デフォルト表紙
市場調査レポート
商品コード
1701844

ヘルスケアにおける3Dプリンティング市場レポート:材料別、技術別、用途別、エンドユーザー別、地域別、2025年~2033年

3D Printing in Healthcare Market Report by Material,Technology (Droplet Deposition, Photopolymerization, Laser Beam Melting, Electronic Beam Melting, Laminated Object Manufacturing, and Others), Application, End User, and Region 2025-2033


出版日
発行
IMARC
ページ情報
英文 149 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
ヘルスケアにおける3Dプリンティング市場レポート:材料別、技術別、用途別、エンドユーザー別、地域別、2025年~2033年
出版日: 2025年04月01日
発行: IMARC
ページ情報: 英文 149 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

ヘルスケアにおける3Dプリンティング市場の世界市場規模は2024年に34億米ドルに達しました。今後、IMARC Groupは、市場は2033年までに111億米ドルに達し、2025~2033年の成長率(CAGR)は12.5%になると予測しています。イメージング技術との統合が進んでいること、3Dプリンティング企業とヘルスケア機関の協力関係が高まっていること、臓器や組織のプリンティングの可能性が高まっていること、デスクトップ3Dプリンターが簡単に入手できるようになったことなどが、市場を推進している要因の1つです。

ヘルスケアでは、3次元(3D)プリンティングが多様な用途を持つ変革的技術として浮上しています。この最先端技術は、外科用切削器具、ドリルガイド、補綴物の開発を可能にすることで、この分野に革命をもたらしています。さらに、骨、臓器、血管の患者固有のレプリカを作ることができるため、正確な手術計画とトレーニングが容易になります。さらに、3Dプリンティングは再生医療や組織工学にも役立っており、生きた人間の細胞や組織を作り出すことができます。この画期的な技術は、オーダーメイドの人工装具から、患者に合わせた薬剤の処方や機器の適合まで、カスタマイズされた医療ソリューションへの道を開きます。その主な利点のひとつは、複雑な手術の際の手術リスクを軽減し、感染の可能性を最小限に抑え、麻酔にさらされる時間を制限することにあります。これは患者の安全性を高めるだけでなく、回復を早めます。さらに、3Dプリンティングは時間とコストの節約に貢献し、ヘルスケアのプロセスを合理化し、より効率的な医療サービスの提供を保証します。その結果、このテクノロジーは世界のヘルスケア業界で目覚ましい支持を得ており、イノベーションと個別化ケアにかつてない可能性を提供しています。私たちが知っているヘルスケアを一変させる可能性があることは、医療技術の進歩が続いていることの証しです。

世界市場は、3Dプリンティング技術の進歩の増加によって大きく牽引されています。これに伴い、医療機器やインプラントのカスタマイズ、医療研究のためのラピッドプロトタイピングが市場に大きく貢献しています。さらに、複雑な解剖学的モデルをコスト効率よく製造できることが、市場にプラスの影響を与えています。これとは別に、患者固有の手術ガイドに対する需要の高まりと慢性疾患の有病率の増加が市場を活性化しています。さらに、高齢者人口の増加や医薬品開発と試験の加速が市場を促進しています。そのほか、手術計画とトレーニングの強化が市場を強化しています。人工装具や整形外科用途の増加、生体適合性材料の生産量の増加が市場を活性化しています。さらに、医療用3Dプリンティングに対する規制当局の支援やヘルスケア専門家の意識の高まりが市場を後押ししています。

ヘルスケアにおける3Dプリンティング市場傾向/促進要因:

再生医療、幹細胞ソリューション、がん治療へのニーズの高まり

再生医療、幹細胞ソリューション、がん治療薬に対するニーズの高まりが市場を強化しています。再生医療は、3Dプリンティングが得意とする精密な組織工学と臓器複製に依存しています。生体適合性のある材料で患者固有の構築物を作成する能力は、再生医療の目標と完全に一致し、組織の置換や再生を必要とする人々に希望を与えます。さらに、個別化治療のアプローチによく使用される幹細胞ソリューションは、細胞の成長と分化をサポートするカスタム足場や構造体を作成する際に、3Dプリンティングの精度の恩恵を受けます。さらに、がん治療薬の開発では、腫瘍環境を模倣するために3Dプリンターでモデルを作成するケースが増えています。これらのモデルは薬剤試験を助け、最終的には、より効果的でオーダーメイドのがん治療につながります。

