表紙:自己教師あり学習の市場規模、シェア、動向分析レポート:エンドユーザー別(ヘルスケア、BFSI)、技術別(NLP、コンピュータビジョン、音声処理)、地域別(北米、欧州、アジア太平洋)、およびセグメント別予測、2022年~2030年
市場調査レポート
商品コード
1122290

自己教師あり学習の市場規模、シェア、動向分析レポート:エンドユーザー別(ヘルスケア、BFSI)、技術別(NLP、コンピュータビジョン、音声処理)、地域別(北米、欧州、アジア太平洋)、およびセグメント別予測、2022年~2030年

Self-supervised Learning Market Size, Share & Trends Analysis Report By End Use (Healthcare, BFSI), By Technology (NLP, Computer Vision, Speech Processing), By Region (North America, Europe, Asia Pacific), And Segment Forecasts, 2022 - 2030

出版日: | 発行: Grand View Research | ページ情報: 英文 100 Pages | 納期: 2~10営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=151.55円
自己教師あり学習の市場規模、シェア、動向分析レポート:エンドユーザー別(ヘルスケア、BFSI)、技術別(NLP、コンピュータビジョン、音声処理)、地域別(北米、欧州、アジア太平洋)、およびセグメント別予測、2022年~2030年
出版日: 2022年08月23日
発行: Grand View Research
ページ情報: 英文 100 Pages
納期: 2~10営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

自己教師あり学習市場の成長と動向

Grand View Research, Inc.の新しいレポートによると、世界の自己教師あり学習の市場規模は、2030年までに896億8000万米ドルに達すると予測されています。同市場は、2022年から2030年にかけてCAGR33.4%で拡大すると予測されています。自己教師あり学習は、自然言語処理(NLP)で顕著に使用される機械学習技術であり、コンピュータビジョンや音声処理アプリケーションに続いて使用されています。自己教師あり学習の応用として、言い換え、色付け、音声認識などがあります。

COVID-19のパンデミックは、市場に好影響を与えました。COVID-19のパンデミックへの対応として、AIと機械学習を採用する企業が増えました。米国のAmazon Web Services, Inc.やGoogle、Microsoftなど、多くの著名な市場プレーヤーがパンデミックの期間中に収益の上昇を示しました。さらに、デジタル化の加速も、自己教師付き学習アプリケーションの採用に貢献しました。例えば、2020年4月、Googleの事業部門であるGoogle Cloudは、COVID-19の大流行と戦うために重要な情報を提供する人工知能(AI)チャットボットを発表しました。

多くの市場プレーヤーは、音声合成や言語翻訳&予測など、さまざまな用途のソリューションを提供しています。さらに、これらのプレイヤーは自己教師あり学習の研究を行っています。例えば、米国のMeta社は、自己教師あり学習の研究を進めており、様々なアルゴリズムやモデルを開発しています。2022年2月、Meta社は同社の自己教師付きコンピュータビジョンモデル「SEER」の新たな進化を発表しました。このモデルはより強力で、同社のコンピュータビジョン製品の構築を可能にすると期待されています。

自己教師あり学習市場レポートハイライト

エンドユーザー別では、BFSIセグメントが2021年に18.3%の最大の収益シェアを占め、予測期間中もその地位を維持すると予測されます。これは、同セグメントにおいてAIやMLなどの技術の採用が進んでいることに起因しています。広告&メディアセグメントは、予測期間中に33.7 %という最高のCAGRで拡大する見込みです。

技術別では、自然言語処理(NLP)分野が2021年に38.6%のシェアで市場を独占し、予測期間中も34.1%の最高のCAGRで成長すると予測されます。これは、NLPアプリケーションの多様性と浸透に起因するものです。

北米は、2021年に31.7%の最大シェアを占め、予測期間中もその地位を維持すると予想されます。これは、同地域に多数の市場プレーヤーが存在することに起因していると考えられます。さらに、専門家の存在や技術インフラの整備が、市場の成長を後押ししています。

2022年3月、オーストラリア政府は、4つのデジタル能力と人工知能(AI)センターを設立するために3050万米ドルを投資すると発表しました。政府はこの投資により、オーストラリアのAI研究の商業化を推進することを目指しています。

