デフォルト表紙
市場調査レポート
商品コード
1800904

ビルディングインフォメーションモデリング(BIM)市場レポート:提供タイプ、展開モード、用途、最終用途分野、エンドユーザー、地域別、2025年~2033年

Building Information Modeling Market Report by Offering Type, Deployment Mode, Application, End Use Sector, End User, and Region 2025-2033


出版日
発行
IMARC
ページ情報
英文 137 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=149.25円
ビルディングインフォメーションモデリング(BIM)市場レポート:提供タイプ、展開モード、用途、最終用途分野、エンドユーザー、地域別、2025年~2033年
出版日: 2025年08月01日
発行: IMARC
ページ情報: 英文 137 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界のビルディングインフォメーションモデリング(BIM)市場規模は2024年に98億米ドルに達しました。今後、IMARC Groupは、同市場が2033年までに299億米ドルに達し、2025年から2033年にかけて13.2%の成長率(CAGR)を示すと予測しています。同市場は、持続可能性の維持に対する意識の高まり、費用対効果の高いソリューションへの注目の高まり、デジタルツール、3D(3次元)モデリングソフトウェア、クラウドコンピューティング、データ解析の統合などの技術的進歩により、着実な成長を遂げています。

ビルディングインフォメーションモデリング(BIM)市場の動向:

技術の進歩

デジタルツール、3次元(3D)モデリングソフトウェア、クラウドコンピューティング、データ解析の統合など、BIMの技術的進歩は、インフラの建設と設計の強化を支援します。また、使い勝手の良さからBIMソフトウェアの採用が増加していることも、市場の成長を支えています。これとは別に、クラウドベースのBIMソリューションは、物理的な場所に関係なく、プロジェクト利害関係者間のリアルタイムのコラボレーションを可能にし、シームレスなコミュニケーションとデータ共有を促進します。さらに、BIMシステム内の人工知能(AI)と機械学習(ML)の統合は、予測分析を提供し、プロジェクト実行中の意思決定と問題解決の強化を可能にします。これに伴い、拡張現実(AR)および仮想現実(VR)技術により、利害関係者は没入型環境でBIMモデルを視覚化できます。これは、デザインレビュー、クライアントへのプレゼンテーション、現場での工事監督に役立ちます。さらに、BIM用のモバイル・アプリケーションにより、現場作業員は現場でプロジェクト情報にアクセスできるようになり、調整を強化し、ミスを減らし、プロジェクト全体の品質を向上させることができます。

費用対効果の高いソリューションへの注目の高まり

費用対効果の高いソリューションへの注目が高まっていることを背景に、BIMに対する需要が高まっていることが、市場の成長を後押ししています。これに伴い、BIMは、コラボレーションの強化、エラーの削減、リソース配分の最適化により、実質的な財務上の利益に貢献します。さらに、BIMによって建設専門家は、問題が拡大する前に問題を特定して解決し、調整と衝突検出の改善を通じてコストのかかる手戻りを最小限に抑えることができます。これとは別に、リソースの効率的な利用を促進し、資材の無駄や人件費の削減につながります。さらに、BIMは遅延を最小限に抑え、プロジェクトが予定通り予算内で完了することを保証するため、BIMの採用が増加しており、市場の成長に寄与しています。さらに、BIMは建築家、エンジニア、請負業者、その他の利害関係者間の共同設計と意思決定を容易にします。これにより、コストのかかる修正や変更指示の必要性が減り、時間とコストの両方が節約されます。さらに、BIMとプレハブおよびモジュール工法との統合により、建築部材のオフサイト製作が可能になります。その結果、建設の迅速化、人件費の削減、現場の混乱が最小限に抑えられます。

