![]() |
市場調査レポート
商品コード
1541324
データサイエンスプラットフォーム市場レポート:コンポーネント、用途、業界別、地域別、2024~2032年Data Science Platform Market Report by Component, Application, Vertical, and Region 2024-2032 |
||||||
カスタマイズ可能
|
データサイエンスプラットフォーム市場レポート:コンポーネント、用途、業界別、地域別、2024~2032年 |
出版日: 2024年08月10日
発行: IMARC
ページ情報: 英文 144 Pages
納期: 2~3営業日
|
世界のデータサイエンスプラットフォーム市場規模は2023年に118億米ドルに達しました。今後、IMARC Groupは、2024~2032年にかけて28.5%の成長率(CAGR)を示し、2032年までに1,199億米ドルに達すると予測しています。医療業界におけるデータサイエンスプラットフォームの活用の高まり、さまざまな企業組織におけるクラウドベースのプログラムに対する需要の高まり、データサイエンスプラットフォームにおける先端技術の統合の高まりなどが、市場を牽引する主要要因となっています。
データサイエンスプラットフォームは、データサイエンスプロセスの様々な側面に必要なツール、技術、リソースを提供する包括的なソフトウェアとハードウェアのインフラストラクチャです。データサイエンスは、データの収集、クリーニング、分析、解釈を含む学際的なセグメントで、価値ある洞察を引き出し、データ主導の意思決定を行う。これらのプラットフォームには、データ抽出、変換、ローディング(ETL)のためのツールや、データベース、データウェアハウス、API、その他のデータソースへのコネクタが含まれます。また、予測モデルや記述モデルを構築するための機械学習アルゴリズムやモデリングツールも幅広く提供されています。
現在、膨大な量の構造化データと非構造化データを効率的に分析、監督、統合する能力により、医療セグメントでのデータサイエンスプラットフォームの採用が増加しており、これが主に市場成長の原動力となっています。さらに、多様な世界事業体においてクラウドベースのソリューションへの選好が高まっていることも、良好な市場環境を促進しています。さらに、費用対効果が高く、効率的で、強化された意思決定ツールに対する需要が世界規模で高まっています。この需要の急増は、企業の分析と生産性を高めるデータサイエンスプラットフォームの利用拡大と相まって、市場の成長を促進しています。さらに、人工知能(AI)、モノのインターネット(IoT)、機械学習(ML)のデータサイエンスプラットフォームへの統合は、業界利害関係者に有利な成長機会をもたらしています。さらに、ビジネス向けの予測モデルの構築、管理、最適化のためのまとまった統合アプローチを提供するデータサイエンスプラットフォームに対する意欲の高まりが、市場に好影響を及ぼしています。さらに、ビッグデータ技術の進化に後押しされたデータサイエンスプラットフォームに対する需要の高まりが、市場の拡大に寄与しています。さらに、銀行サービスの利用拡大によるBFSIセグメントでのデータサイエンスプラットフォームに対するニーズの高まりが、市場の成長をさらに強めています。
医療業界におけるデータサイエンスプラットフォームの利用拡大
医療では、構造化されたデータ(患者記録)だけでなく、医療画像や臨床記録などの非構造化データも含め、膨大な量のデータが生成されます。データサイエンスプラットフォームは、医療プロバイダーがこの豊富な情報を効果的に分析、管理、吸収することを可能にします。例えば、データ分析を利用して、患者集団の動向やパターン、潜在的な健康リスクを特定することができます。さらに、これらのプラットフォームは医療専門家に予測分析を活用する力を与えます。疾病の発生を予測し、より注意が必要と思われるハイリスク患者を特定し、さらには患者の転帰を予測することができます。この予測能力により、患者のケアと資源配分が強化されます。さらに、製薬やバイオテクノロジーのセグメントでは、データサイエンスプラットフォームが創薬や薬剤開発に役立っています。研究者は遺伝子データ、臨床試験結果、薬剤相互作用を分析し、新たな治療法の市場投入プロセスを加速することができます。
さまざまな企業で高まるクラウドベースのプログラム需要
クラウドベースのプラットフォームは、大規模なデータセットや計算需要を処理するスケーラビリティを記載しています。企業は必要に応じてリソースを増減できるため、データサイエンスプロジェクトを柔軟に管理できます。また、これらのソリューションでは、ハードウェアやインフラへの先行投資が少なくて済むことが多いです。この費用対効果は、あらゆる規模の組織、特に新興企業や中小企業にとって魅力的です。さらに、クラウドベースのプラットフォームはリモートアクセスを可能にし、地理的に分散したチーム間のコラボレーションを促進します。今日のグローバリゼーションしたビジネス環境では、このアクセシビリティは極めて重要です。さらに、クラウドプロバイダーがソフトウェアのアップデートやインフラのメンテナンスを行うため、社内のITチームの負担が軽減され、企業は常に最新の機能やセキュリティ・パッチにアクセスできます。
データサイエンスプラットフォームにおける先端技術の統合の高まり
AIとMLアルゴリズムは、データサイエンスプラットフォームに不可欠な要素になりつつあります。これらは自動化、予測モデリング、自然言語処理、異常検知を可能にします。これらの高度な機能は、複雑なデータセットから価値ある洞察を引き出すために不可欠です。さらに、様々な業界におけるIoTデバイスの普及に伴い、データサイエンスプラットフォームは、これらのデバイスから生成される大量のデータの流入を処理するために適応しつつあります。データサイエンスプラットフォームは、センサー、デバイス、機械からのデータを分析し、リアルタイム洞察を提供し、意思決定を改善することができます。また、先進的な技術により、データサイエンスプラットフォームはより洗練されたデータ可視化技術を提供できるようになりました。これにより、利害関係者に洞察を効果的に伝える能力が強化されます。
The global data science platform market size reached US$ 11.8 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 119.9 Billion by 2032, exhibiting a growth rate (CAGR) of 28.5% during 2024-2032. The rising utilization of data science platforms in the healthcare industry, the growing demand for cloud-based programs in various business organizations, and the rising integration of advanced technologies in data science platforms represent some of the key factors driving the market.