研究開発(R&D)活動への投資の増加

研究開発(R&D)投資の増加は、市場の見通しを明るいものにします。研究開発への投資は、多くの場合、業界に革命をもたらす最先端技術やイノベーションの開発につながります。研究開発投資によって、企業は新製品や改良品を生み出し、競争力を維持し、進化する顧客の需要に応えることができます。研究努力は、より効率的な生産工程につながり、コストと資源消費を削減します。企業が新たな市場を開発し、提供する製品を拡大し、より幅広い顧客層にリーチするのにも役立ちます。また、環境にやさしい技術や手法の開発にもつながり、環境問題に取り組むことができます。研究開発資金は、ヘルスケアにおける医学的発見を促進し、新しい治療法、医薬品、療法を生み出します。強固な研究開発エコシステムは、雇用を創出し、イノベーションを促進し、投資を呼び込むことによって、経済成長を刺激することができます。

拡大する医薬品用途

3Dプリンティングの医薬品用途の拡大は、ヘルスケア市場の大きな成長を後押ししています。この変革要因は、医薬品の正確なカスタマイズを可能にすることで、ドラッグ開発とデリバリーに革命をもたらしています。3Dプリンティングでは、個々の患者のニーズに合わせて医薬品を調整できるため、より効果的な治療が可能になり、患者の転帰も向上します。さらに、3Dプリンティングは複雑なドラッグデリバリーシステムの作成を容易にし、放出制御と薬効改善を可能にします。新しい薬剤製剤を迅速に試作できるこの技術は、薬剤開発を加速し、時間とコストを削減します。さらに、小児用医薬品や希少疾患用の特殊な医薬品の製造は、3Dプリンティングによってより実現可能で費用対効果が高くなります。規制機関がこのような技術革新に対応するにつれ、ヘルスケア業界は医薬品生産と患者ケアにおける根本的な転換を目の当たりにしており、市場の大幅な成長を促し、より個別化された効率的なヘルスケアソリューションの未来を約束しています。

目次

第1章 序文

第2章 調査範囲と調査手法

  • 調査の目的
  • ステークホルダー
  • データソース
    • 一次情報
    • 二次情報
  • 市場推定
    • ボトムアップアプローチ
    • トップダウンアプローチ
  • 調査手法

第3章 エグゼクティブサマリー

第4章 イントロダクション

  • 概要
  • 主要業界動向

第5章 世界のヘルスケアにおける3Dプリンティング市場

  • 市場概要
  • 市場実績
  • COVID-19の影響
  • 市場予測

第6章 市場内訳:材料別

  • ポリマー
  • 金属
  • セラミック
  • オーガニック

第7章 市場内訳:技術別

  • 液滴沈着
    • 主要セグメント
      • 溶融フィラメント焼成(FFF)技術
      • 低温堆積製造(LDM)
      • マルチフェイスジェット凝固(MJS)
  • 光重合
    • 主要セグメント
      • ステレオリソグラフィー(SLA)
      • 常用液体界面生産(CLIP)
      • 二光子重合(2PP)
  • レーザービーム溶融
    • 主要セグメント
      • 選択的レーザー焼結(SLS)
      • 選択的レーザー溶融(SLM)
      • 直接金属レーザー焼結(DMLS)
  • 電子ビーム溶解(EBM)
  • 積層物製造
  • その他

第8章 市場内訳:用途別

  • 外付けウェアラブルデバイス
    • 主要セグメント
      • 補聴器
      • 義肢装具
      • 歯科製品
  • 臨床試験デバイス
    • 主要セグメント
      • 薬物検査
      • 解剖モデル
  • インプラント
    • 主要セグメント
      • 外科ガイド
      • 頭蓋顎顔面インプラント
      • 整形外科インプラント
  • 組織工学

第9章 市場内訳:エンドユーザー別

  • 医療および外科センター
  • 製薬およびバイオテクノロジー企業
  • 学術機関

第10章 市場内訳:地域別

  • 北米
    • 米国
    • カナダ
  • アジア太平洋地域
    • 中国
    • 日本
    • インド
    • 韓国
    • オーストラリア
    • インドネシア
    • その他
  • 欧州
    • ドイツ
    • フランス
    • 英国
    • イタリア
    • スペイン
    • ロシア
    • その他
  • ラテンアメリカ
    • ブラジル
    • メキシコ
    • その他
  • 中東・アフリカ
    • 市場内訳:国別