2021年7月、データロボット社は、米国を拠点とする機械学習運用(MLOps)ソフトウェアプラットフォームのアルゴリズムミア社の買収を発表しました。このプラットフォームは、IT運用の専門家のニーズに合わせて作られており、組織が安全かつ効率的に大量かつ複雑なモデル制作に対応することを可能にします。DataRobot, Inc.は、今回の買収により、あらゆる機械学習モデルを実行するためのプラットフォームをお客様に提供することを目指します。

目次

第1章 調査手法と範囲

  • 情報調達
    • 購入したデータベース
    • GVRの内部データベース
    • 二次情報と第三者の視点
    • 1次調査
  • 情報分析
    • データ分析モデル
  • 市場形成とデータ可視化
  • データの検証と公開

第2章 エグゼクティブサマリー

  • 市場の見通し
  • セグメントの見通し

第3章 市場変数、動向、範囲

  • 市場系列の見通し
    • 親会社の市場見通し
  • 浸透と成長の見通しのマッピング
  • 業界バリューチェーン分析
  • 規制シナリオ
  • 市場力学
    • 市場促進要因分析
      • 音声認識や顔検出などの技術のアプリケーションの拡大
      • 業界全体でワークフローを合理化する需要の増加
    • 市場抑制・課題分析
      • 熟練した労働力の不足
    • 市場機会分析
      • テクノロジー企業におけるR&D活動の増加
  • PEST分析
  • ポーターのファイブフォース分析
  • COVID-19の自己教師あり学習市場への影響

第4章 自己教師あり学習市場:最終用途の推定・動向分析

  • 市場規模の見積もりと予測、およびトレンド分析、2017~2030年(100万米ドル)
  • 最終用途の変動分析と市場シェア、2021年と2030年
  • ヘルスケア
  • BFSI
  • 自動車と輸送
  • ソフトウェア開発(IT)
  • 広告メディア
  • その他

第5章 自己教師あり学習市場:技術推定・動向分析

  • 市場規模の見積もりと予測、およびトレンド分析、2017~2030年(100万米ドル)
  • 技術変動分析と市場シェア、2021年と2030年
  • 自然言語処理(NLP)
  • コンピュータビジョン
  • 音声処理

第6章 自己教師あり学習市場:地域の推定・動向分析

  • 地域別の自己管理型学習市場、2021年および2030年
  • 地域別変動分析と市場シェア、2021年と2030年
  • 北米
    • 米国
    • カナダ
  • 欧州
    • 英国
    • ドイツ
    • フランス
    • イタリア
    • その他欧州
  • アジア太平洋地域
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • ラテンアメリカ
    • ブラジル
    • メキシコ
    • その他ラテンアメリカ
  • 中東およびアフリカ(MEA)

第7章 競合分析

  • 主要な競合他社の概要、2021年
  • 主要な市場参加者別最近の動向と影響分析
  • ヒートマップ分析
  • マーケットプレーヤーのリスト
  • ベンダー情勢

第8章 競合情勢

  • IBM
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
    • 最近の開発
  • Alphabet Inc.(Google LLC)
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
    • 最近の開発
  • Microsoft
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
    • 最近の開発
  • Amazon Web Services, Inc.
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
    • 最近の開発
  • SAS Institute Inc.
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
    • 最近の開発
  • Dataiku
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
  • The MathWorks, Inc.
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
    • 最近の開発
  • Meta
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
    • 最近の開発
  • Databricks
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
    • 最近の開発
  • DataRobot, Inc.
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
    • 最近の開発
  • Apple Inc.
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
    • 最近の開発
  • Tesla
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
  • Baidu, Inc.
    • 会社概要
    • 財務実績
    • 製品のベンチマーク
    • 最近の開発

