表紙:バイオプラスチックの世界市場(2026年~2036年)
市場調査レポート
商品コード
1802911

バイオプラスチックの世界市場(2026年~2036年)

The Global Bioplastics Market 2026-2036


出版日
ページ情報
英文 770 Pages, 281 Tables, 185 Figures, 581 Company Profiles
納期
即納可能 即納可能とは
価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=203.32円
バイオプラスチックの世界市場(2026年~2036年)
出版日: 2025年09月02日
発行: Future Markets, Inc.
ページ情報: 英文 770 Pages, 281 Tables, 185 Figures, 581 Company Profiles
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

バイオプラスチック産業は、環境上の必要性と技術革新の交差点に位置する変革的な投資機会です。従来のプラスチック生産が年間3億9,400万トンを超える中、持続可能な代替品に対する差し迫ったニーズが、長期的に極めて高い成長が見込まれる急拡大市場を生み出しています。2024年のバイオプラスチック市場は堅調なファンダメンタルズを示し、生産は400万トンを超え、2036年までに1,500万トンから1,800万トンに達する可能性があります。この拡大により、バイオプラスチックは現在の1%から、2036年までにポリマー市場全体の約3~4%を占めることになります。保守的な予測では、現在の成長の勢いが続き、生産コストを削減する技術改良が進むと仮定すれば、市場金額は2036年までに1,200億~1,500億米ドルを超える可能性があります。バイオベース生分解性ポリマーが最大のセグメントを占める可能性がある一方、バイオベースの非生分解性の代替品が、従来のプラスチックのドロップイン代替品として安定した成長を維持します。

2036年までに、バイオプラスチック生産の地理的分布は大きく変化すると予測されます。北米は25%のCAGRで積極的に生産能力を拡大していることから、現在のアジアの優位性に挑戦し、2036年までに世界の生産高の25~30%を占める可能性があります。アジアは主導権を維持する可能性が高いですが、そのシェアは約45~50%に低下し、欧州は現在の政策支援にもかかわらず15~18%前後で安定する可能性があります。次の10年は、ポリマーの性能とコスト削減において、技術的なブレークスルーが起きるとみられます。先進のPHAとPLA製剤は、2030年~2032年に、主要な用途において従来のプラスチックと同等の価格を達成すると予測されます。海洋分解性ポリマーと第二世代原料技術は成熟し、現在の持続可能性への懸念に対応すると同時に、新たな市場セグメントを開きます。

用途の多様性は、包装と繊維に集中している現状を超えて拡大します。2036年までに、自動車部品、電子機器筐体、医療用途が、性能特性の向上と規制認可の増加に伴い、市場の20~25%を占めるようになる可能性があります。複数の構造的要因が、2036年にかけて投資上の魅力を維持するとみられます。規制圧力は世界的に強まり、使い捨てプラスチックの禁止は拡大し、カーボンプライシングのメカニズムはバイオベースの代替品に有利に作用します。EUのHorizon 2025による5億ユーロのコミットメントは、アーリーステージの支援であり、その後の資金提供サイクルは大幅に増加する可能性が高いです。企業が持続可能性指標を中核的な事業戦略に組み込むにつれて、企業の採用は加速するとみられます。PepsiCoやUnileverなどの主要ブランドは、サプライチェーンをバイオベース材料へと移行させ、安定した長期的な需要を生み出しています。

この産業の土地利用フットプリントは現在、世界の農地面積の0.013%と最小限のため、食料生産と競合することなく大幅な拡大が可能です。廃棄物からポリマーへの変換と藻類由来の原料における技術の進歩は、コスト競争力を向上させながら、資源の制約をさらに減らすとみられます。投資に関する考慮事項には、従来のプラスチックに比べ20~50%割高な生産コストが含まれますが、この差は年々縮まっています。規模拡大の課題とインフラ要件が当面の障害となる一方、リサイクルシステムの統合はまだ未発達です。しかし、こうした課題は、アーリーステージの投資家にとっては、ソリューションが登場したときに価値を獲得する機会でもあります。

バイオプラスチック部門は、規制の追い風、技術的成熟、基本的な需要のシフトに支えられ、2036年にかけて魅力的なリスク調整後リターンを提供します。ニッチ用途から主流採用への産業の進化は、原料開発から最終製品製造まで、バリューチェーン全体で複数の投資エントリーポイントを生み出しています。この拡大する市場で戦略的なポジショニングをとる投資家は、世界経済における持続可能な材料への不可逆的な移行を活用することができます。

当レポートでは、世界のバイオプラスチック市場について調査分析し、主要カテゴリにおける生産能力、技術開発、原料の利用可能性、地域力学、競争的ポジショニングなどの情報を提供しています。

目次

第1章 エグゼクティブサマリー

  • バイオプラスチックとは
  • 世界のプラスチック市場と供給
  • ポリマーのリサイクル
  • バイオベース生分解性/非生分解性ポリマーの比較
  • 地域の分布
  • 次世代バイオベースポリマー
  • ケミカルリサイクルとの統合
  • 新しい原料供給元
  • 廃棄物のバイオプラスチックへの変換
  • 世界のバイオプラスチック生産能力
  • 世界市場の予測
  • 環境に対する影響と持続可能性
  • バイオコンポジット

第2章 イントロダクション

  • バイオプラスチックのタイプ
  • 原料
  • 管理の連鎖(CoC)
  • 化学トレーサー、マーカー
  • バイオプラスチック規制

第3章 バイオベース原料・中間体市場

  • バイオリファイナリー
  • バイオベースの原料と土地利用
  • 植物由来
  • 廃棄物
  • 微生物・ミネラル源
  • ガス

第4章 バイオベースポリマー

  • バイオベースまたは再生可能なプラスチック
  • 生分解性の堆肥化可能なプラスチック
  • タイプ
  • 主要市場企業
  • 合成バイオベースポリマー
  • 天然バイオベースポリマー
  • 天然繊維
  • リグニン

第5章 バイオプラスチック市場

  • 包装(軟包装・硬包装)
  • 消費財
  • 自動車
  • 建築・建設
  • テキスタイル・繊維
  • 電子
  • 農業・園芸
  • バイオポリマー生産:地域別

第6章 企業プロファイル(企業581社のプロファイル)