持続可能性の維持に対する意識の高まり

持続可能性の維持に対する個人の意識の高まりが、市場の成長を後押ししています。これに伴い、BIMは環境に優しい建物の設計と建設に不可欠なツールを提供しています。これにより、建築家やエンジニアは、エネルギー効率の高いシステムをモデル化し、材料使用量を最適化し、環境への影響を評価することができます。さらにBIMは、持続可能な設計機能の性能をシミュレーションすることで、グリーンビルディング認証の取得や厳しい環境規制の遵守にも役立ちます。このほか、二酸化炭素排出量を削減し、環境に配慮した建設手法を推進するためにBIMの採用が増加していることも、市場の成長を後押ししています。さらに、BIMツールは建物のエネルギー性能をシミュレーションできるため、暖房・換気・空調(HVAC)システムや断熱材など、エネルギー効率に影響を与える要素を最適化できます。その結果、エネルギー消費量が少なく、運用コストが削減され、二酸化炭素排出量も少ない建物が実現します。これとは別に、BIMでは、持続可能性の証明に基づいてさまざまな建設資材を評価することができます。

目次

第1章 序文

第2章 調査範囲と調査手法

  • 調査の目的
  • ステークホルダー
  • データソース
    • 一次情報
    • 二次情報
  • 市場推定
    • ボトムアップアプローチ
    • トップダウンアプローチ
  • 調査手法

第3章 エグゼクティブサマリー

第4章 イントロダクション

第5章 世界のビルディングインフォメーションモデリング(BIM)市場

  • 市場概要
  • 市場実績
  • COVID-19の影響
  • 市場予測

第6章 市場内訳:提供タイプ別

  • ソフトウェア
  • サービス

第7章 市場内訳:展開モード別

  • オンプレミス
  • クラウドベース

第8章 市場内訳:用途別

  • プレコンストラクション
  • 建設
  • オペレーション

第9章 市場内訳:最終用途分野別

  • 商業
  • 住宅
  • 産業

第10章 市場内訳:エンドユーザー別

  • 建築家とエンジニア
  • 請負業者と開発者
  • その他

第11章 市場内訳:地域別

  • 北米
    • 米国
    • カナダ
  • アジア太平洋地域
    • 中国
    • 日本
    • インド
    • 韓国
    • オーストラリア
    • インドネシア
    • その他
  • 欧州
    • ドイツ
    • フランス
    • 英国
    • イタリア
    • スペイン
    • ロシア
    • その他
  • ラテンアメリカ
    • ブラジル
    • メキシコ
    • その他
  • 中東・アフリカ

第12章 SWOT分析

第13章 バリューチェーン分析

第14章 ポーターのファイブフォース分析

第15章 価格分析

第16章 競合情勢

  • 市場構造
  • 主要企業
  • 主要企業のプロファイル
    • ABB Ltd.
    • AECOM
    • Autodesk Inc.
    • Aveva Group Plc(Schneider Electric)
    • Beck Technology Ltd.
    • Bentley Systems Incorporated
    • Dassault Systemes SE
    • Hexagon AB
    • Nemetschek SE
    • Trimble Inc.
図表