第11章 SWOT分析

  • 概要
  • 強み
  • 弱み
  • 機会
  • 脅威

第12章 バリューチェーン分析

第13章 ポーターのファイブフォース分析

  • 概要
  • 買い手の交渉力
  • 供給企業の交渉力
  • 競合の程度
  • 新規参入業者の脅威
  • 代替品の脅威

第14章 価格分析

第15章 競合情勢

  • 市場構造
  • 主要企業
  • 主要企業のプロファイル
    • 3D Systems Inc.
    • Desktop Metal Inc.
    • EOS GmbH
    • Formlabs
    • Materialise NV
    • Organovo Holding Inc.
    • Oxford Performance Materials Inc.
    • Prodways Tech
    • Proto Labs Inc.
    • Renishaw plc
    • SLM Solutions Group AG
    • Stratasys Ltd.
図表

List of Figures

  • Figure 1: Global: 3D Printing in Healthcare Market: Major Drivers and Challenges
  • Figure 2: Global: 3D Printing in Healthcare Market: Sales Value (in Billion USD), 2019-2024
  • Figure 3: Global: 3D Printing in Healthcare Market Forecast: Sales Value (in Billion USD), 2025-2033
  • Figure 4: Global: 3D Printing in Healthcare Market: Breakup by Material (in %), 2024
  • Figure 5: Global: 3D Printing in Healthcare Market: Breakup by Technology (in %), 2024
  • Figure 6: Global: 3D Printing in Healthcare Market: Breakup by Application (in %), 2024
  • Figure 7: Global: 3D Printing in Healthcare Market: Breakup by End User (in %), 2024
  • Figure 8: Global: 3D Printing in Healthcare Market: Breakup by Region (in %), 2024
  • Figure 9: Global: 3D Printing in Healthcare (Polymer) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 10: Global: 3D Printing in Healthcare (Polymer) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 11: Global: 3D Printing in Healthcare (Metals) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 12: Global: 3D Printing in Healthcare (Metals) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 13: Global: 3D Printing in Healthcare (Ceramic) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 14: Global: 3D Printing in Healthcare (Ceramic) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 15: Global: 3D Printing in Healthcare (Organic) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 16: Global: 3D Printing in Healthcare (Organic) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 17: Global: 3D Printing in Healthcare (Droplet Deposition) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 18: Global: 3D Printing in Healthcare (Droplet Deposition) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 19: Global: 3D Printing in Healthcare (Photopolymerization) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 20: Global: 3D Printing in Healthcare (Photopolymerization) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 21: Global: 3D Printing in Healthcare (Laser Beam Melting) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 22: Global: 3D Printing in Healthcare (Laser Beam Melting) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 23: Global: 3D Printing in Healthcare (Electronic Beam Melting (EBM)) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 24: Global: 3D Printing in Healthcare (Electronic Beam Melting (EBM)) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 25: Global: 3D Printing in Healthcare (Laminated Object Manufacturing) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 26: Global: 3D Printing in Healthcare (Laminated Object Manufacturing) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 27: Global: 3D Printing in Healthcare (Other Technologies) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 28: Global: 3D Printing in Healthcare (Other Technologies) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 29: Global: 3D Printing in Healthcare (External Wearable Devices) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 30: Global: 3D Printing in Healthcare (External Wearable Devices) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 31: Global: 3D Printing in Healthcare (Clinical Study Devices) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 32: Global: 3D Printing in Healthcare (Clinical Study Devices) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 33: Global: 3D Printing in Healthcare (Implants) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 34: Global: 3D Printing in Healthcare (Implants) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 35: Global: 3D Printing in Healthcare (Tissue Engineering) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 36: Global: 3D Printing in Healthcare (Tissue Engineering) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 37: Global: 3D Printing in Healthcare (Medical and Surgical Centers) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 38: Global: 3D Printing in Healthcare (Medical and Surgical Centers) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 39: Global: 3D Printing in Healthcare (Pharmaceutical and Biotechnology Companies) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 40: Global: 3D Printing in Healthcare (Pharmaceutical and Biotechnology Companies) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 41: Global: 3D Printing in Healthcare (Academic Institutions) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 42: Global: 3D Printing in Healthcare (Academic Institutions) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 43: North America: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 44: North America: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 45: United States: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 46: United States: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 47: Canada: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 48: Canada: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 49: Asia-Pacific: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 50: Asia-Pacific: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 51: China: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 52: China: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 53: Japan: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 54: Japan: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 55: India: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 56: India: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 57: South Korea: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 58: South Korea: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 59: Australia: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 60: Australia: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 61: Indonesia: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 62: Indonesia: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 63: Others: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 64: Others: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 65: Europe: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 66: Europe: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 67: Germany: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 68: Germany: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 69: France: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 70: France: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 71: United Kingdom: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 72: United Kingdom: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 73: Italy: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 74: Italy: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 75: Spain: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 76: Spain: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 77: Russia: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 78: Russia: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 79: Others: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 80: Others: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 81: Latin America: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 82: Latin America: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 83: Brazil: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 84: Brazil: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 85: Mexico: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 86: Mexico: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 87: Others: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 88: Others: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 89: Middle East and Africa: 3D Printing in Healthcare Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 90: Middle East and Africa: 3D Printing in Healthcare Market: Breakup by Country (in %), 2024
  • Figure 91: Middle East and Africa: 3D Printing in Healthcare Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 92: Global: 3D Printing in Healthcare Industry: SWOT Analysis
  • Figure 93: Global: 3D Printing in Healthcare Industry: Value Chain Analysis
  • Figure 94: Global: 3D Printing in Healthcare Industry: Porter's Five Forces Analysis

