表紙:慢性腎臓病(CKD):疫学予測(~2033年)
市場調査レポート
商品コード
1511595

慢性腎臓病(CKD):疫学予測(~2033年)

Chronic Kidney Disease: Epidemiology Forecast to 2033


出版日
発行
GlobalData
ページ情報
英文 43 Pages
納期
即納可能 即納可能とは
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.99円
慢性腎臓病(CKD):疫学予測(~2033年)
出版日: 2024年06月17日
発行: GlobalData
ページ情報: 英文 43 Pages
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

慢性腎臓病(CKD、ICD-10コードN18)は、時間の経過とともに腎機能が徐々に低下することを特徴とする疾患です。その結果、体内に余分な水分や老廃物が蓄積します。初期段階では、CKDはほとんど無症状です。疾患が進行すると症状が悪化し、最終的には腎不全に至ります(Centers for Disease Control and Prevention、2024a)。慢性腎臓病が進行すると、体内の水分、電解質、老廃物が危険なレベルにまで蓄積します(Bentall、2023)。腎機能の重要な指標である糸球体ろ過量(GFR)は、血液中のクレアチニンの量によって決定されます。Kidney Disease Improving Global Outcomes(KDIGO)分類システムは、GFR測定とCKD診断の標準と考えられています(Levinら、2013)。

主要7市場では、CKDの総有病者数は2023年の1億1,029万9,913人から2033年までに1億2,107万2,673人に増加し、年間成長率(AGR)は0.98%になると予測されています。2033年、米国が4,508万7,454人と主要7市場でもっとも多く、イタリアは377万8,783人ともっとも少ないです。CKDと診断された有病者数は、2023年の2,108万7,380人から2033年に2,297万5,558人に増加すると予測され、AGRは0.90%です。2033年、米国が583万4,008人と主要7市場でもっとも多く、イタリアは93万3,881人ともっとも少ないCKD有病者数となります。GlobalDataの疫学者は、CKDの総有病者数と診断された有病者数の増加は、各市場における人口動態と診断率の変化によるものとしています。

当レポートでは、慢性腎臓病(CKD)の主要7市場(米国、フランス、ドイツ、イタリア、スペイン、英国、日本)について調査分析し、年齢、性別、病期ごとの有病者数のデータや10年間の予測を提供しています。

目次

第1章 慢性腎臓病:エグゼクティブサマリー

  • カタリスト
  • 関連レポート
  • 今後のレポート

第2章 疫学

  • 疾患の背景
  • 危険因子と合併症
  • 世界の過去の動向
  • 主要7市場の予測手法
  • CKDの疫学的予測(2023年~2033年)
    • CKDの総有病者数
    • CKDの総有病者数:病期別
    • CKDと診断された有病者数
    • CKDと診断された有病者数:年齢別
    • CKDと診断された有病者数:性別
    • CKDと診断された有病者数:病期別
    • CKDと診断された有病者数(透析依存に基づく)
  • 議論
    • 疫学的予測の考察
    • COVID-19の影響
    • 分析の限界
    • 分析の強み

第3章 付録

目次
Product Code: GDHCER319-24

Chronic kidney disease (CKD), or chronic renal disease (International Classification of Diseases 10th Revision [ICD-10] code = N18), is a condition characterized by a gradual loss of kidney function over time. This leads to the accumulation of excess fluid and waste in the body. In the early stages, CKD is a largely asymptomatic condition. As the disease progresses, symptoms worsen and eventually lead to kidney failure (Centers for Disease Control and Prevention, 2024a). Advanced chronic kidney disease can lead to dangerous levels of fluid, electrolytes, and waste accumulating in the body (Bentall, 2023). The glomerular filtration rate (GFR), a key measure of kidney function, is determined by the amount of creatinine in the blood. The Kidney Disease Improving Global Outcomes (KDIGO) classification system is considered to be the standard for GFR measurement and the diagnosis of CKD (Levin et al., 2013).