第9章 KOL解説

  • KoL解説分析、2021年
図表

List of Tables

  • Table 1 Self-supervised learning market size estimates & forecasts, 2017 - 2030 (USD Million)
  • Table 2 Self-supervised learning market, by region, 2017 - 2030 (USD Million)
  • Table 3 Self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 4 Self-supervised learning market, by technology, 2017 - 2030 (USD Million)
  • Table 5 Key market driver impact
  • Table 6 Key market restraint/challenges impact
  • Table 7 Self-supervised learning market for healthcare, by region, 2017 - 2030 (USD Million)
  • Table 8 Self-supervised learning market for BFSI, by region, 2017 - 2030 (USD Million)
  • Table 9 Self-supervised learning market for automotive & transportation, by region, 2017 - 2030 (USD Million)
  • Table 10 Self-supervised learning market for software development (IT), by region, 2017 - 2030 (USD Million)
  • Table 11 Self-supervised learning market for automotive & transportation, by region, 2017 - 2030 (USD Million)
  • Table 12 Self-supervised learning market for advertising & media, by region, 2017 - 2030 (USD Million)
  • Table 13 Self-supervised learning market for others, by region, 2017 - 2030 (USD Million)
  • Table 14 Self-supervised learning market for Natural Language Processing (NLP), by region, 2017 - 2030 (USD Million)
  • Table 15 Self-supervised learning market for computer vision, by region, 2017 - 2030 (USD Million)
  • Table 16 Self-supervised learning market for speech recognition, by region, 2017 - 2030 (USD Million)
  • Table 17 North America self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 18 North America self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 19 U.S. self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 20 U.S. self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 21 Canada self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 22 Canada self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 23 Europe self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 24 Europe self-supervised learning market, by technology, 2017 - 2030 (USD Million)
  • Table 25 U.K. self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 26 U.K. self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 27 Germany self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 28 Germany self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 29 France self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 30 France self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 31 Italy self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 32 Italy self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 33 Rest of Europe self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 34 Rest of Europe self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 35 Asia Pacific self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 36 Asia Pacific self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 37 China self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 38 China self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 39 India self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 40 India self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 41 Japan self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 42 Japan self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 43 Rest of Asia Pacific self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 44 Rest of Asia Pacific self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 45 Latin America self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 46 Latin America self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 47 Brazil self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 48 Brazil self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 49 Mexico self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 50 Mexico self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 51 Rest of Latin America self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 52 Rest of Latin America self-supervised learning market, by technology 2017 - 2030 (USD Million)
  • Table 53 Middle East & Africa self-supervised learning market, by end-use, 2017 - 2030 (USD Million)
  • Table 54 Middle East & Africa self-supervised learning market, by technology 2017 - 2030 (USD Million)

List of Figures

  • Fig. 1 Information procurement
  • Fig. 2 Primary research pattern
  • Fig. 3 Primary research process
  • Fig. 4 Market formulation and data visualization
  • Fig. 5 Industry snapshot
  • Fig. 6 Penetration & growth prospects mapping
  • Fig. 7 Market dynamics
  • Fig. 8 PEST analysis
  • Fig. 9 Self-supervised learning market, by end-use, key takeaways, 2017-2030 revenue (USD Million)
  • Fig. 10 End-use movement analysis & market share, 2021 & 2030 revenue (USD Million)
  • Fig. 11 Self-supervised learning market, by technology, key takeaways, 2017-2030 revenue (USD Million)
  • Fig. 12 Technology movement analysis & market share, 2021 & 2030 revenue (USD Million)
  • Fig. 13 Self-supervised learning market by region, 2021 & 2030 revenue (USD Million)
  • Fig. 14 Regional movement analysis & market share, 2021 & 2030 revenue (USD Million)
  • Fig. 15 North America self-supervised learning market- key takeaways, 2021 & 2030 revenue (USD Million)
  • Fig. 16 North America self-supervised learning market, 2017 to 2030 (USD Million)
  • Fig. 17 Europe self-supervised learning market- key takeaways, 2021 & 2030 revenue (USD Million)
  • Fig. 18 Europe self-supervised learning market, 2017 to 2030 (USD Million)
  • Fig. 19 Asia Pacific self-supervised learning market- key takeaways, 2021 & 2030 revenue (USD Million)
  • Fig. 20 Asia Pacific self-supervised learning market, 2017 to 2030 (USD Million)
  • Fig. 21 Latin America self-supervised learning market- key takeaways, 2021 & 2030 revenue (USD Million)
  • Fig. 22 Latin America self-supervised learning market, 2017 to 2030 (USD Million)
  • Fig. 23 Middle East & Africa (MEA) self-supervised learning market- key takeaways, 2021 & 2030 revenue (USD Million)
  • Fig. 24 Middle East & Africa (MEA) self-supervised learning market, 2017 to 2030 (USD Million)
  • Fig. 25 Company market position analysis
  • Fig. 26 KoL Commentary
目次
Product Code: GVR-4-68039-971-4