第7章 付録

第8章 参考文献

図表

List of Tables

  • Table 1. Global Plastics Production (1950-2024)
  • Table 2. Bio-based and Biodegradable vs. Non-biodegradable Polymers
  • Table 3. Regional Biopolymer Distribution and Projections (2024-2036)
  • Table 4. Regional Production Capacity Projections (1,000 tonnes)
  • Table 5. Next Generation Bio-based Polymers
  • Table 6. Bio-based Polymers and Chemical Recycling (2024-2036)
  • Table 7. Novel Feedstock Sources
  • Table 8. Global bioplastics production capacities 2024
  • Table 9. Bioplastics Global Total Capacity Forecast 2025-2036 by Type (1,000 tonnes)
  • Table 10. Bioplastics Production Capacities by Region 2024-2036 (1,000 tonnes)
  • Table 11. Global Bio-based Polymers Market by Type 2020-2036 (Revenues in $ Millions)
  • Table 12. Life Cycle Assessment of Bio-based Polymers
  • Table 13. Carbon Footprint Comparison with Fossil-based Alternative
  • Table 14. Available Bio-based Monomers
  • Table 15. Bioplastic feedstocks,
  • Table 16. Bioplastics regulations around the world
  • Table 17. Plant-based feedstocks and biochemicals produced
  • Table 18. Waste-based feedstocks and biochemicals produced
  • Table 19. Microbial and mineral-based feedstocks and biochemicals produced
  • Table 20. Common starch sources that can be used as feedstocks for producing biochemicals
  • Table 21. Global production of starch for biobased chemicals and intermediates, 2018-2036 (million metric tonnes)
  • Table 22. Common lysine sources that can be used as feedstocks for producing biochemicals
  • Table 23. Applications of lysine as a feedstock for biochemicals
  • Table 24. Global production of biobased lysine, 2018-2036 (metric tonnes)
  • Table 25. Global glucose production for bio-based chemicals and intermediates 2018-2036 (million metric tonnes)
  • Table 26. HDMA sources that can be used as feedstocks for producing biochemicals
  • Table 27. Applications of bio-based HDMA
  • Table 28. Global production volumes of bio-HMDA, 2018-2036 (metric tonnes)
  • Table 29. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5)
  • Table 30. Applications of DN5
  • Table 31. Global production of bio-based DN5, 2018-2036 (metric tonnes)
  • Table 32. Biobased feedstocks for isosorbide
  • Table 33. Applications of bio-based isosorbide
  • Table 34. Global production of bio-based isosorbide, 2018-2036 (metric tonnes)
  • Table 35. L-lactic acid (L-LA) production, 2018-2036 (metric tonnes)
  • Table 36. Lactide applications
  • Table 37. Global lactide production, 2018-2036 (metric tonnes)
  • Table 38. Biobased feedstock sources for itaconic acid
  • Table 39. Applications of bio-based itaconic acid
  • Table 40. Global production of bio-itaconic acid, 2018-2036 (metric tonnes)
  • Table 41. Biobased feedstock sources for 3-HP
  • Table 42. Applications of 3-HP
  • Table 43. Global production of 3-HP, 2018-2036 (metric tonnes)
  • Table 44. Applications of bio-based acrylic acid
  • Table 45. Global production of bio-based acrylic acid, 2018-2036 (metric tonnes)
  • Table 46. Applications of bio-based 1,3-Propanediol (1,3-PDO)
  • Table 47. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2036 (metric tonnes)
  • Table 48. Biobased feedstock sources for Succinic acid
  • Table 49. Applications of succinic acid
  • Table 50. Global production of bio-based Succinic acid, 2018-2036 (metric tonnes)
  • Table 51. Applications of bio-based 1,4-Butanediol (BDO)
  • Table 52. Global production of 1,4-Butanediol (BDO), 2018-2036 (metric tonnes)
  • Table 53. Applications of bio-based Tetrahydrofuran (THF)
  • Table 54. Global production of bio-based tetrahydrofuran (THF), 2018-2036 (metric tonnes)
  • Table 55. Applications of bio-based adipic acid
  • Table 56. Applications of bio-based caprolactam
  • Table 57. Global production of bio-based caprolactam, 2018-2036 (metric tonnes)
  • Table 58. Biobased feedstock sources for isobutanol
  • Table 59. Applications of bio-based isobutanol
  • Table 60. Global production of bio-based isobutanol, 2018-2036 (metric tonnes)
  • Table 61. Biobased feedstock sources for p-Xylene
  • Table 62. Applications of bio-based p-Xylene
  • Table 63. Global production of bio-based p-xylene, 2018-2036 (metric tonnes)
  • Table 64. Applications of bio-based Terephthalic acid (TPA)
  • Table 65. Global production of biobased terephthalic acid (TPA), 2018-2036 (metric tonnes)
  • Table 66. Biobased feedstock sources for 1,3 Proppanediol
  • Table 67. Applications of bio-based 1,3 Proppanediol
  • Table 68. Global production of biobased 1,3 Proppanediol, 2018-2036 (metric tonnes)
  • Table 69. Biobased feedstock sources for MEG
  • Table 70. Applications of bio-based MEG
  • Table 71. Biobased MEG producers capacities
  • Table 72. Global production of biobased MEG, 2018-2036 (metric tonnes)
  • Table 73. Biobased feedstock sources for ethanol
  • Table 74. Applications of bio-based ethanol
  • Table 75. Global production of biobased ethanol, 2018-2036 (million metric tonnes)
  • Table 76. Applications of bio-based ethylene
  • Table 77. Global production of biobased ethylene, 2018-2036 (million metric tonnes)
  • Table 78. Applications of bio-based propylene
  • Table 79. Global production of biobased propylene, 2018-2036 (metric tonnes)
  • Table 80. Applications of bio-based vinyl chloride
  • Table 81. Global production of biobased vinyl chloride, 2018-2036 (metric tonnes)
  • Table 82. Applications of bio-based Methly methacrylate
  • Table 83. Global production of bio-based Methly methacrylate, 2018-2036 (metric tonnes)
  • Table 84. Applications of bio-based aniline
  • Table 85. Global production of biobased aniline, 2018-2036 (metric tonnes)
  • Table 86. Applications of biobased fructose
  • Table 87. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF)
  • Table 88. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2036 (metric tonnes)
  • Table 89. Applications of 5-(Chloromethyl)furfural (CMF)
  • Table 90. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2036 (metric tonnes)
  • Table 91. Applications of Levulinic acid
  • Table 92. Global production of biobased Levulinic acid, 2018-2036 (metric tonnes)
  • Table 93. Markets and applications for bio-based FDME
  • Table 94.Global production of biobased FDME, 2018-2036 (metric tonnes)
  • Table 95. Applications of FDCA
  • Table 96. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2036 (metric tonnes)
  • Table 97. Markets and applications for bio-based levoglucosenone
  • Table 98. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes
  • Table 99. Biochemicals derived from hemicellulose
  • Table 100. Markets and applications for bio-based hemicellulose
  • Table 101. Global production of hemicellulose, 2018-2036 (metric tonnes)
  • Table 102. Global production of biobased furfural, 2018-2036 (metric tonnes)
  • Table 103. Markets and applications for bio-based furfuryl alcohol
  • Table 104. Global production of biobased furfuryl alcohol, 2018-2036 (metric tonnes)
  • Table 105. Commercial and pre-commercial biorefinery lignin production facilities and processes
  • Table 106. Lignin aromatic compound products
  • Table 107. Prices of benzene, toluene, xylene and their derivatives
  • Table 108. Lignin products in polymeric materials
  • Table 109. Application of lignin in plastics and composites
  • Table 110. Global production of biobased lignin, 2018-2036 (metric tonnes)
  • Table 111. Markets and applications for bio-based glycerol
  • Table 112. Global production of biobased glycerol, 2018-2036 (metric tonnes)
  • Table 113. Markets and applications for Bio-based MPG
  • Table 114. Global production of Bio-MPG, 2018-2036 (metric tonnes)
  • Table 115. Markets and applications: Bio-based ECH
  • Table 116. Global production of biobased ECH, 2018-2036 (metric tonnes)
  • Table 117. Global production of biobased fatty acids, 2018-2036 (million metric tonnes)
  • Table 118. Global production of biobased sebacic acid, 2018-2036 (metric tonnes)
  • Table 119. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2036 (metric tonnes)
  • Table 120. Global production of biobased Dodecanedioic acid (DDDA), 2018-2036 (metric tonnes)
  • Table 121.Global production of biobased Pentamethylene diisocyanate, 2018-2036 (metric tonnes)
  • Table 122. Global production of biobased casein, 2018-2036 (metric tonnes)
  • Table 123. Global production of food waste for biochemicals, 2018-2036 (million metric tonnes)
  • Table 124. Global production of agricultural waste for biochemicals, 2018-2036 (million metric tonnes)
  • Table 125. Global production of forestry waste for biochemicals, 2018-2036 (million metric tonnes)
  • Table 126. Global production of aquaculture/fishing waste for biochemicals, 2018-2036 (million metric tonnes)
  • Table 127. Global production of municipal solid waste for biochemicals, 2018-2036 (million metric tonnes)
  • Table 128. Global production of waste oils for biochemicals, 2018-2036 (million metric tonnes)
  • Table 129.Global microalgae production, 2018-2036 (million metric tonnes)
  • Table 130. Global macroalgae production, 2018-2036 (million metric tonnes)
  • Table 131. Mineral source products and applications
  • Table 132. Global production of biogas, 2018-2036 (billion m3)
  • Table 133. Global production of syngas, 2018-2036 (billion m3)
  • Table 134. Type of biodegradation
  • Table 135. Advantages and disadvantages of biobased plastics compared to conventional plastics
  • Table 136. Types of Bio-based and/or Biodegradable Plastics, applications
  • Table 137. Key market players by Bio-based and/or Biodegradable Plastic types
  • Table 138. Aliphatic polycarbonates (APC) - cyclic and linear production 2019-2036 (1,000 tonnes)