List of Figures

  • Figure 1: Global: Building Information Modeling Market: Major Drivers and Challenges
  • Figure 2: Global: Building Information Modeling Market: Sales Value (in Billion USD), 2019-2024
  • Figure 3: Global: Building Information Modeling Market: Breakup by Offering Type (in %), 2024
  • Figure 4: Global: Building Information Modeling Market: Breakup by Deployment Mode (in %), 2024
  • Figure 5: Global: Building Information Modeling Market: Breakup by Application (in %), 2024
  • Figure 6: Global: Building Information Modeling Market: Breakup by End Use Sector (in %), 2024
  • Figure 7: Global: Building Information Modeling Market: Breakup by End User (in %), 2024
  • Figure 8: Global: Building Information Modeling Market: Breakup by Region (in %), 2024
  • Figure 9: Global: Building Information Modeling Market Forecast: Sales Value (in Billion USD), 2025-2033
  • Figure 10: Global: Building Information Modeling (Software) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 11: Global: Building Information Modeling (Software) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 12: Global: Building Information Modeling (Services) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 13: Global: Building Information Modeling (Services) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 14: Global: Building Information Modeling (On-premises) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 15: Global: Building Information Modeling (On-premises) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 16: Global: Building Information Modeling (Cloud-based) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 17: Global: Building Information Modeling (Cloud-based) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 18: Global: Building Information Modeling (Preconstruction) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 19: Global: Building Information Modeling (Preconstruction) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 20: Global: Building Information Modeling (Construction) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 21: Global: Building Information Modeling (Construction) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 22: Global: Building Information Modeling (Operations) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 23: Global: Building Information Modeling (Operations) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 24: Global: Building Information Modeling (Commercial) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 25: Global: Building Information Modeling (Commercial) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 26: Global: Building Information Modeling (Residential) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 27: Global: Building Information Modeling (Residential) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 28: Global: Building Information Modeling (Industrial) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 29: Global: Building Information Modeling (Industrial) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 30: Global: Building Information Modeling (Architects and Engineers) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 31: Global: Building Information Modeling (Architects and Engineers) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 32: Global: Building Information Modeling (Contractors and Developers) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 33: Global: Building Information Modeling (Contractors and Developers) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 34: Global: Building Information Modeling (Other End Users) Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 35: Global: Building Information Modeling (Other End Users) Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 36: North America: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 37: North America: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 38: United States: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 39: United States: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 40: Canada: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 41: Canada: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 42: Asia Pacific: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 43: Asia Pacific: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 44: China: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 45: China: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 46: Japan: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 47: Japan: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 48: India: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 49: India: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 50: South Korea: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 51: South Korea: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 52: Australia: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 53: Australia: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 54: Indonesia: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 55: Indonesia: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 56: Others: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 57: Others: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 58: Europe: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 59: Europe: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 60: Germany: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 61: Germany: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 62: France: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 63: France: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 64: United Kingdom: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 65: United Kingdom: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 66: Italy: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 67: Italy: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 68: Spain: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 69: Spain: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 70: Russia: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 71: Russia: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 72: Others: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 73: Others: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 74: Latin America: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 75: Latin America: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 76: Brazil: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 77: Brazil: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 78: Mexico: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 79: Mexico: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 80: Others: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 81: Others: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 82: Middle East and Africa: Building Information Modeling Market: Sales Value (in Million USD), 2019 & 2024
  • Figure 83: Middle East and Africa: Building Information Modeling Market Forecast: Sales Value (in Million USD), 2025-2033
  • Figure 84: Global: Building Information Modeling Industry: SWOT Analysis
  • Figure 85: Global: Building Information Modeling Industry: Value Chain Analysis
  • Figure 86: Global: Building Information Modeling Industry: Porter's Five Forces Analysis

List of Tables

  • Table 1: Global: Building Information Modeling Market: Key Industry Highlights, 2024 and 2033
  • Table 2: Global: Building Information Modeling Market Forecast: Breakup by Offering Type (in Million USD), 2025-2033
  • Table 3: Global: Building Information Modeling Market Forecast: Breakup by Deployment Mode (in Million USD), 2025-2033
  • Table 4: Global: Building Information Modeling Market Forecast: Breakup by Application (in Million USD), 2025-2033
  • Table 5: Global: Building Information Modeling Market Forecast: Breakup by End Use Sector (in Million USD), 2025-2033
  • Table 6: Global: Building Information Modeling Market Forecast: Breakup by End User (in Million USD), 2025-2033
  • Table 7: Global: Building Information Modeling Market Forecast: Breakup by Region (in Million USD), 2025-2033
  • Table 8: Global: Building Information Modeling Market Structure
  • Table 9: Global: Building Information Modeling Market: Key Players
目次
Product Code: SR112025A2377

The global building information modeling (BIM) market size reached USD 9.8 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 29.9 Billion by 2033, exhibiting a growth rate (CAGR) of 13.2% during 2025-2033. The market is experiencing steady growth driven by the growing awareness about maintaining sustainability, rising focus on cost-effective solutions, and technological advancements, such as the integration of digital tools, three-dimensional (3D) modeling software, cloud computing, and data analytics.