List of Tables

  • Table 1: Global: 3D Printing in Healthcare Market: Key Industry Highlights, 2024 and 2033
  • Table 2: Global: 3D Printing in Healthcare Market Forecast: Breakup by Material (in Million USD), 2025-2033
  • Table 3: Global: 3D Printing in Healthcare Market Forecast: Breakup by Technology (in Million USD), 2025-2033
  • Table 4: Global: 3D Printing in Healthcare Market Forecast: Breakup by Application (in Million USD), 2025-2033
  • Table 5: Global: 3D Printing in Healthcare Market Forecast: Breakup by End User (in Million USD), 2025-2033
  • Table 6: Global: 3D Printing in Healthcare Market Forecast: Breakup by Region (in Million USD), 2025-2033
  • Table 7: Global: 3D Printing in Healthcare Market: Competitive Structure
  • Table 8: Global: 3D Printing in Healthcare Market: Key Players
目次
Product Code: SR112025A6116

The global 3D printing in healthcare market size reached USD 3.4 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 11.1 Billion by 2033, exhibiting a growth rate (CAGR) of 12.5% during 2025-2033. The increasing integration with imaging technologies, the rising collaborations between 3D printing companies and healthcare institutions, the growing potential for organ and tissue printing, and the easy accessibility of desktop 3D printers are some of the factors propelling the market.

In healthcare, three-dimensional (3D) printing has emerged as a transformative technology with diverse applications. This cutting-edge technology is revolutionizing the field by enabling the development of surgical cutting tools, drill guides, and prosthetics. Additionally, it can craft patient-specific replicas of bones, organs, and blood vessels, facilitating precise surgical planning and training. Moreover, 3D printing is instrumental in regenerative medicine and tissue engineering, where it can create living human cells and tissues. This breakthrough paves the way for customized medical solutions, from tailored prosthetics to patient-specific drug formulations and equipment adaptations. One of its key advantages lies in reducing operative risks during intricate procedures, minimizing the likelihood of infections, and limiting the duration of anesthesia exposure. This not only enhances patient safety but also expedites recovery. Furthermore, 3D printing contributes to time and cost savings, streamlining the healthcare process and ensuring more efficient delivery of medical services. As a result, this technology is gaining remarkable traction across the global healthcare industry, offering unprecedented possibilities for innovation and personalized care. Its potential to transform healthcare as we know it is a testament to the ongoing advancements in medical technology.

The global market is majorly driven by the increasing advancements in 3D printing technology. In line with this, the customization of medical devices and implants and the rapid prototyping for medical research are significantly contributing to the market. Furthermore, the cost-effective production of complex anatomical models is positively influencing the market. Apart from this, the rising demand for patient-specific surgical guides and the growing prevalence of chronic diseases are catalyzing the market. Moreover, the escalating elderly population and the accelerating drug development and testing are propelling the market. Besides, enhanced surgical planning and training are strengthening the market. The increasing prosthetics and orthopedic applications and the rising production of biocompatible materials are fueling the market. Additionally, the regulatory support for medical 3D printing and the growing awareness among healthcare professionals are providing a boost to the market.