  • Table 139. Aliphatic polycarbonates (APC) - cyclic and linear Applications
  • Table 140. Aliphatic polycarbonates (APC) producers
  • Table 141. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications
  • Table 142. Optimal Lactic Acid Bacteria Strains for Fermentation
  • Table 143. Lactic acid producers and production capacities
  • Table 144. PLA producers and production capacities
  • Table 145. Planned PLA capacity expansions in China
  • Table 146. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications
  • Table 147. Bio-based Polyethylene terephthalate (PET) producers and production capacities
  • Table 148. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications
  • Table 149. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers
  • Table 150. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications
  • Table 151. PEF vs. PET
  • Table 152. FDCA and PEF producers
  • Table 153. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications
  • Table 154. Leading Bio-PA producers production capacities
  • Table 155. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications
  • Table 156. Leading PBAT producers, production capacities and brands
  • Table 157. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications
  • Table 158. Leading PBS producers and production capacities
  • Table 159. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications
  • Table 160. Leading Bio-PE producers
  • Table 161. Bio-PP market analysis- manufacture, advantages, disadvantages and applications
  • Table 162. Leading Bio-PP producers and capacities
  • Table 163. Superabsorbent polymers production 2019-2036 (1,000 tonnes)
  • Table 164. Superabsorbent polymers Applications
  • Table 165. Superabsorbent polymers producers
  • Table 166.Types of PHAs and properties
  • Table 167. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers
  • Table 168. Polyhydroxyalkanoate (PHA) extraction methods
  • Table 169. Polyhydroxyalkanoates (PHA) market analysis
  • Table 170. Commercially available PHAs
  • Table 171. Markets and applications for PHAs
  • Table 172. Applications, advantages and disadvantages of PHAs in packaging
  • Table 173. Polyhydroxyalkanoates (PHA) producers
  • Table 174. Cellulose acetate (CA) production 2019-2036 (1,000 tonnes)
  • Table 175. Cellulose acetate (CA) applications
  • Table 176. Cellulose acetate (CA) producers
  • Table 177. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications
  • Table 178. Leading MFC producers and capacities
  • Table 179. Synthesis methods for cellulose nanocrystals (CNC)
  • Table 180. CNC sources, size and yield
  • Table 181. CNC properties
  • Table 182. Mechanical properties of CNC and other reinforcement materials
  • Table 183. Applications of nanocrystalline cellulose (NCC)
  • Table 184. Cellulose nanocrystals analysis
  • Table 185: Cellulose nanocrystal production capacities and production process, by producer
  • Table 186. Applications of cellulose nanofibers (CNF)
  • Table 187. Cellulose nanofibers market analysis
  • Table 188. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes
  • Table 189. Applications of bacterial nanocellulose (BNC)
  • Table 190. Types of protein based-bioplastics, applications and companies
  • Table 191. Casein polymers production 2019-2036 (1,000 tonnes)
  • Table 192. Casein polymers applications
  • Table 193. Types of algal and fungal based-bioplastics, applications and companies
  • Table 194. Overview of alginate-description, properties, application and market size
  • Table 195. Companies developing algal-based bioplastics
  • Table 196. Overview of mycelium fibers-description, properties, drawbacks and applications
  • Table 197. Companies developing mycelium-based bioplastics
  • Table 198. Overview of chitosan-description, properties, drawbacks and applications
  • Table 199. Types of next-gen natural fibers
  • Table 200. Application, manufacturing method, and matrix materials of natural fibers
  • Table 201. Typical properties of natural fibers
  • Table 202. Commercially available next-gen natural fiber products
  • Table 203. Market drivers for natural fibers
  • Table 204. Overview of cotton fibers-description, properties, drawbacks and applications
  • Table 205. Cotton production volume 2018-2036 (Million MT)
  • Table 206. Overview of kapok fibers-description, properties, drawbacks and applications
  • Table 207. Kapok production volume 2018-2036 (MT)
  • Table 208. Overview of luffa fibers-description, properties, drawbacks and applications
  • Table 209. Overview of jute fibers-description, properties, drawbacks and applications
  • Table 210. Jute production volume 2018-2036 (Million MT)
  • Table 211. Overview of hemp fibers-description, properties, drawbacks and applications
  • Table 212. Hemp fiber production volume 2018-2036 (MT)
  • Table 213. Overview of flax fibers-description, properties, drawbacks and applications
  • Table 214. Flax fiber production volume 2018-2036 (MT)
  • Table 215. Overview of ramie fibers- description, properties, drawbacks and applications
  • Table 216. Ramie fiber production volume 2018-2036 (MT)
  • Table 217. Overview of kenaf fibers-description, properties, drawbacks and applications
  • Table 218. Kenaf fiber production volume 2018-2036 (MT)
  • Table 219. Overview of sisal leaf fibers-description, properties, drawbacks and applications
  • Table 220. Sisal fiber production volume 2018-2036 (MT)
  • Table 221. Overview of abaca fibers-description, properties, drawbacks and applications
  • Table 222. Abaca fiber production volume 2018-2036 (MT)
  • Table 223. Overview of coir fibers-description, properties, drawbacks and applications
  • Table 224. Coir fiber production volume 2018-2036 (MILLION MT)
  • Table 225. Overview of banana fibers-description, properties, drawbacks and applications
  • Table 226. Banana fiber production volume 2018-2036 (MT)
  • Table 227. Overview of pineapple fibers-description, properties, drawbacks and applications
  • Table 228. Overview of rice fibers-description, properties, drawbacks and applications
  • Table 229. Overview of corn fibers-description, properties, drawbacks and applications
  • Table 230. Overview of switch grass fibers-description, properties and applications
  • Table 231. Overview of sugarcane fibers-description, properties, drawbacks and application and market size
  • Table 232. Overview of bamboo fibers-description, properties, drawbacks and applications
  • Table 233. Bamboo fiber production volume 2018-2036 (MILLION MT)
  • Table 234. Overview of wool fibers-description, properties, drawbacks and applications
  • Table 235. Alternative wool materials producers
  • Table 236. Overview of silk fibers-description, properties, application and market size
  • Table 237. Alternative silk materials producers
  • Table 238. Alternative leather materials producers
  • Table 239. Next-gen fur producers
  • Table 240. Alternative down materials producers
  • Table 241. Applications of natural fiber composites
  • Table 242. Typical properties of short natural fiber-thermoplastic composites
  • Table 243. Properties of non-woven natural fiber mat composites
  • Table 244. Properties of aligned natural fiber composites
  • Table 245. Properties of natural fiber-bio-based polymer compounds
  • Table 246. Properties of natural fiber-bio-based polymer non-woven mats
  • Table 247. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use
  • Table 248. Natural fiber-reinforced polymer composite in the automotive market
  • Table 249. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use
  • Table 250. Applications of natural fibers in the automotive industry
  • Table 251. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use
  • Table 252. Applications of natural fibers in the building/construction sector
  • Table 253. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use
  • Table 254. Natural fibers in the textiles sector- market drivers, applications and challenges for NF use
  • Table 255. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use
  • Table 256. Global fiber production (million MT) 2020-2036
  • Table 257. Technical lignin types and applications
  • Table 258. Classification of technical lignins
  • Table 259. Lignin content of selected biomass
  • Table 260. Properties of lignins and their applications
  • Table 261. Example markets and applications for lignin
  • Table 262. Processes for lignin production
  • Table 263. Biorefinery feedstocks
  • Table 264. Comparison of pulping and biorefinery lignins
  • Table 265. Commercial and pre-commercial biorefinery lignin production facilities and processes
  • Table 266. Market drivers and trends for lignin
  • Table 267. Production capacities of technical lignin producers
  • Table 268. Production capacities of biorefinery lignin producers
  • Table 269. Estimated consumption of lignin, 2019-2036 (000 MT)
  • Table 270. Prices of benzene, toluene, xylene and their derivatives
  • Table 271. Application of lignin in plastics and polymers
  • Table 272. Processes for bioplastics in packaging
  • Table 273. Comparison of bioplastics' (PLA and PHAs) properties to other common polymers used in product packaging
  • Table 274. Typical applications for bioplastics in flexible packaging
  • Table 275. Typical applications for bioplastics in rigid packaging
  • Table 276. Biobased and sustainable plastics producers in North America
  • Table 277. Biobased and sustainable plastics producers in Europe
  • Table 278. Biobased and sustainable plastics producers in Asia-Pacific
  • Table 279. Biobased and sustainable plastics producers in Latin America
  • Table 280. Lactips plastic pellets
  • Table 281. Oji Holdings CNF products

