 27: Global: Field Programmable Gate Array (Industrial) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 28: Global: Field Programmable Gate Array (Military and Aerospace) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 29: Global: Field Programmable Gate Array (Military and Aerospace) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 30: Global: Field Programmable Gate Array (Other End Use Industries) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 31: Global: Field Programmable Gate Array (Other End Use Industries) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 32: North America: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 33: North America: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 34: United States: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 35: United States: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 36: Canada: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 37: Canada: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 38: Asia-Pacific: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 39: Asia-Pacific: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 40: China: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 41: China: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 42: Japan: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 43: Japan: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 44: India: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 45: India: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 46: South Korea: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 47: South Korea: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 48: Australia: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 49: Australia: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 50: Indonesia: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 51: Indonesia: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 52: Others: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 53: Others: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 54: Europe: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 55: Europe: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 56: Germany: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 57: Germany: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 58: France: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 59: France: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 60: United Kingdom: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 61: United Kingdom: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 62: Italy: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 63: Italy: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 64: Spain: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 65: Spain: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 66: Russia: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 67: Russia: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 68: Others: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 69: Others: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 70: Latin America: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 71: Latin America: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 72: Brazil: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 73: Brazil: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 74: Mexico: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 75: Mexico: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 76: Others: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 77: Others: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 78: Middle East and Africa: Field Programmable Gate Array Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 79: Middle East and Africa: Field Programmable Gate Array Market: Breakup by Country (in %), 2024
  • Figure 80: Middle East and Africa: Field Programmable Gate Array Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 81: Global: Field Programmable Gate Array Industry: SWOT Analysis
  • Figure 82: Global: Field Programmable Gate Array Industry: Value Chain Analysis
  • Figure 83: Global: Field Programmable Gate Array Industry: Porter's Five Forces Analysis

List of Tables

  • Table 1: Global: Field Programmable Gate Array Market: Key Industry Highlights, 2024 and 2033
  • Table 2: Global: Field Programmable Gate Array Market Forecast: Breakup by Architecture (in Million USD), 2025-2033
  • Table 3: Global: Field Programmable Gate Array Market Forecast: Breakup by Configuration (in Million USD), 2025-2033
  • Table 4: Global: Field Programmable Gate Array Market Forecast: Breakup by End Use Industry (in Million USD), 2025-2033
  • Table 5: Global: Field Programmable Gate Array Market Forecast: Breakup by Region (in Million USD), 2025-2033
  • Table 6: Global: Field Programmable Gate Array Market: Competitive Structure
  • Table 7: Global: Field Programmable Gate Array Market: Key Players
目次
Product Code: SR112025A5040

The global field programmable gate array (FPGA) market size reached USD 13.4 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 25.5 Billion by 2033, exhibiting a growth rate (CAGR) of 7.37% during 2025-2033. The growing integration of artificial intelligence (AI) and machine learning (ML), increasing complexity of electronics systems, and rising need for energy efficient and cost saving solutions represent some of the key factors propelling the market growth.

A field programmable gate array (FPGA) is a type of integrated circuit (IC) that can be programmed and configured by the user or designer after manufacturing. It comprises programmable logic blocks (PLBs) and programmable interconnects that can be configured to create custom digital circuits, wherein PLBs contain look-up tables (LUTs), flip-flops, and other logic elements that can be interconnected to perform various logical operations. It also involves specifying the desired circuit design using a hardware description language (HDL), such as VHDL or Verilog. As it allows users to define and implement their own digital circuits and logic functions, the demand for FPGA is rising around the world.

At present, the growing demand for FPGAs, as they can provide high-performance computing capabilities and can handle complex algorithms and computations efficiently, is offering a favorable market outlook. Besides this, FPGAs offer parallel processing and can execute multiple tasks simultaneously, which makes them suitable for demanding applications like artificial intelligence (AI), data centers, and high-performance computing. This, along with the rising utilization of FPGAs to customize and reprogram the hardware functionality after fabrication, is propelling the growth of the market. In addition, the increasing adoption of FPGAs in the telecommunications, aerospace, automotive, and defense industries for rapid prototyping, design modifications, and iterative development cycles is strengthening the growth of the market. Moreover, the growing demand for FPGAs, as they offer a faster time-to-market compared to traditional application-specific integrated circuits (ASICs), is positively influencing the market.