3D Printing in Healthcare Market Trends/Drivers:

Increasing need for regenerative medicines, stem cell solutions, and cancer therapeutics

The increasing need for regenerative medicines, stem cell solutions, and cancer therapeutics is bolstering the market. Regenerative medicine relies on precise tissue engineering and organ replication, where 3D printing excels. The ability to create patient-specific constructs with biocompatible materials aligns perfectly with regenerative medicine's goals, offering hope for those in need of tissue replacement or regeneration. Furthermore, stem cell solutions, often used for personalized treatment approaches, benefit from 3D printing's precision in creating custom scaffolds and structures that support cell growth and differentiation. Moreover, the development of cancer therapeutics increasingly involves 3D-printed models to mimic tumor environments. These models aid drug testing, ultimately leading to more effective and tailored cancer treatments.

Rising investments in research and development (R&D) activities

Rising research and development (R&D) investments create a positive market outlook. Investment in R&D often results in the development of cutting-edge technologies and innovations that can revolutionize industries. It allows companies to create new and improved products, stay competitive, and meet evolving customer demands. Research efforts can lead to more efficient production processes, reducing costs and resource consumption. It can help companies explore new markets, expand their product offerings, and reach a broader customer base. It can also lead to the development of eco-friendly technologies and practices, addressing environmental concerns. R&D funding drives medical discoveries in healthcare, leading to new treatments, drugs, and therapies. A robust R&D ecosystem can stimulate economic growth by creating jobs, fostering innovation, and attracting investment.

Expanding pharmaceutical applications

The expanding pharmaceutical applications of 3D printing are propelling significant growth in the healthcare market. This transformative factor is revolutionizing drug development and delivery by allowing for the precise customization of pharmaceuticals. With 3D printing, medications can be tailored to meet individual patient needs, resulting in more effective treatments and enhanced patient outcomes. Moreover, 3D printing facilitates the creation of complex drug delivery systems, enabling controlled release and improved drug efficacy. The technology's ability to rapidly prototype new drug formulations accelerates drug development, reducing time and costs. Additionally, the production of pediatric medications and specialized drugs for rare diseases is made more feasible and cost-effective through 3D printing. As regulatory bodies adapt to accommodate these innovations, the healthcare industry is witnessing a fundamental shift in pharmaceutical production and patient care, driving substantial market growth and promising a future of more personalized and efficient healthcare solutions.

3D Printing in Healthcare Industry Segmentation:

Breakup by Material:

  • Polymer
  • Metals
  • Ceramic
  • Organic

Polymer dominates the market

Polymer-based 3D printing is instrumental in creating various medical devices, prosthetics, and customized implants. Biocompatible polymers like PLA and PEEK are widely used in creating patient-specific anatomical models and dental applications. Moreover, they are suitable materials for cost-effective prosthetic limbs and orthopedic implants, enhancing patient mobility and comfort.

On the other hand, metal 3D printing is revolutionizing the production of intricate and durable medical components. Titanium and stainless steel alloys are commonly employed in manufacturing orthopedic implants, cranial implants, and dental prosthetics. These metals offer exceptional strength and biocompatibility, ensuring the longevity and reliability of implanted devices. Additionally, metal 3D printing's precision allows for intricate lattice structures that promote osseointegration, enabling faster healing and improved patient outcomes.

Breakup by Technology:

  • Droplet Deposition
  • Fused Filament Fabrication (FFF) Technology
  • Low-temperature Deposition Manufacturing (LDM)
  • Multiphase Jet Solidification (MJS)
  • Photopolymerization
  • Stereolithography (SLA)
  • Continuous Liquid Interface Production (CLIP)
  • Two-photon Polymerization (2PP)
  • Laser Beam Melting
  • Selective Laser Sintering (SLS)
  • Selective Laser Melting (SLM)
  • Direct Metal Laser Sintering (DMLS)
  • Electronic Beam Melting (EBM)
  • Laminated Object Manufacturing
  • Others

Droplet deposition dominates the market

Droplet Deposition technology, also known as Fused Deposition Modeling (FDM), is cost-effective and widely used for producing patient-specific anatomical models, custom prosthetics, and orthopedic implants. It offers versatility and accessibility, making it suitable for various healthcare applications, including educational purposes.

On the other hand, utilizing photoreactive polymers, photopolymerization, exemplified by stereolithography (SLA) and Digital Light Processing (DLP), excels in creating highly detailed and intricate medical models and dental devices. It enables the production of accurate prototypes, dental crowns, and surgical guides, supporting precise and personalized healthcare solutions.

Moreover, laser-based technologies like Selective Laser Sintering (SLS) and Direct Metal Laser Sintering (DMLS) are vital for manufacturing complex metal components such as orthopedic implants, prosthetics, and dental restorations. The exceptional accuracy and material strength provided by laser beam melting is essential for critical medical applications, ensuring durability and biocompatibility.