List of Figures

  • Figure 1. Schematic of biorefinery processes
  • Figure 2. Overview of Toray process
  • Figure 3. Global production of biobased fructose, 2018-2036 (metric tonnes)
  • Figure 4. Schematic of WISA plywood home
  • Figure 5. Coca-Cola PlantBottle-R
  • Figure 6. Interrelationship between conventional, bio-based and biodegradable plastics
  • Figure 7. Polylactic acid (Bio-PLA) production 2019-2036 (1,000 tonnes)
  • Figure 8. Polyethylene terephthalate (Bio-PET) production 2019-2036 (1,000 tonnes)
  • Figure 9. Polytrimethylene terephthalate (PTT) production 2019-2036 (1,000 tonnes)
  • Figure 10. Production capacities of Polyethylene furanoate (PEF) to 2025
  • Figure 11. Polyethylene furanoate (Bio-PEF) production 2019-2036 (1,000 tonnes)
  • Figure 12. Polyamides (Bio-PA) production 2019-2036 (1,000 tonnes)
  • Figure 13. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2036 (1,000 tonnes)
  • Figure 14. Polybutylene succinate (PBS) production 2019-2036 (1,000 tonnes)
  • Figure 15. Polyethylene (Bio-PE) production 2019-2036 (1,000 tonnes)
  • Figure 16. Polypropylene (Bio-PP) production capacities 2019-2036 (1,000 tonnes)
  • Figure 17. PHA family
  • Figure 18. PHA production capacities 2019-2036 (1,000 tonnes)
  • Figure 19. TEM image of cellulose nanocrystals
  • Figure 20. CNC preparation
  • Figure 21. Extracting CNC from trees
  • Figure 22. CNC slurry
  • Figure 23. CNF gel
  • Figure 24. Bacterial nanocellulose shapes
  • Figure 25. BLOOM masterbatch from Algix
  • Figure 26. Typical structure of mycelium-based foam
  • Figure 27. Commercial mycelium composite construction materials
  • Figure 28. Types of natural fibers
  • Figure 29. Absolut natural based fiber bottle cap
  • Figure 30. Adidas algae-ink tees
  • Figure 31. Carlsberg natural fiber beer bottle
  • Figure 32. Miratex watch bands
  • Figure 33. Adidas Made with Nature Ultraboost 22
  • Figure 34. PUMA RE:SUEDE sneaker
  • Figure 35. Luffa cylindrica fiber
  • Figure 37. Pineapple fiber
  • Figure 38. A bag made with pineapple biomaterial
  • Figure 39. Conceptual landscape of next-gen leather materials
  • Figure 40. Hemp fibers combined with PP in car door panel
  • Figure 41. Car door produced from Hemp fiber
  • Figure 42. Mercedes-Benz components containing natural fibers
  • Figure 43. AlgiKicks sneaker, made with the Algiknit biopolymer gel
  • Figure 44. Coir mats for erosion control
  • Figure 45. Global fiber production in 2024, by fiber type, million MT and %
  • Figure 48. High purity lignin
  • Figure 49. Lignocellulose architecture
  • Figure 50. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins
  • Figure 51. The lignocellulose biorefinery
  • Figure 52. LignoBoost process
  • Figure 53. LignoForce system for lignin recovery from black liquor
  • Figure 54. Sequential liquid-lignin recovery and purification (SLPR) system
  • Figure 55. A-Recovery+ chemical recovery concept
  • Figure 56. Schematic of a biorefinery for production of carriers and chemicals
  • Figure 57. Organosolv lignin
  • Figure 58. Hydrolytic lignin powder
  • Figure 60. PHA bioplastics products
  • Figure 61. The global market for bio-based polymers for flexible packaging 2019-2036 (1,000 tonnes)
  • Figure 62. Production volumes for bio-based polymers for rigid packaging, 2019-2036 (1,000 tonnes)
  • Figure 63. Global production for bio-based polymers in consumer goods 2019-2036, in 1,000 tonnes
  • Figure 64. Global production capacities for bio-based polymers in automotive 2019-2036, in 1,000 tonnes
  • Figure 65. Global production volumes for bio-based polymers in building and construction 2019-2036, in 1,000 tonnes
  • Figure 66. Global production volumes for bio-based polymers in textiles and fibers 2019-2036, in 1,000 tonnes
  • Figure 67. Global production volumes for bio-based polymers in electronics 2019-2036, in 1,000 tonnes
  • Figure 68. Biodegradable mulch films
  • Figure 69. Global production volumes for bio-based polymers in agriculture 2019-2036, in 1,000 tonnes
  • Figure 70. Global production capacities for bioplastics by end user market 2019-2036, 1,000 tonnes
  • Figure 71. Production volumes for bio-based polymers in North America 2019-2036, in 1,000 tonnes
  • Figure 72. Production volumes for bio-based polymers in Europe by type 2019-2036, in 1,000 tonnes
  • Figure 73. Production volumes for bio-based polymers in Asia-Pacific by type 2019-2036, in 1,000 tonnes
  • Figure 75. Pluumo
  • Figure 76. ANDRITZ Lignin Recovery process
  • Figure 77. Anpoly cellulose nanofiber hydrogel
  • Figure 78. MEDICELLU(TM)
  • Figure 79. Asahi Kasei CNF fabric sheet
  • Figure 80. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric
  • Figure 81. CNF nonwoven fabric
  • Figure 82. Roof frame made of natural fiber
  • Figure 83. Beyond Leather Materials product
  • Figure 84. BIOLO e-commerce mailer bag made from PHA
  • Figure 85. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc
  • Figure 86. Fiber-based screw cap
  • Figure 87: Celluforce production process
  • Figure 88: NCCTM Process
  • Figure 89: CNC produced at Tech Futures' pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:
  • Figure 90. formicobio(TM) technology
  • Figure 91. nanoforest-S
  • Figure 92. nanoforest-PDP
  • Figure 93. nanoforest-MB
  • Figure 94. sunliquid-R production process
  • Figure 95. CuanSave film
  • Figure 96. Celish
  • Figure 97. Trunk lid incorporating CNF
  • Figure 98. ELLEX products
  • Figure 99. CNF-reinforced PP compounds
  • Figure 100. Kirekira! toilet wipes
  • Figure 101. Color CNF
  • Figure 102. Rheocrysta spray
  • Figure 103. DKS CNF products
  • Figure 104. Domsjo process
  • Figure 105. Mushroom leather
  • Figure 106. CNF based on citrus peel
  • Figure 107. Citrus cellulose nanofiber
  • Figure 108. Filler Bank CNC products
  • Figure 109. Fibers on kapok tree and after processing
  • Figure 110. TMP-Bio Process
  • Figure 111. Flow chart of the lignocellulose biorefinery pilot plant in Leuna
  • Figure 112. Water-repellent cellulose
  • Figure 113. Cellulose Nanofiber (CNF) composite with polyethylene (PE)
  • Figure 114. PHA production process
  • Figure 115. CNF products from Furukawa Electric
  • Figure 116. AVAPTM process
  • Figure 117. GreenPower+(TM) process
  • Figure 118. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials
  • Figure 119. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer)
  • Figure 120. CNF gel
  • Figure 121. Block nanocellulose material
  • Figure 122. CNF products developed by Hokuetsu
  • Figure 123. Marine leather products
  • Figure 124. Inner Mettle Milk products
  • Figure 125. Kami Shoji CNF products
  • Figure 126. Dual Graft System
  • Figure 127. Engine cover utilizing Kao CNF composite resins
  • Figure 128. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended)
  • Figure 129. Kel Labs yarn
  • Figure 130. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side)
  • Figure 131. Lignin gel
  • Figure 132. BioFlex process
  • Figure 133. Nike Algae Ink graphic tee
  • Figure 134. LX Process
  • Figure 135. Made of Air's HexChar panels
  • Figure 136. TransLeather
  • Figure 137. Chitin nanofiber product
  • Figure 138. Marusumi Paper cellulose nanofiber products
  • Figure 139. FibriMa cellulose nanofiber powder
  • Figure 140. METNIN(TM) Lignin refining technology
  • Figure 141. IPA synthesis method
  • Figure 142. MOGU-Wave panels
  • Figure 143. CNF slurries
  • Figure 144. Range of CNF products
  • Figure 145. Reishi
  • Figure 146. Compostable water pod
  • Figure 147. Leather made from leaves
  • Figure 148. Nike shoe with beLEAF(TM)
  • Figure 149. CNF clear sheets
  • Figure 150. Oji Holdings CNF polycarbonate product
  • Figure 151. Enfinity cellulosic ethanol technology process
  • Figure 152. Precision Photosynthesis(TM) technology
  • Figure 153. Fabric consisting of 70 per cent wool and 30 per cent Qmilk
  • Figure 154. XCNF
  • Figure 155: Plantrose process
  • Figure 156. LOVR hemp leather
  • Figure 157. CNF insulation flat plates
  • Figure 158. Hansa lignin
  • Figure 159. Manufacturing process for STARCEL
  • Figure 160. Manufacturing process for STARCEL
  • Figure 161. 3D printed cellulose shoe
  • Figure 162. Lyocell process
  • Figure 163. North Face Spiber Moon Parka
  • Figure 164. PANGAIA LAB NXT GEN Hoodie
  • Figure 165. Spider silk production
  • Figure 166. Stora Enso lignin battery materials
  • Figure 167. 2 wt.% CNF suspension
  • Figure 168. BiNFi-s Dry Powder
  • Figure 169. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet
  • Figure 170. Silk nanofiber (right) and cocoon of raw material
  • Figure 171. Sulapac cosmetics containers
  • Figure 172. Sulzer equipment for PLA polymerization processing
  • Figure 173. Solid Novolac Type lignin modified phenolic resins
  • Figure 174. Teijin bioplastic film for door handles
  • Figure 175. Corbion FDCA production process
  • Figure 176. Comparison of weight reduction effect using CNF
  • Figure 177. CNF resin products
  • Figure 178. UPM biorefinery process
  • Figure 179. Vegea production process
  • Figure 180. The Proesa-R Process
  • Figure 181. Goldilocks process and applications
  • Figure 182. Visolis' Hybrid Bio-Thermocatalytic Process
  • Figure 183. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test
  • Figure 184. Worn Again products
  • Figure 185. Zelfo Technology GmbH CNF production process
目次