Field Programmable Gate Array (FPGA) Market Trends/Drivers:

Growing demand for artificial intelligence (AI) and machine learning (ML)

A rise in the use of artificial intelligence (AI) and machine learning (ML) applications is catalyzing the demand for high-performance computing platforms. Moreover, these technologies process a large amount of data and perform complex calculations simultaneously. FPGAs, with their parallel processing capabilities, can accelerate AI and ML workloads and offer a viable alternative to graphics processing units (GPUs) or application-specific accelerators. They can be programmed and optimized for specific algorithms and tasks, thereby allowing efficient parallel processing and accelerated performance. In addition, developers can design and implement custom hardware accelerators with FPGAs, which can significantly enhance the performance and efficiency of AI and ML tasks.

Increasing complexity of electronics systems

The complexity of electronic systems is continuously growing across various industries. FPGAs provide a versatile platform for integrating multiple functions and interfaces into a single device, reducing the need for multiple components, and simplifying system design. They offer both parallel processing capabilities and the ability to implement custom logic, which allows designers to optimize performance for specific applications. As system complexity increases, FPGAs also assist in implementing complex algorithms and processing large amounts of data in real time. In addition, electronic systems are no longer standalone entities but are increasingly connected and integrated into larger systems or networks. As a result, FPGAs offer built-in features, such as high-speed transceivers, memory interfaces, and peripheral interfaces, which makes them suitable for system-level integration.

Rising demand for energy efficient and cost saving solutions

FPGAs can be power-efficient compared to general-purpose processors or ASICs. They can be optimized for specific tasks and reduce power consumption and overall system costs. This makes them useful for applications wherein power efficiency is critical, such as edge computing, the Internet of Things (IoT), and embedded systems. In addition, FPGAs are designed to perform parallel computations, allowing multiple operations to be executed simultaneously. This parallelism can lead to energy savings, as the same task can be accomplished with fewer clock cycles as compared to a sequential processor, which reduces overall power consumption. Moreover, FPGAs are more cost-effective, as they can be reprogrammed and reconfigured multiple times during the development process, eliminating the need for expensive and time-consuming fabrication processes.

Field Programmable Gate Array (FPGA) Industry Segmentation:

Breakup by Architecture:

  • SRAM-Based FPGA
  • Anti-Fuse Based FPGA
  • Flash-Based FPGA

SRAM-based FPGA dominate the market

Moreover, SRAM-based FPGAs offer high-performance capabilities, as they use static random-access memory (SRAM) cells for configuration storage. SRAM cells can be quickly and easily reprogrammed, which allows for the efficient implementation of complex logic functions, memory structures, and high-speed interfaces. They also provide the ability to reprogram the device on the fly and enables designers to perform design iterations and debugging at the hardware level. The flexibility of SRAM-based FPGAs also allows for faster time-to-market. With SRAM-based FPGAs, designers can implement and validate their designs without the need for custom ASIC development or lengthy fabrication processes.

Breakup by Configuration:

  • Low-range FPGA
  • Mid-range FPGA
  • High-range FPGA

Low-range FPGA holds the biggest market share

It consumes less power as compared to high-end FPGA. This lower power consumption can be advantageous in applications wherein power efficiency is critical, such as battery-powered devices or embedded systems. Moreover, it has simpler architecture and fewer features compared to high-end FPGAs, which can make it easier to understand, program, and integrate into designs, especially for beginners or projects with less complex requirements. It is also available in smaller form factors and makes them suitable for space-constrained applications.

Breakup by End Use Industry:

  • IT and Telecommunication
  • Consumer Electronics
  • Automotive
  • Industrial
  • Military and Aerospace
  • Others

IT and telecommunication accounts for the majority of the market share

FPGAs offer a high degree of flexibility in hardware design and functionality. They can be reprogrammed or reconfigured after manufacturing, allowing for quick prototyping, iterative design changes, and customization to meet specific application requirements. This flexibility is particularly valuable in the IT and telecommunication industry that experiences rapid technological advancements and evolving standards. FPGAs also provide parallel processing capabilities that can be tailored to match the requirements of specific applications, making them suitable for demanding tasks, such as signal processing, data analytics, cryptography, and high-speed networking. Moreover, in telecommunications, they can be used in network switches, routers, and base stations to handle data packet routing and processing with minimal delay.