Building Information Modeling (BIM) Market Trends:

Technological advancements

Technological advancements in BIM, such as the integration of digital tools, three-dimensional (3D) modeling software, cloud computing, and data analytics, assist in enhancing the construction and design of infrastructure. In addition, the rising adoption of BIM software due to its user-friendliness is supporting the market growth. Apart from this, cloud-based BIM solutions allow for real-time collaboration among project stakeholders, regardless of their physical location, fostering seamless communication and data sharing. Moreover, the integration of artificial intelligence (AI) and machine learning (ML) within BIM systems offers predictive analytics, enabling enhanced decision-making and problem-solving during project execution. In line with this, augmented reality (AR) and virtual reality (VR) technologies allow stakeholders to visualize BIM models in immersive environments. This aids in design reviews, client presentations, and on-site construction supervision. Furthermore, mobile applications for BIM enable field workers to access project information on-site, enhancing coordination, reducing errors, and improving the overall quality of project.

Rising focus on cost-effective solutions

The escalating demand for BIM on account of the rising focus on cost-effective solutions is propelling the growth of the market. In line with this, BIM contributes to substantial financial benefits by enhancing collaboration, reducing errors, and optimizing resource allocation. Moreover, it allows construction professionals to identify and resolve issues before they escalate and minimize costly rework through improved coordination and clash detection. Apart from this, it facilitates efficient resource utilization, leading to reduced material wastage and labor costs. In addition, the increasing adoption of BIM, as it minimizes delays and ensures that projects are completed on schedule and within budget, is contributing to the market growth. Furthermore, BIM facilitates collaborative design and decision-making among architects, engineers, contractors, and other stakeholders. This reduces the need for costly revisions and change orders, saving both time and money. Additionally, BIM integration with prefabrication and modular construction methods enables the off-site fabrication of building components. This results in faster construction, reduced labor costs, and minimized on-site disruptions.

Increasing awareness about maintaining sustainability

The rising awareness among individuals about maintaining sustainability is bolstering the growth of the market. In line with this, BIM provides essential tools for designing and constructing eco-friendly buildings. It allows architects and engineers to model energy-efficient systems, optimize material usage, and assess environmental impact. Moreover, BIM helps in achieving green building certifications and adhering to stringent environmental regulations by simulating the performance of sustainable design features. Besides this, the increasing adoption of BIM to reduce the carbon footprint and promote environmentally responsible construction practices is propelling the market growth. In addition, BIM tools can simulate the energy performance of the building, allowing for the optimization of heating, ventilation, and air conditioning (HVAC) systems, insulation, and other factors that impact energy efficiency. This results in buildings that consume less energy, reduce operational costs, and have a smaller carbon footprint. Apart from this, BIM allows for the evaluation of different construction materials based on their sustainability credentials.

Building Information Modeling (BIM) Industry Segmentation:

Breakup by Offering Type:

  • Software
  • Services

Software accounts for the majority of the market share

Software comprises digital tools and platforms that enable users to create, manage, and manipulate three-dimensional (3D) models and associated project data. These software solutions are central to the BIM workflow and play a crucial role in facilitating collaboration and project management. Design and modeling software tools are used for creating 3D models and designs of buildings and infrastructure. Project management and collaboration software facilitate project planning, communication, and data sharing among stakeholders. Analysis and simulation software tools provide capabilities for simulating various aspects of construction, such as structural analysis, energy efficiency, and clash detection.

Services encompass a range of professional offerings that support the implementation and utilization of BIM in construction projects. These services are provided by BIM consulting firms and experts. BIM consulting and implementation services assist organizations in adopting BIM methodologies, workflows, and best practices. Moreover, BIM training and education are designed to upskill professionals in using software effectively.

Breakup by Deployment Mode:

  • On-premises
  • Cloud-based

On-premises holds the largest market share

On-premises BIM solutions involve software and infrastructure that are installed and operated locally on the servers and computers of organizations. Organizations have full control over their data and BIM software, which benefits in maintaining data security. On-premises BIM software can be customized to meet specific project or organizational needs. They require a significant upfront investment in hardware, software licenses, and IT infrastructure.

Cloud-based BIM solutions, also known as software as a service (SaaS) offering, are hosted and delivered via the cloud, accessible through web browsers or mobile applications. They can be accessed from anywhere with an internet connection, promoting remote collaboration and flexibility. Cloud solutions offer scalability, allowing organizations to easily adjust resources and licensing based on project requirements. They have a subscription-based or pay-as-you-go pricing model, reducing the upfront capital expenditure.