The bioplastics industry represents a transformative investment opportunity positioned at the intersection of environmental necessity and technological innovation. With conventional plastic production exceeding 394 million tonnes annually, the urgent need for sustainable alternatives has created a rapidly expanding market with exceptional long-term growth potential. The bioplastics market demonstrated robust fundamentals in 2024, exceeding 4 million tonnes in production, and potentially reaching 15-18 million tonnes by 2036, representing a four-fold increase from current levels. This expansion would position bioplastics to capture roughly 3-4% of the total polymer market by 2036, up from the current 1%. Conservative projections suggest the market value could exceed $120-150 billion by 2036, assuming the current growth momentum continues alongside technological improvements that reduce production costs. Bio-based biodegradable polymers, could represent the largest segment, while bio-based non-biodegradable alternatives maintain steady growth as drop-in replacements for conventional plastics.

By 2036, the geographic distribution of bioplastics production is expected to shift significantly. North America's aggressive 25% CAGR in capacity expansion suggests it could challenge Asia's current dominance, potentially capturing 25-30% of global production by 2036. Asia will likely maintain leadership but with a reduced share of approximately 45-50%, while Europe may stabilize around 15-18% despite current policy support. The next decade will witness substantial technological breakthroughs in polymer performance and cost reduction. Advanced PHA and PLA formulations are expected to achieve price parity with conventional plastics in key applications by 2030-2032. Marine-degradable polymers and second-generation feedstock technologies will mature, addressing current sustainability concerns while opening new market segments.

Application diversity will expand beyond current concentrations in packaging and fibers. By 2036, automotive components, electronics casings, and medical applications could represent 20-25% of the market as performance characteristics improve and regulatory approvals increase. Several structural factors will sustain investment attractiveness through 2036. Regulatory pressure will intensify globally, with single-use plastic bans expanding and carbon pricing mechanisms favoring bio-based alternatives. The EU's commitment of Euro-500 million through Horizon 2025 represents early-stage support, with subsequent funding cycles likely to increase substantially. Corporate adoption will accelerate as companies integrate sustainability metrics into core business strategies. Major brands including PepsiCo, Unilever, and others are transitioning supply chains toward bio-based materials, creating stable, long-term demand.

The industry's minimal land use footprint-currently 0.013% of global agricultural area-provides significant expansion capacity without competing with food production. Technological advances in waste-to-polymer conversion and algae-based feedstocks will further reduce resource constraints while improving cost competitiveness. Investment considerations include current production cost premiums of 20-50% over conventional plastics, though this gap is narrowing annually. Scaling challenges and infrastructure requirements present near-term obstacles, while recycling system integration remains underdeveloped. However, these challenges also represent opportunities for early-stage investors to capture value as solutions emerge.

The bioplastics sector offers compelling risk-adjusted returns through 2036, supported by regulatory tailwinds, technological maturation, and fundamental demand shifts. The industry's evolution from niche applications to mainstream adoption creates multiple investment entry points across the value chain, from feedstock development to end-product manufacturing. Investors positioning themselves strategically in this expanding market can capitalize on the irreversible transition toward sustainable materials in the global economy.

"The Global Bioplastics Market 2026-2036" provides an exhaustive analysis of the bioplastics landscape through 2036, offering strategic insights for investors, manufacturers, policymakers, and supply chain stakeholders navigating this transformative sector. With the global bioplastics market projected to reach significant scale by 2036, this report delivers critical market intelligence covering production capacities, technology developments, feedstock availability, regional dynamics, and competitive positioning across all major bioplastic categories. The analysis encompasses both bio-based and biodegradable polymers, natural fibers, lignin applications, and emerging next-generation materials reshaping the plastics industry.

Report Contents include:

  • Global plastics market supply analysis and bioplastics positioning
  • Comprehensive polymer recycling landscape assessment
  • Bio-based versus biodegradable polymer market segmentation
  • Regional distribution analysis with capacity utilization rates
  • Next-generation bio-polymer technology roadmap
  • Chemical recycling integration strategies
  • Novel feedstock source evaluation and waste-to-bioplastics conversion
  • Global Production Capacity Analysis (2024-2036)
    • Current production capacity assessment across all polymer types
    • Detailed capacity forecasts by polymer category and geographic region
    • Investment trend analysis and market forecasting methodologies
    • Capacity utilization optimization strategies
  • Environmental Impact & Sustainability Assessment
    • Life cycle assessment comparative analysis for major biopolymer types
    • Land use and feedstock sustainability impact evaluation
    • Carbon footprint comparison with fossil-based alternatives
    • Bio-composites environmental performance metrics
  • Feedstock & Intermediates Market Analysis
    • Comprehensive biorefinery process mapping and economic analysis
    • Plant-based feedstock categories including starch, sugar crops, lignocellulosic biomass, and plant oils
    • Waste stream utilization covering food waste, agricultural residues, forestry waste, and municipal solid waste
    • Microbial and mineral source applications
    • Gaseous feedstock integration including biogas and syngas utilization
  • Bio-based Polymer Technologies & Applications
    • Synthetic bio-based polymers including APC, PLA, Bio-PET, Bio-PTT, Bio-PEF, Bio-PA, Bio-PBAT, PBS, Bio-PE, Bio-PP, and superabsorbent polymers
    • Natural bio-based polymers featuring PHA, cellulose derivatives, protein-based polymers, algal and fungal materials, and chitosan applications
    • Natural fiber comprehensive analysis covering manufacturing methods, matrix materials, and commercial applications
    • Lignin technology applications and market opportunities
  • Market Applications & End-User Analysis
    • Packaging applications (flexible and rigid) with production volume forecasts
    • Consumer goods, automotive, building and construction sector applications
    • Textiles and fibers market penetration analysis
    • Electronics industry adoption patterns
    • Agriculture and horticulture market opportunities
    • Regional production analysis covering North America, Europe, Asia-Pacific, and Latin America
  • Company Profiles (575+ Companies): 3DBioFibR, 3M, 9Fiber Inc., ADBioplastics, Adriano di Marti/Desserto, Advanced Biochemical Thailand, Aeropowder Limited, Aemetis Inc., AEP Polymers, AGRANA Staerke GmbH, AgroRenew, Ahlstrom-Munksjo Oyj, Algaeing, Algenesis Corporation, Algal Bio, Algenol, Algenie, Alginor ASA, Algix LLC, AmphiStar, AMSilk GmbH, Ananas Anam Ltd., An Phat Bioplastics, Anellotech Inc., Andritz AG, Anqing He Xing Chemical, Ankor Bioplastics, ANPOLY Inc., Applied Bioplastics, Aquafil S.p.A., Aquapak Polymers Ltd, Archer Daniel Midland Company, Arctic Biomaterials Oy, Ardra Bio, Arekapak GmbH, Arkema S.A, Arlanxeo, Arrow Greentech, Attis Innovations LLC, Arzeda Corp., Asahi Kasei Chemicals Corporation, AVA Biochem AG, Avantium B.V., Avani Eco, Avient Corporation, Axcelon Biopolymers Corporation, Ayas Renewables Inc., Azolla, Bambooder Biobased Fibers B.V., BASF SE, Bast Fiber Technologies Inc., BBCA Biochemical & GALACTIC Lactic Acid, Bcomp ltd., Better Fibre Technologies, Betulium Oy, Beyond Leather Materials ApS, Bioextrax AB, Bio Fab NZ, BIO-FED, Biofibre GmbH, Biofine Technology LLC, Bio2Materials Sp. z o.o., Biokemik, Bioleather, BIOLO, BioLogiQ Inc., Biomass Resin Holdings, Biome Bioplastics, BioSolutions, Biosyntia, BIOTEC GmbH & Co. KG, Biofiber Tech Sweden AB, Bioform Technologies, BIO-LUTIONS International AG, Biophilica, Bioplastech Ltd, Bioplastix, Biopolax, Biotecam, Biotic Circular Technologies Ltd., Biotrem, Biovox, Bioweg, BlockTexx Pty Ltd., Bloom Biorenewables SA, BluCon Biotech GmbH, Blue BioFuels Inc., Blue Ocean Closures, Bluepha Beijing Lanjing Microbiology Technology, Bolt Threads, Borealis AG, Borregaard Chemcell, Bosk Bioproducts Inc., Bowil Biotech Sp. z o.o., B-PREG, Braskem SA, Bucha Bio Inc., Buyo Bioplastic Ltd., Burgo Group S.p.A., C16 Biosciences, Carbiolice, Carbios, Carbon Crusher, Carbonwave, Cardia Bioplastics Ltd., Cardolite, CARAPAC Company, Carapace Biopolymers, Cargill, Cass Materials Pty Ltd, Catalyxx, Cathay Industrial Biotech Ltd., Celanese Corporation, Cellicon B.V., Cellucomp Ltd., Celluforce, CellON, Cellugy, Cellutech AB (Stora Enso), ChainCraft, CH-Bioforce Oy, ChakraTech, Checkerspot Inc., Chempolis Oy, Chitelix, Chongqing Bofei Biochemical Products, Chuetsu Pulp & Paper, CIMV, Circa Group, Circular Systems, CJ Biomaterials Inc., CO2BioClean, Coastgrass ApS, COFCO Cooperation Ltd., Coffeeco Upcycle, Corn Next, Corumat Inc., Clariant AG, CreaFill Fibers Corporation, Cristal Union Group, Cruz Foam, CuanTec Ltd., Daesang, Daicel Corporation, Daicel Polymer Ltd., DaikyoNishikawa Corporation, Daio Paper Corporation, Daishowa Paper Products, DAK Americas LLC, Danimer Scientific LLC, DENSO Corporation, Diamond Green Diesel LLC, DIC Corporation, DIC Products Inc., Dispersa, DKS Co. Ltd., Domsjo Fabriker AB, Domtar Paper Company LLC, Dongnam Realize, Dongying Hebang Chemical Corp., Dow Inc., Royal DSM N.V., DuFor Resins B.V., DuPont, DuPont Tate & Lyle Bio Products, Eastman Chemical Ltd. Corporation, ecoGenie biotech, Ecopel, Ecoshell, Ecovia Renewables, Ecovance, Ecovative Design LLC, Eden Materials, EggPlant Srl, Ehime Paper Manufacturing, Emirates Biotech, EMS-Grivory, Enerkem Inc., Enkev, Eni S.p.A., Enviral, EnginZyme AB, Enzymit, Eranova, Esbottle Oy, EveryCarbon, Evolved By Nature, Evonik Industries AG, Evrnu, FabricNano, Fairbrics, Faircraft, Far Eastern New Century Corporation, Fermentalg, Fiberlean Technologies, Fiberight, Fillerbank Limited, Fiquetex S.A.S., FKuR Kunststoff GmbH, FlexSea, Flocus, Floreon, Foamplant BV, FP Innovations, Fraunhofer Center for Chemical-Biotechnological Processes CBP, Fraunhofer Institute for Silicate Research ISC, Fraunhofer Institute for Structural Durability and System Reliability LBF, Freyzein, Fruit Leather Rotterdam, Fuji Pigment, Full Cycle Bioplastics LLC, Furukawa Electric, Futerro, Futuramat Sarl, Futurity Bio-Ventures Ltd., Gaiamer Biotechnologies, Galatea Biotech Srl, G+E GETEC Holding GmbH, Gelatex Technologies OU, Gen3Bio, Genecis Bioindustries Inc., GeneusBiotech BV, Genomatica, Gevo Inc, Global Bioenergies SA, Grabio Greentech Corporation, Grado Zero Innovation, Granbio Technologies, Green Science Alliance, GRECO, Grupp MAIP, GS Alliance, Guangzhou Bio-plus Materials Technology, Haldor Topsoe A/S, Hattori Shoten K.K., Hebei Casda Biomaterials, Hebei Jiheng Chemical, Hebei Xinhua Lactic Acid, Heilongjiang Chenneng Bioengineering Ltd., Helian Polymers BV, Henan Jindan Lactic Acid Technology, Henan Xinghan Biological Technology, Hengshui Jinghua Chemical, Hengli Petrochemical, Hexa Chemical/Nature Gift, Hexas Biomass Inc., Hexion Inc, Hokuetsu Toyo Fibre, Honext Material SL, HTL Biotechnology, Hubei Guangshui National Chemical, Huitong Biomaterials, Humintech GmbH, Hunan Anhua Lactic Acid, Icytos, India Glycols Ltd., Indochine Bio Plastiques (ICBP) Sdn Bhd, Indorama Ventures Public, Ingevity, Inner Mettle, Infinited Fiber Company Oy, Iogen Corporation, Inovyn, Insempra, Inspidere B.V., Ioniqa, Itaconix, Intec Bioplastics, JeNaCell GmbH, and over 400 additional companies across the global bioplastics value chain representing feedstock suppliers, technology developers, polymer manufacturers, equipment providers, and end-user applications companies.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. What are bioplastics?
  • 1.2. Global Plastics Market and Supply
  • 1.3. Recycling Polymers
  • 1.4. Bio-based and Biodegradable vs. Non-biodegradable Polymers
  • 1.5. Regional Distribution
  • 1.6. Next Generation Bio-based Polymers
  • 1.7. Integration with Chemical Recycling
  • 1.8. Novel Feedstock Sources
  • 1.9. Turning Waste into Bioplastics
  • 1.10. Global Bioplastics Capacity
    • 1.10.1. Production capacities 2024
    • 1.10.2. Production capacities forecast 2025-2036
    • 1.10.3. Production capacities by region 2024-2036
  • 1.11. Global Market Forecasts
  • 1.12. Environmental Impact and Sustainability
    • 1.12.1. Plastics carbon footprint
    • 1.12.2. Bioplastics carbon footprint
    • 1.12.3. Life Cycle Assessment of Bioplastics
    • 1.12.4. Use of renewables in production
    • 1.12.5. Land Use and Feedstock Sustainability
    • 1.12.6. Carbon Footprint Comparison with Fossil-based Alternatives
  • 1.13. Bio-composites
    • 1.13.1. Sustainable packaging
    • 1.13.2. Enhanced biodegradation of bio-based polymers
    • 1.13.3. Bio-composite manufacturing

2. INTRODUCTION

  • 2.1. Types of bioplastics
    • 2.1.1. Introduction
    • 2.1.2. Polymer Types
      • 2.1.2.1. Transition from fossil-based to bio-based polymers
      • 2.1.2.2. Monosaccharides
      • 2.1.2.3. Vegetable Oils
    • 2.1.3. Bio-based monomers
      • 2.1.3.1. Portfolio of available monomers
      • 2.1.3.2. Emerging Monomer Technologies
    • 2.1.4. The Green Premium
  • 2.2. Feedstocks
    • 2.2.1. Types
    • 2.2.2. Prices
    • 2.2.3. Alternative feedstocks for bioplastics
    • 2.2.4. Food security, land use, and water resources
  • 2.3. Chain of custody
  • 2.4. Chemical tracers and markers
  • 2.5. Bioplastics regulations
    • 2.5.1. Overview
    • 2.5.2. Extended producer responsibility (EPR)
    • 2.5.3. United States
    • 2.5.4. Europe
    • 2.5.5. Asia-Pacific