Self-supervised Learning Market Growth & Trends:

The global self-supervised learning market size is anticipated to reach USD 89.68 billion by 2030, according to a new report by Grand View Research, Inc. The market is expected to expand at a CAGR of 33.4% from 2022 to 2030. Self-supervised learning is a machine learning technique used prominently in Natural Language Processing (NLP), followed by computer vision and speech processing applications. Applications of self-supervised learning include paraphrasing, colorization, and speech recognition.

The COVID-19 pandemic had a positive impact on the market. More businesses adopted AI and Machine Learning as a response to the COVID-19 pandemic. Many prominent market players such as U.S.-based Amazon Web Services, Inc., Google, and Microsoft witnessed a rise in revenue during the pandemic. Moreover, accelerated digitalization also contributed to the adoption of self-supervised learning applications. For instance, in April 2020, Google Cloud, a business segment of Google, launched an Artificial Intelligence (AI) chatbot that provides critical information to fight the COVID-19 pandemic.

Many market players offer solutions for various applications such as text-to-speech and language translation & prediction. Moreover, these players are researching in self-supervised learning. For instance, U.S.-based Meta has been advancing in self-supervised learning research and has developed various algorithms and models. In February 2022, Meta announced new advances in the company's self-supervised computer vision model SEER. The model is more powerful and is expected to enable the company in building computer vision products.

Self-supervised LearningMarket Report Highlights:

  • In terms of end-use, the BFSI segment accounted for the largest revenue share of 18.3% in 2021 and is expected to retain its position over the forecast period. This can be attributed to the increasing adoption of technologies such as AI and ML in the segment. The advertising & media segment is likely to expand at the highest CAGR of 33.7 % during the forecast period.
  • Based on technology, the Natural Language Processing (NLP) segment dominated the market with a share of 38.6% in 2021 and is also expected to grow at the highest CAGR of 34.1% during the forecast period. This can be attributed to the variety and penetration of NLP applications.
  • North America held the largest share of 31.7% in 2021 and is expected to retain its position over the forecast period. This can be attributed to the presence of a large number of market players in the region. Moreover, the presence of specialists and developed technology infrastructure are aiding the growth of the market.
  • In March 2022, the Australian government announced an investment of USD 30.5 million for establishing four digital capability and Artificial Intelligence (AI) centers. The government aims to drive the commercialization of Australia's AI research with this investment.
  • In July 2021, DataRobot, Inc. announced the acquisition of Algorithmia Inc., a U.S.-based Machine Learning Operations (MLOps) software platform. The platform is made for IT operations specialists' needs, enabling organizations to address high-volume and complex model production securely and efficiently. DataRobot, Inc. aims to provide customers with a platform for running any machine learning model with this acquisition.

Table of Contents

Chapter 1 Methodology and Scope

  • 1.1 Information Procurement
    • 1.1.1 Purchased database
    • 1.1.2 GVR's internal database
    • 1.1.3 Secondary sources & third-party perspective
    • 1.1.4 Primary research
  • 1.2 Information Analysis
    • 1.2.1 Data analysis models
  • 1.3 Market Formulation and Data Visualization
  • 1.4 Data Validation and Publishing

Chapter 2 Executive Summary

  • 2.1 Market Outlook
  • 2.2 Segment Outlook

Chapter 3 Market Variables, Trends & Scope

  • 3.1 Market Lineage Outlook
    • 3.1.1 Parent market outlook
  • 3.2 Penetration & Growth Prospect Mapping
  • 3.3 Industry Value Chain Analysis
  • 3.4 Regulatory Scenario
  • 3.5 Market Dynamics
    • 3.5.1 Market driver analysis
      • 3.5.1.1 Growing applications of technologies such as voice recognition and face detection
      • 3.5.1.2 Increasing demand to streamline workflow across industries
    • 3.5.2 Market restraint/challenges analysis
      • 3.5.2.1 Lack of skilled workforce
    • 3.5.3 Market opportunity analysis
      • 3.5.3.1 Increasing R&D activities in technology companies
  • 3.6 PEST Analysis
  • 3.7 Porter's Five Forces Analysis
  • 3.8 COVID-19 Impact on Self-supervised Learning Market