A data science platform is a comprehensive software and hardware infrastructure that provides the tools, technologies, and resources necessary for various aspects of the data science process. Data science is a multidisciplinary field that involves collecting, cleaning, analyzing, and interpreting data to extract valuable insights and make data-driven decisions. These platforms include tools for data extraction, transformation, and loading (ETL), as well as connectors to databases, data warehouses, APIs, and other data sources. They also offer a wide range of machine learning algorithms and modeling tools for building predictive and descriptive models.
Currently, the increased adoption of data science platforms within the healthcare sector, owing to their ability to efficiently analyze, oversee, and integrate vast volumes of structured and unstructured data is primarily driving the market growth. Furthermore, the increasing preference for cloud-based solutions across diverse global business entities is fostering a favorable market landscape. Additionally, there is a growing demand for cost-effective, efficient, and enhanced decision-making tools on a global scale. This surge in demand, coupled with the expanding utilization of data science platforms, which enhance enterprise analysis and productivity, is propelling market growth. Moreover, the integration of artificial intelligence (AI), the internet of things (IoT), and machine learning (ML) into data science platforms is presenting lucrative growth opportunities for industry stakeholders. Furthermore, the increasing appetite for data science platforms, which offer a cohesive and integrated approach to constructing, managing, and optimizing predictive models for businesses, is exerting a positive influence on the market. Additionally, the escalating demand for data science platforms, driven by the evolution of big data technologies, is contributing to market expansion. Furthermore, the heightened need for data science platforms within the BFSI sector due to the growing utilization of banking services is further strengthening the market growth.
Rising utilization of data science platforms in the healthcare industry
Healthcare generates an enormous amount of data, both structured (patient records) and unstructured such as medical images and clinical notes. Data science platforms enable healthcare providers to effectively analyze, manage, and assimilate this wealth of information. For instance, they can use data analytics to identify trends, patterns, and potential health risks among patient populations. Besides, these platforms empower healthcare professionals to leverage predictive analytics. They can forecast disease outbreaks, identify high-risk patients who may require more attention, and even predict patient outcomes. This predictive capability enhances patient care and resource allocation. Moreover, in the pharmaceutical and biotechnology sectors, data science platforms are instrumental in drug discovery and development. Researchers can analyze genetic data, clinical trial results, and drug interactions to accelerate the process of bringing new treatments to market.
Growing demand for cloud-based programs in various business organizations
Cloud-based platforms offer scalability to handle large datasets and computational demands. Businesses can scale their resources up or down as needed, providing flexibility in managing their data science projects. Besides, these solutions often require lower upfront investment in hardware and infrastructure. This cost-effectiveness appeals to organizations of all sizes, especially startups and small businesses. Moreover, cloud-based platforms enable remote access, facilitating collaboration among geographically dispersed teams. This accessibility is crucial in today's globalized business environment. Additionally, cloud providers handle software updates and infrastructure maintenance, reducing the burden on in-house IT teams and ensuring that organizations always have access to the latest features and security patches.
Rising integration of advanced technologies in data science platforms
AI and ML algorithms are becoming integral parts of data science platforms. They enable automation, predictive modeling, natural language processing, and anomaly detection. These advanced capabilities are essential for extracting valuable insights from complex datasets. Moreover, with the proliferation of IoT devices in various industries, data science platforms are adapting to handle the massive influx of data generated by these devices. They can analyze data from sensors, devices, and machines to provide real-time insights and improve decision-making. Besides, advanced technologies enable data science platforms to offer more sophisticated data visualization techniques. This enhances the ability to convey insights to stakeholders effectively.
IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the global, regional and country levels from 2024-2032. Our report has categorized the market based on component, application and vertical.
Software
Services
Software represents the most popular component
The report has provided a detailed breakup and analysis of the market based on the component. This includes software and services. According to the report, software represented the largest segment.