Breakup by Application:

  • External Wearable Devices
  • Hearing Aids
  • Prosthesis and Orthotics
  • Dental Products
  • Clinical Study Devices
  • Drug Testing
  • Anatomical Models
  • Implants
  • Surgical Guides
  • Cranio-maxillofacial Implants
  • Orthopedic Implants
  • Tissue Engineering

External Wearable Devices dominates the market

3D printing technology facilitates the production of custom-fit external wearable devices such as prosthetic limbs, orthopedic braces, and hearing aids. These personalized devices enhance patient comfort, mobility, and quality of life, driving growth in this segment.

On the contrary, 3D printing creates patient-specific models, surgical guides, and anatomical replicas in medical research and clinical trials. These devices are instrumental in enhancing surgical training, medical education, and preoperative planning, thus contributing to the growth of this segment.

Moreover, the production of implants, including orthopedic, dental, and cranial implants, is a critical application of 3D printing in healthcare. These patient-specific implants offer improved functionality, durability, and biocompatibility, driving significant growth in the market.

Breakup by End User:

  • Medical and Surgical Centers
  • Pharmaceutical and Biotechnology Companies
  • Academic Institutions

Medical and surgical centers dominates the market

Medical and surgical centers include hospitals, clinics, and specialized healthcare facilities. These institutions widely utilize 3D printing for applications such as patient-specific anatomical models, surgical guides, custom prosthetics, and orthopedic implants. The technology empowers healthcare providers with tools for precise diagnosis, treatment planning, and patient-specific interventions, enhancing overall patient care and surgical outcomes. The growing adoption of 3D printing in medical and surgical centers drives market growth by improving healthcare delivery.

Furthermore, the pharmaceutical and biotechnology sector leverages 3D printing for drug development, personalized medicine, and drug delivery systems. 3D-printed pills, tablets, and drug-loaded implants enable precise dosing, improved drug release profiles, and customized therapies. This segment fosters market growth by advancing drug development processes and enhancing the efficacy and safety of pharmaceutical products.

Breakup by Region:

  • North America
  • United States
  • Canada
  • Asia-Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Indonesia
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Russia
  • Others
  • Latin America
  • Brazil
  • Mexico
  • Others
  • Middle East and Africa

North America exhibits a clear dominance, accounting for the largest market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.

North America, encompassing the United States and Canada, is a significant driver of growth in 3D printing in healthcare market due to several key factors. It is a hub for technological advancements and innovation, fostering the development and adoption of 3D printing in healthcare applications. The region boasts advanced healthcare facilities and research institutions that actively utilize 3D printing for patient-specific models, surgical planning, and medical device production. Regulatory bodies in North America have been receptive to 3D printing technologies in healthcare, expediting approvals for medical devices and implants.

Ongoing investment in research and development activities fuels continuous innovation and growth in 3D printing applications, benefiting both the medical and pharmaceutical sectors. The region is home to leading 3D printing companies and healthcare providers that drive market growth through collaborations and investments in cutting-edge technologies. Furthermore, patients increasingly seek personalized healthcare solutions, escalating the adoption of 3D printing for customized implants, prosthetics, and medical models.

Competitive Landscape:

Top companies are strengthening the market growth through their innovative approaches and unwavering commitment to advancing medical technology. These industry leaders are contributing to growth in several key ways. They are at the forefront of research and development, investing heavily in cutting-edge technologies that enhance the capabilities of 3D printing in healthcare. These innovations expand the scope of applications, from patient-specific implants to drug delivery systems. Top companies actively collaborate with healthcare institutions and research organizations to drive progress. These collaborations result in groundbreaking solutions and foster a deeper understanding of 3D printing's potential in medicine. They work closely with regulatory authorities to ensure compliance with evolving healthcare standards, facilitating the adoption of 3D-printed medical devices and pharmaceuticals. These companies invest in educational initiatives to train healthcare professionals to use 3D printing technology effectively. They contribute to global awareness, demonstrating the transformative impact of 3D printing in healthcare through case studies and success stories. Their dedication to pushing the boundaries of what's possible in the medical field ensures the continued growth and evolution of 3D printing in healthcare market.

The report has provided a comprehensive analysis of the competitive landscape of 3D printing in healthcare market. Detailed profiles of all major companies have also been provided.