Chapter 4 Self-supervised Learning Market: End-use Estimates & Trend Analysis

  • 4.1 Market Size Estimates & Forecasts and Trend Analysis, 2017 - 2030 (USD Million)
  • 4.2 End-use Movement Analysis & Market Share, 2021 & 2030
  • 4.3 Healthcare
    • 4.3.1 Market size estimates and forecasts, 2017 - 2030 (USD Million)
  • 4.4 BFSI
    • 4.4.1 Market size estimates and forecasts, 2017 - 2030 (USD Million)
  • 4.5 Automotive & Transportation
    • 4.5.1 Market size estimates and forecasts, 2017 - 2030 (USD Million)
  • 4.6 Software Development (IT)
    • 4.6.1 Market size estimates and forecasts, 2017 - 2030 (USD Million)
  • 4.7 Advertising & Media
    • 4.7.1 Market size estimates and forecasts, 2017 - 2030 (USD Million)
  • 4.8 Others
    • 4.8.1 Market size estimates and forecasts, 2017 - 2030 (USD Million)

Chapter 5 Self-supervised Learning Market: Technology Estimates & Trend Analysis

  • 5.1 Market Size Estimates & Forecasts and Trend Analysis, 2017 - 2030 (USD Million)
  • 5.2 Technology Movement Analysis & Market Share, 2021 & 2030
  • 5.3 Natural Language Processing (NLP)
    • 5.3.1 Market size estimates and forecasts, 2017 - 2030 (USD Million)
  • 5.4 Computer Vision
    • 5.4.1 Market size estimates and forecasts, 2017 - 2030 (USD Million)
  • 5.5 Speech Processing
    • 5.5.1 Market size estimates and forecasts, 2017 - 2030 (USD Million)

Chapter 6 Self-supervised Learning Market: Regional Estimates & Trend Analysis

  • 6.1 Self-supervised Learning Market by Region, 2021 & 2030
  • 6.2 Regional Movement Analysis & Market Share, 2021 & 2030
  • 6.3 North America
    • 6.3.1 North America self-supervised learning market, 2017 to 2030 (USD Million)
    • 6.3.2 North America self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
    • 6.3.3 North America self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.3.4 U.S.
      • 6.3.4.1 U.S. self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.3.4.2 U.S. self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.3.5 Canada
      • 6.3.5.1 Canada self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.3.5.2 Canada self-supervised learning market, by technology, 2017 to 2030 (USD Million)
  • 6.4 Europe
    • 6.4.1 Europe self-supervised learning market, 2017 to 2030 (USD Million)
    • 6.4.2 Europe self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
    • 6.4.3 Europe self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.4.4 U.K.
      • 6.4.4.1 U.K. self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.4.4.2 U.K. self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.4.5 Germany
      • 6.4.5.1 Germany self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.4.5.2 Germany self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.4.6 France
      • 6.4.6.1 France self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.4.6.2 France self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.4.7 Italy
      • 6.4.7.1 Italy self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.4.7.2 Italy self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.4.8 Rest of Europe
      • 6.4.8.1 Rest of Europe self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.4.8.2 Rest of Europe self-supervised learning market, by technology, 2017 to 2030 (USD Million)
  • 6.5 Asia Pacific
    • 6.5.1 Asia Pacific self-supervised learning market, 2017 to 2030 (USD Million)
    • 6.5.2 Asia Pacific self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
    • 6.5.3 Asia Pacific self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.5.4 China
      • 6.5.4.1 China self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.5.4.2 China self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.5.5 India
      • 6.5.5.1 India self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.5.5.2 India self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.5.6 Japan
      • 6.5.6.1 Japan self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.5.6.2 Japan self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.5.7 Australia
      • 6.5.7.1 Australia self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.5.7.2 Australia self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.5.8 Rest of Asia Pacific
      • 6.5.8.1 Rest of Asia Pacific self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.5.8.2 Rest of Asia Pacific self-supervised learning market, by technology, 2017 to 2030 (USD Million)
  • 6.6 Latin America
    • 6.6.1 Latin America self-supervised learning market, 2017 to 2030 (USD Million)
    • 6.6.2 Latin America self-supervised learning market, by end-use, 2017 TO 2030 (USD Million)
    • 6.6.3 Latin America self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.6.4 Brazil
      • 6.6.4.1 Brazil self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.6.4.2 Brazil self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.6.5 Mexico
      • 6.6.5.1 Mexico self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.6.5.2 Mexico self-supervised learning market, by technology, 2017 to 2030 (USD Million)
    • 6.6.6 Rest of Latin America
      • 6.6.6.1 Rest of Latin America self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
      • 6.6.6.2 Rest of Latin America self-supervised learning market, by technology, 2017 to 2030 (USD Million)
  • 6.7 Middle East & Africa (MEA)
    • 6.7.1 Middle East & Africa (MEA) self-supervised learning market, 2017 to 2030 (USD Million)
    • 6.7.2 Middle East & Africa (MEA) self-supervised learning market, by end-use, 2017 to 2030 (USD Million)
    • 6.7.3 Middle East & Africa (MEA) self-supervised learning market, by technology, 2017 to 2030 (USD Million)