Breakup by Application:

  • Preconstruction
  • Construction
  • Operations

Preconstruction represents the leading market segment

Preconstruction applications of BIM involve its use in the initial phases of a building or infrastructure project, ranging from conceptual design through detailed planning and preparation before construction begins. BIM aids in creating 3D models for conceptual design, helping stakeholders visualize the appearance and layout of projects. It facilitates collaboration among architects, engineers, and designers, ensuring that design elements are coordinated and clash-free. BIM software can generate accurate cost estimates, helping project stakeholders develop budgets and financial plans.

Construction involves its use during the actual building phase, encompassing activities from project initiation to completion. BIM software helps construction managers with scheduling, resource allocation, and progress tracking. It also identifies clashes and conflicts in design and construction and reduces rework and delays. In addition, it assists in accurate material quantity calculations and procurement.

Operations focus on using BIM models and data for the maintenance, management, and operation of built assets after construction. BIM supports facilities managers in maintaining and optimizing building performance by providing detailed information about systems, equipment, and spaces. BIM data is used to track asset performance, plan maintenance, and make informed decisions throughout the lifecycle of assets. It aids in energy-efficient operations by monitoring and optimizing building systems for sustainability.

Breakup by End Use Sector:

  • Commercial
  • Residential
  • Industrial

Commercial exhibits a clear dominance in the market

The commercial sector includes a wide range of projects, such as office buildings, retail spaces, hotels, and entertainment venues. BIM is used for designing and planning office spaces efficiently, ensuring optimal space utilization and functionality. It aids in designing retail store layouts for improved product placement. It also supports the design and construction of hotels and hospitality facilities, enhancing guest experiences.

The residential sector encompasses housing projects ranging from single-family homes to multi-unit residential complexes. BIM assists architects in designing residential structures, optimizing layouts, and ensuring compliance with building codes. It streamlines construction planning and scheduling for residential projects while reducing construction timelines. It is also used for customizing home designs to meet individual client preferences.

The industrial sector includes projects, such as factories, warehouses, manufacturing facilities, and industrial infrastructure. BIM supports the efficient layout and design of manufacturing facilities, optimizing workflow and equipment placement. Moreover, BIM data is used for managing and maintaining industrial plants and facilities, enhancing operational efficiency.

Breakup by End User:

  • Architects and Engineers
  • Contractors and Developers
  • Others

Architects and engineers represent the biggest market share

Architects and engineers are utilizing BIM for creating detailed 3D models of building designs, enabling improved visualization and exploration of design alternatives. Engineers utilize BIM for structural analysis and simulation, ensuring the structural integrity of the building. BIM facilitates collaboration between architects and engineers, ensuring that design elements are coordinated and that any conflicts or clashes are identified and resolved early.

Contractors and developers are primarily responsible for the construction and execution phases of a project. They use BIM to create detailed construction schedules and plans and optimize resource allocation and sequencing. It identifies clashes and conflicts in the design and construction phase, reducing costly rework and delays. Contractors and developers leverage BIM for accurate cost estimation, budget management, and procurement.

Breakup by Region:

  • North America
    • United States
    • Canada
  • Asia Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
    • Others
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Russia
    • Others
  • Latin America
    • Brazil
    • Mexico
    • Others
  • Middle East and Africa

North America leads the market, accounting for the largest building information modeling (BIM) market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share due to the presence of advanced information technology (IT) infrastructure. In addition, the growing demand for BIM due to the thriving construction industry in the region is offering a positive market outlook. Furthermore, the increasing focus on green building practices is supporting the market growth.

Asia Pacific stands as another key region in the market, driven by favorable government initiatives. Apart from this, the wide availability of skilled labor, along with the rising number of BIM professionals in the region, is propelling the growth of the market.

Europe maintains a strong presence in the market, with the increasing adoption of BIM tools for designing and constructing eco-friendly structures. In addition, the rising number of infrastructure projects is impelling the market growth.