3. BIO-BASED FEEDSTOCKS AND INTERMEDIATES MARKET

  • 3.1. BIOREFINERIES
  • 3.2. BIO-BASED FEEDSTOCK AND LAND USE
  • 3.3. PLANT-BASED
    • 3.3.1. STARCH
      • 3.3.1.1. Overview
      • 3.3.1.2. Sources
      • 3.3.1.3. Global production
      • 3.3.1.4. Lysine
        • 3.3.1.4.1. Source
        • 3.3.1.4.2. Applications
        • 3.3.1.4.3. Global production
      • 3.3.1.5. Glucose
        • 3.3.1.5.1. HMDA
          • 3.3.1.5.1.1. Overview
          • 3.3.1.5.1.2. Sources
          • 3.3.1.5.1.3. Applications
          • 3.3.1.5.1.4. Global production
        • 3.3.1.5.2. 1,5-diaminopentane (DA5)
          • 3.3.1.5.2.1. Overview
          • 3.3.1.5.2.2. Sources
          • 3.3.1.5.2.3. Applications
          • 3.3.1.5.2.4. Global production
        • 3.3.1.5.3. Sorbitol
          • 3.3.1.5.3.1. Isosorbide
            • 3.3.1.5.3.1.1. Overview
            • 3.3.1.5.3.1.2. Sources
            • 3.3.1.5.3.1.3. Applications
            • 3.3.1.5.3.1.4. Global production
        • 3.3.1.5.4. Lactic acid
          • 3.3.1.5.4.1. Overview
          • 3.3.1.5.4.2. D-lactic acid
          • 3.3.1.5.4.3. L-lactic acid
          • 3.3.1.5.4.4. Lactide
        • 3.3.1.5.5. Itaconic acid
          • 3.3.1.5.5.1. Overview
          • 3.3.1.5.5.2. Sources
          • 3.3.1.5.5.3. Applications
          • 3.3.1.5.5.4. Global production
        • 3.3.1.5.6. 3-HP
          • 3.3.1.5.6.1. Overview
          • 3.3.1.5.6.2. Sources
          • 3.3.1.5.6.3. Applications
          • 3.3.1.5.6.4. Global production
          • 3.3.1.5.6.5. Acrylic acid
            • 3.3.1.5.6.5.1. Overview
            • 3.3.1.5.6.5.2. Applications
            • 3.3.1.5.6.5.3. Global production
          • 3.3.1.5.6.6. 1,3-Propanediol (1,3-PDO)
            • 3.3.1.5.6.6.1. Overview
            • 3.3.1.5.6.6.2. Applications
            • 3.3.1.5.6.6.3. Global production
        • 3.3.1.5.7. Succinic Acid
          • 3.3.1.5.7.1. Overview
          • 3.3.1.5.7.2. Sources
          • 3.3.1.5.7.3. Applications
          • 3.3.1.5.7.4. Global production
          • 3.3.1.5.7.5. 1,4-Butanediol (1,4-BDO)
            • 3.3.1.5.7.5.1. Overview
            • 3.3.1.5.7.5.2. Applications
            • 3.3.1.5.7.5.3. Gobal production
          • 3.3.1.5.7.6. Tetrahydrofuran (THF)
            • 3.3.1.5.7.6.1. Overview
            • 3.3.1.5.7.6.2. Applications
            • 3.3.1.5.7.6.3. Global production
        • 3.3.1.5.8. Adipic acid
          • 3.3.1.5.8.1. Overview
          • 3.3.1.5.8.2. Applications
          • 3.3.1.5.8.3. Caprolactame
            • 3.3.1.5.8.3.1. Overview
            • 3.3.1.5.8.3.2. Applications
            • 3.3.1.5.8.3.3. Global production
        • 3.3.1.5.9. Isobutanol
          • 3.3.1.5.9.1. Overview
          • 3.3.1.5.9.2. Sources
          • 3.3.1.5.9.3. Applications
          • 3.3.1.5.9.4. Global production
          • 3.3.1.5.9.5. p-Xylene
            • 3.3.1.5.9.5.1. Overview
            • 3.3.1.5.9.5.2. Sources
            • 3.3.1.5.9.5.3. Applications
            • 3.3.1.5.9.5.4. Global production
            • 3.3.1.5.9.5.5. Terephthalic acid
            • 3.3.1.5.9.5.6. Overview
        • 3.3.1.5.10. 1,3 Proppanediol
          • 3.3.1.5.10.1. Overview
          • 3.3.1.5.10.2. Sources
          • 3.3.1.5.10.3. Applications
          • 3.3.1.5.10.4. Global production
        • 3.3.1.5.11. Monoethylene glycol (MEG)
          • 3.3.1.5.11.1. Overview
          • 3.3.1.5.11.2. Sources
          • 3.3.1.5.11.3. Applications
          • 3.3.1.5.11.4. Global production
        • 3.3.1.5.12. Ethanol
          • 3.3.1.5.12.1. Overview
          • 3.3.1.5.12.2. Sources
          • 3.3.1.5.12.3. Applications
          • 3.3.1.5.12.4. Global production
          • 3.3.1.5.12.5. Ethylene
            • 3.3.1.5.12.5.1. Overview
            • 3.3.1.5.12.5.2. Applications
            • 3.3.1.5.12.5.3. Global production
            • 3.3.1.5.12.5.4. Propylene
            • 3.3.1.5.12.5.5. Vinyl chloride
          • 3.3.1.5.12.6. Methly methacrylate
    • 3.3.2. SUGAR CROPS
      • 3.3.2.1. Saccharose
        • 3.3.2.1.1. Aniline
          • 3.3.2.1.1.1. Overview
          • 3.3.2.1.1.2. Applications
          • 3.3.2.1.1.3. Global production
        • 3.3.2.1.2. Fructose
          • 3.3.2.1.2.1. Overview
          • 3.3.2.1.2.2. Applications
          • 3.3.2.1.2.3. Global production
          • 3.3.2.1.2.4. 5-Hydroxymethylfurfural (5-HMF)
            • 3.3.2.1.2.4.1. Overview
            • 3.3.2.1.2.4.2. Applications
            • 3.3.2.1.2.4.3. Global production
          • 3.3.2.1.2.5. 5-Chloromethylfurfural (5-CMF)
            • 3.3.2.1.2.5.1. Overview
            • 3.3.2.1.2.5.2. Applications
            • 3.3.2.1.2.5.3. Global production
          • 3.3.2.1.2.6. Levulinic Acid
            • 3.3.2.1.2.6.1. Overview
            • 3.3.2.1.2.6.2. Applications
            • 3.3.2.1.2.6.3. Global production
          • 3.3.2.1.2.7. FDME
            • 3.3.2.1.2.7.1. Overview
            • 3.3.2.1.2.7.2. Applications
            • 3.3.2.1.2.7.3. Global production
          • 3.3.2.1.2.8. 2,5-FDCA
            • 3.3.2.1.2.8.1. Overview
            • 3.3.2.1.2.8.2. Applications
            • 3.3.2.1.2.8.3. Global production
    • 3.3.3. LIGNOCELLULOSIC BIOMASS
      • 3.3.3.1. Levoglucosenone
        • 3.3.3.1.1. Overview
        • 3.3.3.1.2. Applications
        • 3.3.3.1.3. Global production
      • 3.3.3.2. Hemicellulose
        • 3.3.3.2.1. Overview
        • 3.3.3.2.2. Biochemicals from hemicellulose
        • 3.3.3.2.3. Global production
        • 3.3.3.2.4. Furfural
          • 3.3.3.2.4.1. Overview
          • 3.3.3.2.4.2. Applications
          • 3.3.3.2.4.3. Global production
          • 3.3.3.2.4.4. Furfuyl alcohol
            • 3.3.3.2.4.4.1. Overview
            • 3.3.3.2.4.4.2. Applications
            • 3.3.3.2.4.4.3. Global production
      • 3.3.3.3. Lignin
        • 3.3.3.3.1. Overview
        • 3.3.3.3.2. Sources
        • 3.3.3.3.3. Applications
          • 3.3.3.3.3.1. Aromatic compounds
            • 3.3.3.3.3.1.1. Benzene, toluene and xylene
            • 3.3.3.3.3.1.2. Phenol and phenolic resins
            • 3.3.3.3.3.1.3. Vanillin
          • 3.3.3.3.3.2. Polymers
        • 3.3.3.3.4. Global production
    • 3.3.4. PLANT OILS
      • 3.3.4.1. Overview
      • 3.3.4.2. Glycerol
        • 3.3.4.2.1. Overview
        • 3.3.4.2.2. Applications
        • 3.3.4.2.3. Global production
        • 3.3.4.2.4. MPG
          • 3.3.4.2.4.1. Overview
          • 3.3.4.2.4.2. Applications
          • 3.3.4.2.4.3. Global production
        • 3.3.4.2.5. ECH
          • 3.3.4.2.5.1. Overview
          • 3.3.4.2.5.2. Applications
          • 3.3.4.2.5.3. Global production
      • 3.3.4.3. Fatty acids
        • 3.3.4.3.1. Overview
        • 3.3.4.3.2. Applications
        • 3.3.4.3.3. Global production
      • 3.3.4.4. Castor oil
        • 3.3.4.4.1. Overview
        • 3.3.4.4.2. Sebacic acid
          • 3.3.4.4.2.1. Overview
          • 3.3.4.4.2.2. Applications
          • 3.3.4.4.2.3. Global production
        • 3.3.4.4.3. 11-Aminoundecanoic acid (11-AA)
          • 3.3.4.4.3.1. Overview
          • 3.3.4.4.3.2. Applications
          • 3.3.4.4.3.3. Global production
      • 3.3.4.5. Dodecanedioic acid (DDDA)
        • 3.3.4.5.1. Overview
        • 3.3.4.5.2. Applications
        • 3.3.4.5.3. Global production
      • 3.3.4.6. Pentamethylene diisocyanate
        • 3.3.4.6.1. Overview
        • 3.3.4.6.2. Applications
        • 3.3.4.6.3. Global production
    • 3.3.5. NON-EDIBIBLE MILK
      • 3.3.5.1. Casein
        • 3.3.5.1.1. Overview
        • 3.3.5.1.2. Applications
        • 3.3.5.1.3. Global production
  • 3.4. WASTE
    • 3.4.1. Food waste
      • 3.4.1.1. Overview
      • 3.4.1.2. Products and applications
      • 3.4.1.3. Global production
    • 3.4.2. Agricultural waste
      • 3.4.2.1. Overview
      • 3.4.2.2. Products and applications
      • 3.4.2.3. Global production
    • 3.4.3. Forestry waste
      • 3.4.3.1. Overview
      • 3.4.3.2. Products and applications
      • 3.4.3.3. Global production
    • 3.4.4. Aquaculture/fishing waste
      • 3.4.4.1. Overview
      • 3.4.4.2. Products and applications
      • 3.4.4.3. Global production
    • 3.4.5. Municipal solid waste
      • 3.4.5.1. Overview
      • 3.4.5.2. Products and applications
      • 3.4.5.3. Global production
    • 3.4.6. Industrial waste
      • 3.4.6.1. Overview
      • 3.4.6.2. Waste oils
      • 3.4.6.3. Overview
      • 3.4.6.4. Products and applications
      • 3.4.6.5. Global production
  • 3.5. MICROBIAL & MINERAL SOURCES
    • 3.5.1. Microalgae
      • 3.5.1.1. Overview
      • 3.5.1.2. Products and applications
      • 3.5.1.3. Global production
    • 3.5.2. Macroalgae
      • 3.5.2.1. Overview
      • 3.5.2.2. Products and applications
      • 3.5.2.3. Global production
    • 3.5.3. Mineral sources
      • 3.5.3.1. Overview
      • 3.5.3.2. Products and applications
  • 3.6. GASEOUS
    • 3.6.1. Biogas
      • 3.6.1.1. Overview
      • 3.6.1.2. Products and applications
      • 3.6.1.3. Global production
    • 3.6.2. Syngas
      • 3.6.2.1. Overview
      • 3.6.2.2. Products and applications
      • 3.6.2.3. Global production
    • 3.6.3. Off gases - fermentation CO2, CO
      • 3.6.3.1. Overview
      • 3.6.3.2. Products and applications