Breakup by Region:

  • North America
  • United States
  • Canada
  • Asia-Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Indonesia
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Russia
  • Others
  • Latin America
  • Brazil
  • Mexico
  • Others
  • Middle East and Africa

Asia Pacific exhibits a clear dominance, accounting for the largest field programmable gate array (FPGA) market share

The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa.

Asia Pacific held the biggest market share as it is a major manufacturing hub for electronic devices and components. As FPGAs are crucial components in various electronic systems, the demand for FPGAs is increasing in parallel with the growth of the semiconductor industry. Moreover, the growing adoption of advanced technologies and automation in industries, such as telecommunications, automotive, consumer electronics, and healthcare, is catalyzing the demand for FPGAs in the region, as they offer flexible and customizable solutions for these industries, which enables them to implement complex functionalities, enhance performance, and reduce time-to-market for their products.

Competitive Landscape:

The level of competition in the market is moderate with a moderate threat of new entrants. Established players have a long history of developing and refining FPGA technologies, which provides them with a competitive advantage. As for the threat of new entrants, it can be somewhat challenging for new companies to enter the FPGA market, as developing FPGA technology requires significant research and development (R&D) investments, as well as expertise in semiconductor design and manufacturing. The established players in the market have made substantial investments in these areas over many years, giving them a strong technological advantage. However, numerous advancements in technology and evolving market dynamics can create opportunities for new entrants, such as hybrid FPGAs, machine learning (ML) accelerators, and high-performance computing solutions.

The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

  • Achronix Semiconductor
  • Cypress Semiconductor Corporation (Infineon Technologies AG)
  • Efinix Inc.
  • EnSilica Limited
  • Flex Logix Technologies Inc.
  • Gidel Inc.
  • Intel Corporation
  • Lattice Semiconductor Corporation
  • Microsemi Corporation (Microchip Technology Inc.)
  • Quicklogic Corporation
  • Taiwan Semiconductor Manufacturing Company
  • Xilinx Inc.

Key Questions Answered in This Report

  • 1.What was the size of the global field programmable gate array (FPGA) market in 2024?
  • 2.What is the expected growth rate of the global field programmable gate array (FPGA) market during 2025-2033?
  • 3.What are the key factors driving the global field programmable gate array (FPGA) market?
  • 4.What has been the impact of COVID-19 on the global field programmable gate array (FPGA) market?
  • 5.What is the breakup of the global field programmable gate array (FPGA) market based on the architecture?
  • 6.What is the breakup of the global field programmable gate array (FPGA) market based on the configuration?
  • 7.What is the breakup of the global field programmable gate array (FPGA) market based on the end use industry?
  • 8.What are the key regions in the global field programmable gate array (FPGA) market?
  • 9.Who are the key players/companies in the global field programmable gate array (FPGA) market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Field Programmable Gate Array (FPGA) Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Architecture

  • 6.1 SRAM-Based FPGA
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Anti-Fuse Based FPGA
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Flash-Based FPGA
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast

7 Market Breakup by Configuration

  • 7.1 Low-range FPGA
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Mid-range FPGA
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 High-range FPGA
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast

8 Market Breakup by End Use Industry

  • 8.1 IT and Telecommunication
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Consumer Electronics
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Automotive
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Industrial
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast
  • 8.5 Military and Aerospace
    • 8.5.1 Market Trends
    • 8.5.2 Market Forecast
  • 8.6 Others
    • 8.6.1 Market Trends
    • 8.6.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 United States
      • 9.1.1.1 Market Trends
      • 9.1.1.2 Market Forecast
    • 9.1.2 Canada
      • 9.1.2.1 Market Trends
      • 9.1.2.2 Market Forecast
  • 9.2 Asia-Pacific
    • 9.2.1 China
      • 9.2.1.1 Market Trends
      • 9.2.1.2 Market Forecast
    • 9.2.2 Japan
      • 9.2.2.1 Market Trends
      • 9.2.2.2 Market Forecast
    • 9.2.3 India
      • 9.2.3.1 Market Trends
      • 9.2.3.2 Market Forecast
    • 9.2.4 South Korea
      • 9.2.4.1 Market Trends
      • 9.2.4.2 Market Forecast
    • 9.2.5 Australia
      • 9.2.5.1 Market Trends
      • 9.2.5.2 Market Forecast
    • 9.2.6 Indonesia
      • 9.2.6.1 Market Trends
      • 9.2.6.2 Market Forecast
    • 9.2.7 Others
      • 9.2.7.1 Market Trends
      • 9.2.7.2 Market Forecast
  • 9.3 Europe
    • 9.3.1 Germany
      • 9.3.1.1 Market Trends
      • 9.3.1.2 Market Forecast
    • 9.3.2 France
      • 9.3.2.1 Market Trends
      • 9.3.2.2 Market Forecast
    • 9.3.3 United Kingdom
      • 9.3.3.1 Market Trends
      • 9.3.3.2 Market Forecast
    • 9.3.4 Italy
      • 9.3.4.1 Market Trends
      • 9.3.4.2 Market Forecast
    • 9.3.5 Spain
      • 9.3.5.1 Market Trends
      • 9.3.5.2 Market Forecast
    • 9.3.6 Russia
      • 9.3.6.1 Market Trends
      • 9.3.6.2 Market Forecast
    • 9.3.7 Others
      • 9.3.7.1 Market Trends
      • 9.3.7.2 Market Forecast
  • 9.4 Latin America
    • 9.4.1 Brazil
      • 9.4.1.1 Market Trends
      • 9.4.1.2 Market Forecast
    • 9.4.2 Mexico
      • 9.4.2.1 Market Trends
      • 9.4.2.2 Market Forecast
    • 9.4.3 Others
      • 9.4.3.1 Market Trends
      • 9.4.3.2 Market Forecast
  • 9.5 Middle East and Africa
    • 9.5.1 Market Trends
    • 9.5.2 Market Breakup by Country
    • 9.5.3 Market Forecast

10 SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Price Analysis

14 Competitive Landscape

  • 14.1 Market Structure
  • 14.2 Key Players
  • 14.3 Profiles of Key Players
    • 14.3.1 Achronix Semiconductor
      • 14.3.1.1 Company Overview
      • 14.3.1.2 Product Portfolio
    • 14.3.2 Cypress Semiconductor Corporation (Infineon Technologies AG)
      • 14.3.2.1 Company Overview
      • 14.3.2.2 Product Portfolio
      • 14.3.2.3 SWOT Analysis
    • 14.3.3 Efinix Inc.
      • 14.3.3.1 Company Overview
      • 14.3.3.2 Product Portfolio
    • 14.3.4 EnSilica Limited
      • 14.3.4.1 Company Overview
      • 14.3.4.2 Product Portfolio
    • 14.3.5 Flex Logix Technologies Inc.
      • 14.3.5.1 Company Overview
      • 14.3.5.2 Product Portfolio
    • 14.3.6 Gidel Inc.
      • 14.3.6.1 Company Overview
      • 14.3.6.2 Product Portfolio
    • 14.3.7 Intel Corporation
      • 14.3.7.1 Company Overview
      • 14.3.7.2 Product Portfolio
      • 14.3.7.3 Financials
      • 14.3.7.4 SWOT Analysis
    • 14.3.8 Lattice Semiconductor Corporation
      • 14.3.8.1 Company Overview
      • 14.3.8.2 Product Portfolio
      • 14.3.8.3 Financials
      • 14.3.8.4 SWOT Analysis
    • 14.3.9 Microsemi Corporation (Microchip Technology Inc.)
      • 14.3.9.1 Company Overview
      • 14.3.9.2 Product Portfolio
      • 14.3.9.3 SWOT Analysis
    • 14.3.10 Quicklogic Corporation
      • 14.3.10.1 Company Overview
      • 14.3.10.2 Product Portfolio
      • 14.3.10.3 Financials
      • 14.3.10.4 SWOT Analysis
    • 14.3.11 Taiwan Semiconductor Manufacturing Company
      • 14.3.11.1 Company Overview
      • 14.3.11.2 Product Portfolio
      • 14.3.11.3 Financials
      • 14.3.11.4 SWOT Analysis
    • 14.3.12 Xilinx Inc.
      • 14.3.12.1 Company Overview
      • 14.3.12.2 Product Portfolio
      • 14.3.12.3 Financials
      • 14.3.12.4 SWOT Analysis