  • 3D Systems Inc.
  • Desktop Metal Inc.
  • EOS GmbH
  • Formlabs
  • Materialise NV
  • Organovo Holding Inc.
  • Oxford Performance Materials Inc.
  • Prodways Tech
  • Proto Labs Inc.
  • Renishaw plc
  • SLM Solutions Group AG
  • Stratasys Ltd

Key Questions Answered in This Report

  • 1.What was the size of the global 3D printing in healthcare market in 2024?
  • 2.What is the expected growth rate of the global 3D printing in healthcare market during 2025-2033?
  • 3.What are the key factors driving the global 3D printing in healthcare market?
  • 4.What has been the impact of COVID-19 on the global 3D printing in healthcare market?
  • 5.What is the breakup of the global 3D printing in healthcare market based on the material?
  • 6.What is the breakup of the global 3D printing in healthcare market based on the technology?
  • 7.What is the breakup of the global 3D printing in healthcare market based on the application?
  • 8. What is the breakup of the global 3D printing in healthcare market based on the end user?
  • 9.What are the key regions in the global 3D printing in healthcare market?
  • 10.Who are the key players/companies in the global 3D printing in healthcare market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global 3D Printing in Healthcare Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Material

  • 6.1 Polymer
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Metals
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Ceramic
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 Organic
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast

7 Market Breakup by Technology

  • 7.1 Droplet Deposition
    • 7.1.1 Market Trends
    • 7.1.2 Key Segments
      • 7.1.2.1 Fused Filament Febrication (FFF) Technology
      • 7.1.2.2 Low-temperature Deposition Manufacturing (LDM)
      • 7.1.2.3 Multiface Jet Solidification (MJS)
    • 7.1.3 Market Forecast
  • 7.2 Photopolymerization
    • 7.2.1 Market Trends
    • 7.2.2 Key Segments
      • 7.2.2.1 Stereolithography (SLA)
      • 7.2.2.2 Continuous Liquid Interface Production (CLIP)
      • 7.2.2.3 Two-photon Polymerization (2PP)
    • 7.2.3 Market Forecast
  • 7.3 Laser Beam Melting
    • 7.3.1 Market Trends
    • 7.3.2 Key Segments
      • 7.3.2.1 Selective Laser Sintering (SLS)
      • 7.3.2.2 Selective Laser Melting (SLM)
      • 7.3.2.3 Direct Metal Laser Sintering (DMLS)
    • 7.3.3 Market Forecast
  • 7.4 Electronic Beam Melting (EBM)
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast
  • 7.5 Laminated Object Manufacturing
    • 7.5.1 Market Trends
    • 7.5.2 Market Forecast
  • 7.6 Others
    • 7.6.1 Market Trends
    • 7.6.2 Market Forecast

8 Market Breakup by Application

  • 8.1 External Wearable Devices
    • 8.1.1 Market Trends
    • 8.1.2 Key Segments
      • 8.1.2.1 Hearing Aids
      • 8.1.2.2 Prosthesis and Orthotics
      • 8.1.2.3 Dental Products
    • 8.1.3 Market Forecast
  • 8.2 Clinical Study Devices
    • 8.2.1 Market Trends
    • 8.2.2 Key Segments
      • 8.2.2.1 Drug Testing
      • 8.2.2.2 Anatomical Models
    • 8.2.3 Market Forecast
  • 8.3 Implants
    • 8.3.1 Market Trends
    • 8.3.2 Key Segments
      • 8.3.2.1 Surgical Guides
      • 8.3.2.2 Cranio-maxillofacial Implants
      • 8.3.2.3 Orthopedic Implants
    • 8.3.3 Market Forecast
  • 8.4 Tissue Engineering
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast

9 Market Breakup by End User

  • 9.1 Medical and Surgical Centers
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Pharmaceutical and Biotechnology Companies
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Academic Institutions
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast

10 Market Breakup by Region

  • 10.1 North America
    • 10.1.1 United States
      • 10.1.1.1 Market Trends
      • 10.1.1.2 Market Forecast
    • 10.1.2 Canada
      • 10.1.2.1 Market Trends
      • 10.1.2.2 Market Forecast
  • 10.2 Asia-Pacific
    • 10.2.1 China
      • 10.2.1.1 Market Trends
      • 10.2.1.2 Market Forecast
    • 10.2.2 Japan
      • 10.2.2.1 Market Trends
      • 10.2.2.2 Market Forecast
    • 10.2.3 India
      • 10.2.3.1 Market Trends
      • 10.2.3.2 Market Forecast
    • 10.2.4 South Korea
      • 10.2.4.1 Market Trends
      • 10.2.4.2 Market Forecast
    • 10.2.5 Australia
      • 10.2.5.1 Market Trends
      • 10.2.5.2 Market Forecast
    • 10.2.6 Indonesia
      • 10.2.6.1 Market Trends
      • 10.2.6.2 Market Forecast
    • 10.2.7 Others
      • 10.2.7.1 Market Trends
      • 10.2.7.2 Market Forecast
  • 10.3 Europe
    • 10.3.1 Germany
      • 10.3.1.1 Market Trends
      • 10.3.1.2 Market Forecast
    • 10.3.2 France
      • 10.3.2.1 Market Trends
      • 10.3.2.2 Market Forecast
    • 10.3.3 United Kingdom
      • 10.3.3.1 Market Trends
      • 10.3.3.2 Market Forecast
    • 10.3.4 Italy
      • 10.3.4.1 Market Trends
      • 10.3.4.2 Market Forecast
    • 10.3.5 Spain
      • 10.3.5.1 Market Trends
      • 10.3.5.2 Market Forecast
    • 10.3.6 Russia
      • 10.3.6.1 Market Trends
      • 10.3.6.2 Market Forecast
    • 10.3.7 Others
      • 10.3.7.1 Market Trends
      • 10.3.7.2 Market Forecast
  • 10.4 Latin America
    • 10.4.1 Brazil
      • 10.4.1.1 Market Trends
      • 10.4.1.2 Market Forecast
    • 10.4.2 Mexico
      • 10.4.2.1 Market Trends
      • 10.4.2.2 Market Forecast
    • 10.4.3 Others
      • 10.4.3.1 Market Trends
      • 10.4.3.2 Market Forecast
  • 10.5 Middle East and Africa
    • 10.5.1 Market Trends
    • 10.5.2 Market Breakup by Country
    • 10.5.3 Market Forecast

11 SWOT Analysis

  • 11.1 Overview
  • 11.2 Strengths
  • 11.3 Weaknesses
  • 11.4 Opportunities
  • 11.5 Threats

12 Value Chain Analysis

13 Porters Five Forces Analysis

  • 13.1 Overview
  • 13.2 Bargaining Power of Buyers
  • 13.3 Bargaining Power of Suppliers
  • 13.4 Degree of Competition
  • 13.5 Threat of New Entrants
  • 13.6 Threat of Substitutes

14 Price Analysis

15 Competitive Landscape

  • 15.1 Market Structure
  • 15.2 Key Players
  • 15.3 Profiles of Key Players
    • 15.3.1 3D Systems Inc.
      • 15.3.1.1 Company Overview
      • 15.3.1.2 Product Portfolio
      • 15.3.1.3 Financials
      • 15.3.1.4 SWOT Analysis
    • 15.3.2 Desktop Metal Inc.
      • 15.3.2.1 Company Overview
      • 15.3.2.2 Product Portfolio
    • 15.3.3 EOS GmbH
      • 15.3.3.1 Company Overview
      • 15.3.3.2 Product Portfolio
      • 15.3.3.3 SWOT Analysis
    • 15.3.4 Formlabs
      • 15.3.4.1 Company Overview
      • 15.3.4.2 Product Portfolio
    • 15.3.5 Materialise NV
      • 15.3.5.1 Company Overview
      • 15.3.5.2 Product Portfolio
      • 15.3.5.3 Financials
    • 15.3.6 Organovo Holding Inc.
      • 15.3.6.1 Company Overview
      • 15.3.6.2 Product Portfolio
      • 15.3.6.3 Financials
    • 15.3.7 Oxford Performance Materials Inc.
      • 15.3.7.1 Company Overview
      • 15.3.7.2 Product Portfolio
    • 15.3.8 Prodways Tech
      • 15.3.8.1 Company Overview
      • 15.3.8.2 Product Portfolio
      • 15.3.8.3 Financials
    • 15.3.9 Proto Labs Inc.
      • 15.3.9.1 Company Overview
      • 15.3.9.2 Product Portfolio
      • 15.3.9.3 Financials
    • 15.3.10 Renishaw plc
      • 15.3.10.1 Company Overview
      • 15.3.10.2 Product Portfolio
      • 15.3.10.3 Financials
    • 15.3.11 SLM Solutions Group AG
      • 15.3.11.1 Company Overview
      • 15.3.11.2 Product Portfolio
      • 15.3.11.3 Financials
    • 15.3.12 Stratasys Ltd.
      • 15.3.12.1 Company Overview
      • 15.3.12.2 Product Portfolio
      • 15.3.12.3 Financials