Data science software offers a wide range of tools and capabilities for data collection, cleaning, analysis, modeling, and visualization. It provides data scientists with the flexibility to perform a multitude of tasks within a single platform. Moreover, it is readily available and accessible to organizations of all sizes. Many software solutions are user-friendly, making them accessible to both data science experts and those with less technical expertise. Besides, software solutions can be scaled up or down to accommodate different data volumes and complexities. This scalability is crucial in handling the ever-increasing amount of data generated by organizations.
Marketing and Sales
Logistics
Finance and Accounting
Customer Support
Others
Marketing and sales hold the largest market share
A detailed breakup and analysis of the market based on the application has also been provided in the report. This includes marketing and sales, logistics, finance and accounting, customer support, and others. According to the report, marketing and sales represented the largest segment.
Marketing and sales are inherently data-intensive fields. They heavily rely on data to make informed decisions about product development, pricing strategies, customer segmentation, and sales forecasting. Data science platforms provide the tools and capabilities to process and analyze vast datasets, enabling more accurate and data-driven decision-making. Besides, understanding customer behavior, preferences, and needs is critical for effective marketing and sales strategies. Data science platforms help organizations gather, analyze, and extract actionable insights from customer data. This allows businesses to tailor their marketing campaigns and sales efforts to target specific customer segments more effectively. Moreover, these platforms assist in optimizing marketing campaigns by analyzing campaign performance metrics and identifying which strategies are most effective. This allows marketers to allocate resources to the most successful campaigns and refine their approaches in real-time.
IT and Telecommunication
Healthcare
BFSI
Manufacturing
Retail and E-Commerce
Others
BFSI accounts for the majority of market share
A detailed breakup and analysis of the market based on the vertical has also been provided in the report. This includes IT and telecommunication, healthcare, BFSI, manufacturing, retail and e-commerce, and others. According to the report, BFSI represented the largest segment.
The BFSI industry deals with vast volumes of data, including customer transactions, financial records, market data, and risk assessments. Data science platforms are essential for processing and analyzing this extensive data to extract valuable insights, detect fraudulent activities, and make informed decisions. Besides, risk assessment is a critical aspect of the BFSI sector. Data science platforms equipped with machine learning and predictive analytics help banks and financial institutions assess and mitigate risks effectively. These platforms can identify potential credit defaults, market fluctuations, and fraudulent transactions, which is crucial for maintaining financial stability.
North America
United States
Canada
Asia-Pacific
China
Japan
India
South Korea
Australia
Indonesia
Others
Europe
Germany
France
United Kingdom
Italy
Spain
Russia
Others
Latin America
Brazil
Mexico
Others
Middle East and Africa
North America leads the market, accounting for the majority of the data science platform market share
The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America was the largest market.
North America, particularly the United States, is home to many technology hubs such as Silicon Valley, which is known for innovation and technological advancements. This region fosters a fertile ground for the development and adoption of cutting-edge data science technologies and platforms. Moreover, the region hosts a vast number of large enterprises, including Fortune 500 companies, across various industries. These enterprises have substantial budgets and resources to invest in data science platforms to gain a competitive edge, improve operational efficiency, and drive innovation. Besides, North America leads in research and development activities related to data science and artificial intelligence (AI). Leading universities, research institutions, and tech companies in the region continually push the boundaries of data science capabilities, leading to the development of state-of-the-art platforms and tools.
The competitive landscape of the market is characterized by the presence of multiple players that include established brands, emerging startups, and specialty manufacturers. Presently, leading companies are investing in research and development to enhance their data science platforms. They are introducing new features, tools, and capabilities to stay ahead of evolving industry trends and customer demands. This includes the integration of artificial intelligence (AI), machine learning (ML), and automation to improve data analytics and predictive modeling. Besides, many key players are expanding their cloud-based data science platform offerings. Cloud platforms provide scalability, flexibility, and accessibility, which are highly valued by businesses. This expansion enables organizations to harness the power of data science without significant infrastructure investments. Moreover, they are acquiring innovative startups and smaller companies in the data science and analytics space. These acquisitions enable them to quickly gain access to cutting-edge technologies, talent, and customer bases.
Alteryx Inc.
Cloudera Inc.
Dataiku Inc.
Google LLC (Alphabet Inc.)
H2O.ai Inc.
International Business Machines Corporation
Microsoft Corporation
RapidMiner Inc.
SAP SE
SAS Institute Inc.
The MathWorks Inc.
TIBCO Software Inc.
(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)
In November 2022, Alteryx Inc., launched innovations in analytics and data science automation, analytics in the cloud, machine learning (ML), and artificial intelligence (AI) during the company's Virtual Global Inspire conference. The new designer interface will be powered by the Alteryx Analytics Cloud platform, providing all cloud users access to the browser-based no-code analytics tool, with in-database pushdown processing for cloud data warehouses.
In September 2021, Microsoft updates Microsoft Machine Learning Studio which adds a new PyTorch extension library for agile deep learning experimentation.
In September 2021, MathWorks updated The MATLAB and Simulink product families. They included new and updated features and functions major improvements, code refactoring and block editing, and the ability to run Python commands and scripts from MATLAB.