Latin America exhibits growing potential in the building information modeling (BIM) market on account of the increasing focus on green building initiatives. In line with this, the increasing utilization of BIM for project planning, design, coordination, and execution is supporting the market growth.

The Middle East and Africa region shows a developing market for building information modeling (BIM), primarily driven by favorable government initiatives. Besides this, the rising adoption of BIM technologies for accurate infrastructure development is impelling the market growth.

Leading Key Players in the Building Information Modeling (BIM) Industry:

Key players are investing in research and development (R&D) activities to create and enhance BIM software solutions. They are focusing on improving features, usability, and compatibility with other software platforms. In addition, various companies are offering training programs and resources to educate professionals about the effective use of their BIM tools in the construction and design industries. Besides this, they are working on integrating their software with other construction-related technologies, such as project management software, to offer comprehensive solutions for project stakeholders. Furthermore, companies are offering customization services to tailor BIM software to specific projects and client requirements, ensuring it meets the unique needs of different users.

The market research report has provided a comprehensive analysis of the competitive landscape. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

  • ABB Ltd.
  • AECOM
  • Autodesk Inc.
  • Aveva Group Plc (Schneider Electric)
  • Beck Technology Ltd.
  • Bentley Systems Incorporated
  • Dassault Systemes SE
  • Hexagon AB
  • Nemetschek SE
  • Trimble Inc.

Key Questions Answered in This Report

  • 1.What was the size of the global building information modeling (BIM) market in 2024?
  • 2.What is the expected growth rate of the global building information modeling (BIM) market during 2025-2033?
  • 3.What are the key factors driving the global building information modeling (BIM) market?
  • 4.What has been the impact of COVID-19 on the global building information modeling (BIM) market?
  • 5.What is the breakup of the global building information modeling (BIM) market based on the offering type?
  • 6.What is the breakup of the global building information modeling (BIM) market based on the deployment mode?
  • 7.What is the breakup of the global building information modeling (BIM) market based on application?
  • 8.What is the breakup of the global building information modeling (BIM) market based on the end use sector?
  • 9.What is the breakup of the global building information modeling (BIM) market based on the end user?
  • 10.What are the key regions in the global building information modeling (BIM) market?
  • 11.Who are the key players/companies in the global building information modeling (BIM) market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Building Information Modeling Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Offering Type

  • 6.1 Software
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Services
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast

7 Market Breakup by Deployment Mode

  • 7.1 On-premises
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Cloud-based
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast

8 Market Breakup by Application

  • 8.1 Preconstruction
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Construction
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Operations
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast

9 Market Breakup by End Use Sector

  • 9.1 Commercial
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Residential
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Industrial
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast

10 Market Breakup by End User

  • 10.1 Architects and Engineers
    • 10.1.1 Market Trends
    • 10.1.2 Market Forecast
  • 10.2 Contractors and Developers
    • 10.2.1 Market Trends
    • 10.2.2 Market Forecast
  • 10.3 Others
    • 10.3.1 Market Trends
    • 10.3.2 Market Forecast