Chapter 7 Competitive Analysis

  • 7.1 Key Competitor Overview, 2021
  • 7.2 Recent Developments & Impact Analysis, by Key Market Participants
  • 7.3 Heat Map Analysis
  • 7.4 List of Market Players
  • 7.5 Vendor Landscape

Chapter 8 Competitive Landscape

  • 8.1 IBM
    • 8.1.1 Company overview
    • 8.1.2 Financial performance
    • 8.1.3 Product benchmarking
    • 8.1.4 Recent developments
  • 8.2 Alphabet Inc. (Google LLC)
    • 8.2.1 Company overview
    • 8.2.2 Financial performance
    • 8.2.3 Product benchmarking
    • 8.2.4 Recent developments
  • 8.3 Microsoft
    • 8.3.1 Company overview
    • 8.3.2 Financial performance
    • 8.3.3 Product benchmarking
    • 8.3.4 Recent developments
  • 8.4 Amazon Web Services, Inc.
    • 8.4.1 Company overview
    • 8.4.2 Financial performance
    • 8.4.3 Product benchmarking
    • 8.4.4 Recent developments
  • 8.5 SAS Institute Inc.
    • 8.5.1 Company overview
    • 8.5.2 Financial performance
    • 8.5.3 Product benchmarking
    • 8.5.4 Recent developments
  • 8.6 Dataiku
    • 8.6.1 Company overview
    • 8.6.2 Financial performance
    • 8.6.3 Product benchmarking
  • 8.7 The MathWorks, Inc.
    • 8.7.1 Company overview
    • 8.7.2 Financial performance
    • 8.7.3 Product benchmarking
    • 8.7.4 Recent developments
  • 8.8 Meta
    • 8.8.1 Company overview
    • 8.8.2 Financial performance
    • 8.8.3 Product benchmarking
    • 8.8.4 Recent developments
  • 8.9 Databricks
    • 8.9.1 Company overview
    • 8.9.2 Financial performance
    • 8.9.3 Product benchmarking
    • 8.9.4 Recent developments
  • 8.10 DataRobot, Inc.
    • 8.10.1 Company overview
    • 8.10.2 Financial performance
    • 8.10.3 Product benchmarking
    • 8.10.4 Recent developments
  • 8.11 Apple Inc.
    • 8.11.1 Company overview
    • 8.11.2 Financial performance
    • 8.11.3 Product benchmarking
    • 8.11.4 Recent developments
  • 8.12 Tesla
    • 8.12.1 Company overview
    • 8.12.2 Financial performance
    • 8.12.3 Product benchmarking
  • 8.13 Baidu, Inc.
    • 8.13.1 Company overview
    • 8.13.2 Financial performance
    • 8.13.3 Product benchmarking
    • 8.13.4 Recent developments

Chapter 9 KOL Commentary

  • 9.1 KoL Commentary Analysis, 2021