In the 7MM, the total prevalent cases of CKD are expected to increase from 110,299,913 cases in 2023 to 121,072,673 cases in 2033, at an annual growth rate (AGR) of 0.98%. In 2033, the US will have the highest number of total prevalent cases of CKD in the 7MM, with 45,087,454 cases, and Italy will have the fewest total prevalent cases of CKD with 3,778,783 cases. The diagnosed prevalent cases of CKD are expected to increase from 21,087,380 cases in 2023 to 22,975,558 cases in 2033, at an AGR of 0.90%. In 2033, the US will have the highest number of diagnosed prevalent cases of CKD in the 7MM, with 5,834,008 cases, and Italy will have the fewest diagnosed prevalent cases of CKD with 933,881 cases. GlobalData epidemiologists attribute the increase in the total and diagnosed prevalent cases of CKD to changes in population dynamics and the diagnosis rate in each market.

Scope

  • This report provides an overview of the risk factors, comorbidities, and global and historical trends for CKD in the seven major pharmaceutical markets (7MM: US, France, Germany, Italy, Spain, UK, and Japan). It includes a 10-year epidemiological forecast for the total prevalent cases and diagnosed prevalent cases of CKD. The total and diagnosed prevalent cases of CKD are further segmented by age (18-29 years, 30-39 years, and by 10-year age groups up to 80 years and older), sex, and stage (stage I, stage II, stage IIIa, stage IIIb, stage IV, and stage V) in these markets.
  • The diagnosed prevalent cases of CKD are further segmented by dialysis-dependent (including both hemodialysis and peritoneal dialysis) and non-dialysis dependent. The model associated with the report also provides the diagnosed prevalent cases of CKD by comorbidities (hypertension, diabetes, and CVD) in the 7MM markets.
  • This epidemiology forecast for CKD is supported by data obtained from peer-reviewed articles and population-based studies. The forecast methodology was kept consistent across the 7MM to allow for a meaningful comparison of the forecast diagnosed prevalent cases of CKD across these markets.

Reasons to Buy

  • The Chronic Kidney Disease (CKD) epidemiology series will allow you to:
  • Develop business strategies by understanding the trends shaping and driving the global MM market.
  • Quantify patient populations in the global CKD market to improve product design, pricing, and launch plans.
  • Organize sales and marketing efforts by identifying the age groups that present the best opportunities for CKD therapeutics in each of the markets covered.

Table of Contents

Table of Contents

1 Chronic Kidney Disease: Executive Summary

  • 1.1 Catalyst
  • 1.2 Related reports
  • 1.3 Upcoming reports

2 Epidemiology

  • 2.1 Disease background
  • 2.2 Risk factors and comorbidities
  • 2.3 Global and historical trends
  • 2.4 7MM forecast methodology.
    • 2.4.1 Sources
    • 2.4.2 Forecast assumptions and methods.
    • 2.4.3 Total prevalent cases of CKD
    • 2.4.4 Total prevalent cases of CKD by stage
    • 2.4.5 Diagnosed prevalent cases of CKD.
    • 2.4.6 Diagnosed prevalent cases of CKD by stage.
    • 2.4.7 Diagnosed prevalent cases of CKD based on dialysis dependence.
  • 2.5 Epidemiological forecast for CKD (2023-33)
    • 2.5.1 Total prevalent cases of CKD
    • 2.5.2 Total prevalent cases of CKD by stage
    • 2.5.3 Diagnosed prevalent cases of CKD.
    • 2.5.4 Age-specific diagnosed prevalent cases of CKD
    • 2.5.5 Sex-specific diagnosed prevalent cases of CKD
    • 2.5.6 Diagnosed prevalent cases of CKD by stage.
    • 2.5.7 Diagnosed prevalent cases of CKD by dialysis dependence.
  • 2.6 Discussion
    • 2.6.1 Epidemiological forecast insight
    • 2.6.2 COVID-19 impact.
    • 2.6.3 Limitations of the analysis
    • 2.6.4 Strengths of the analysis

3 Appendix

  • 3.1 Bibliography
  • 3.2 About the authors
    • 3.2.1 Epidemiologist
    • 3.2.2 Reviewers
    • 3.2.3 Vice President of Disease Intelligence and Epidemiology
    • 3.2.4 Global Head of Pharma Research, Analysis, and Competitive Intelligence
  • Contact Us