11 Market Breakup by Region

  • 11.1 North America
    • 11.1.1 United States
      • 11.1.1.1 Market Trends
      • 11.1.1.2 Market Forecast
    • 11.1.2 Canada
      • 11.1.2.1 Market Trends
      • 11.1.2.2 Market Forecast
  • 11.2 Asia Pacific
    • 11.2.1 China
      • 11.2.1.1 Market Trends
      • 11.2.1.2 Market Forecast
    • 11.2.2 Japan
      • 11.2.2.1 Market Trends
      • 11.2.2.2 Market Forecast
    • 11.2.3 India
      • 11.2.3.1 Market Trends
      • 11.2.3.2 Market Forecast
    • 11.2.4 South Korea
      • 11.2.4.1 Market Trends
      • 11.2.4.2 Market Forecast
    • 11.2.5 Australia
      • 11.2.5.1 Market Trends
      • 11.2.5.2 Market Forecast
    • 11.2.6 Indonesia
      • 11.2.6.1 Market Trends
      • 11.2.6.2 Market Forecast
    • 11.2.7 Others
      • 11.2.7.1 Market Trends
      • 11.2.7.2 Market Forecast
  • 11.3 Europe
    • 11.3.1 Germany
      • 11.3.1.1 Market Trends
      • 11.3.1.2 Market Forecast
    • 11.3.2 France
      • 11.3.2.1 Market Trends
      • 11.3.2.2 Market Forecast
    • 11.3.3 United Kingdom
      • 11.3.3.1 Market Trends
      • 11.3.3.2 Market Forecast
    • 11.3.4 Italy
      • 11.3.4.1 Market Trends
      • 11.3.4.2 Market Forecast
    • 11.3.5 Spain
      • 11.3.5.1 Market Trends
      • 11.3.5.2 Market Forecast
    • 11.3.6 Russia
      • 11.3.6.1 Market Trends
      • 11.3.6.2 Market Forecast
    • 11.3.7 Others
      • 11.3.7.1 Market Trends
      • 11.3.7.2 Market Forecast
  • 11.4 Latin America
    • 11.4.1 Brazil
      • 11.4.1.1 Market Trends
      • 11.4.1.2 Market Forecast
    • 11.4.2 Mexico
      • 11.4.2.1 Market Trends
      • 11.4.2.2 Market Forecast
    • 11.4.3 Others
      • 11.4.3.1 Market Trends
      • 11.4.3.2 Market Forecast
  • 11.5 Middle East and Africa
    • 11.5.1 Market Trends
    • 11.5.2 Market Breakup by Country
    • 11.5.3 Market Forecast

12 SWOT Analysis

  • 12.1 Overview
  • 12.2 Strengths
  • 12.3 Weaknesses
  • 12.4 Opportunities
  • 12.5 Threats

13 Value Chain Analysis

14 Porters Five Forces Analysis

  • 14.1 Overview
  • 14.2 Bargaining Power of Buyers
  • 14.3 Bargaining Power of Suppliers
  • 14.4 Degree of Competition
  • 14.5 Threat of New Entrants
  • 14.6 Threat of Substitutes

15 Price Analysis

16 Competitive Landscape

  • 16.1 Market Structure
  • 16.2 Key Players
  • 16.3 Profiles of Key Players
    • 16.3.1 ABB Ltd.
      • 16.3.1.1 Company Overview
      • 16.3.1.2 Product Portfolio
    • 16.3.2 AECOM
      • 16.3.2.1 Company Overview
      • 16.3.2.2 Product Portfolio
      • 16.3.2.3 Financials
      • 16.3.2.4 SWOT Analysis
    • 16.3.3 Autodesk Inc.
      • 16.3.3.1 Company Overview
      • 16.3.3.2 Product Portfolio
      • 16.3.3.3 Financials
      • 16.3.3.4 SWOT Analysis
    • 16.3.4 Aveva Group Plc (Schneider Electric)
      • 16.3.4.1 Company Overview
      • 16.3.4.2 Product Portfolio
      • 16.3.4.3 Financials
    • 16.3.5 Beck Technology Ltd.
      • 16.3.5.1 Company Overview
      • 16.3.5.2 Product Portfolio
    • 16.3.6 Bentley Systems Incorporated
      • 16.3.6.1 Company Overview
      • 16.3.6.2 Product Portfolio
    • 16.3.7 Dassault Systemes SE
      • 16.3.7.1 Company Overview
      • 16.3.7.2 Product Portfolio
      • 16.3.7.3 Financials
      • 16.3.7.4 SWOT Analysis
    • 16.3.8 Hexagon AB
      • 16.3.8.1 Company Overview
      • 16.3.8.2 Product Portfolio
      • 16.3.8.3 Financials
      • 16.3.8.4 SWOT Analysis
    • 16.3.9 Nemetschek SE
      • 16.3.9.1 Company Overview
      • 16.3.9.2 Product Portfolio
      • 16.3.9.3 Financials
    • 16.3.10 Trimble Inc.
      • 16.3.10.1 Company Overview
      • 16.3.10.2 Product Portfolio
      • 16.3.10.3 Financials
      • 16.3.10.4 SWOT Analysis