4. BIO-BASED POLYMERS

  • 4.1. BIO-BASED OR RENEWABLE PLASTICS
    • 4.1.1. Drop-in bio-based plastics
    • 4.1.2. Novel bio-based plastics
  • 4.2. BIODEGRADABLE AND COMPOSTABLE PLASTICS
    • 4.2.1. Biodegradability
    • 4.2.2. Compostability
  • 4.3. TYPES
  • 4.4. KEY MARKET PLAYERS
  • 4.5. SYNTHETIC BIO-BASED POLYMERS
    • 4.5.1. Aliphatic polycarbonates (APC) - cyclic and linear
      • 4.5.1.1. Market analysis
      • 4.5.1.2. Production
      • 4.5.1.3. Applications
      • 4.5.1.4. Producers
    • 4.5.2. Polylactic acid (Bio-PLA)
      • 4.5.2.1. What is polylactic acid?
      • 4.5.2.2. Market analysis
      • 4.5.2.3. Applications
      • 4.5.2.4. Production
      • 4.5.2.5. Biomanufacturing of lactic acid (C3H6O3)
      • 4.5.2.6. Bacterial fermentation
        • 4.5.2.6.1. Lactic acid
        • 4.5.2.6.2. Selection of optimal bacterial strains
        • 4.5.2.6.3. Downstream processing of fermentation broth into PLA-grade lactic acid
      • 4.5.2.7. PLA hydrolysis
      • 4.5.2.8. Ocean degradation
      • 4.5.2.9. PLA end-of-life
      • 4.5.2.10. Producers and production capacities, current and planned
        • 4.5.2.10.1. Lactic acid producers and production capacities
        • 4.5.2.10.2. PLA producers and production capacities
        • 4.5.2.10.3. Polylactic acid (Bio-PLA) production 2019-2036 (1,000 tonnes)
    • 4.5.3. Polyethylene terephthalate (Bio-PET)
      • 4.5.3.1. Market analysis
      • 4.5.3.2. Bio-based MEG and PET
        • 4.5.3.2.1. Monomer production
        • 4.5.3.2.2. Applications
      • 4.5.3.3. Producers and production capacities
      • 4.5.3.4. Polyethylene terephthalate (Bio-PET) production 2019-2036 (1,000 tonnes)
    • 4.5.4. Polytrimethylene terephthalate (Bio-PTT)
      • 4.5.4.1. Market analysis
      • 4.5.4.2. Producers and production capacities
      • 4.5.4.3. Polytrimethylene terephthalate (PTT) production 2019-2036 (1,000 tonnes)
    • 4.5.5. Polyethylene furanoate (Bio-PEF)
      • 4.5.5.1. Market analysis
      • 4.5.5.2. Comparative properties to PET
      • 4.5.5.3. Producers and production capacities
        • 4.5.5.3.1. FDCA and PEF producers and production capacities
        • 4.5.5.3.2. Polyethylene furanoate (Bio-PEF) production 2019-2036 (1,000 tonnes)
    • 4.5.6. Polyamides (Bio-PA)
      • 4.5.6.1. Market analysis
      • 4.5.6.2. Producers and production capacities
      • 4.5.6.3. Polyamides (Bio-PA) production 2019-2036 (1,000 tonnes)
    • 4.5.7. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
      • 4.5.7.1. Market analysis
      • 4.5.7.2. Producers and production capacities
      • 4.5.7.3. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2036 (1,000 tonnes)
    • 4.5.8. Polybutylene succinate (PBS) and copolymers
      • 4.5.8.1. Market analysis
      • 4.5.8.2. Producers and production capacities
      • 4.5.8.3. Polybutylene succinate (PBS) production 2019-2036 (1,000 tonnes)
    • 4.5.9. Polyethylene (Bio-PE)
      • 4.5.9.1. Market analysis
      • 4.5.9.2. Producers and production capacities
      • 4.5.9.3. Polyethylene (Bio-PE) production 2019-2036 (1,000 tonnes)
    • 4.5.10. Polypropylene (Bio-PP)
      • 4.5.10.1. Market analysis
      • 4.5.10.2. Producers and production capacities
      • 4.5.10.3. Polypropylene (Bio-PP) production 2019-2036 (1,000 tonnes)
    • 4.5.11. Superabsorbent polymers
      • 4.5.11.1. Market analysis
      • 4.5.11.2. Production
      • 4.5.11.3. Applications
      • 4.5.11.4. Producers
  • 4.6. NATURAL BIO-BASED POLYMERS
    • 4.6.1. Polyhydroxyalkanoates (PHA)
      • 4.6.1.1. Technology description
      • 4.6.1.2. Types
        • 4.6.1.2.1. PHB
        • 4.6.1.2.2. PHBV
      • 4.6.1.3. Synthesis and production processes
      • 4.6.1.4. Market analysis
      • 4.6.1.5. Commercially available PHAs
      • 4.6.1.6. Markets for PHAs
        • 4.6.1.6.1. Packaging
        • 4.6.1.6.2. Cosmetics
          • 4.6.1.6.2.1. PHA microspheres
        • 4.6.1.6.3. Medical
          • 4.6.1.6.3.1. Tissue engineering
          • 4.6.1.6.3.2. Drug delivery
        • 4.6.1.6.4. Agriculture
          • 4.6.1.6.4.1. Mulch film
          • 4.6.1.6.4.2. Grow bags
      • 4.6.1.7. Producers and production capacities
      • 4.6.1.8. PHA production capacities 2019-2036 (1,000 tonnes)
    • 4.6.2. Cellulose
      • 4.6.2.1. Cellulose acetate (CA)
        • 4.6.2.1.1. Market analysis
        • 4.6.2.1.2. Production
        • 4.6.2.1.3. Applications
        • 4.6.2.1.4. Producers
      • 4.6.2.2. Microfibrillated cellulose (MFC)
        • 4.6.2.2.1. Market analysis
        • 4.6.2.2.2. Producers and production capacities
      • 4.6.2.3. Nanocellulose
        • 4.6.2.3.1. Cellulose nanocrystals
          • 4.6.2.3.1.1. Synthesis
          • 4.6.2.3.1.2. Properties
          • 4.6.2.3.1.3. Production
          • 4.6.2.3.1.4. Applications
          • 4.6.2.3.1.5. Market analysis
          • 4.6.2.3.1.6. Producers and production capacities
        • 4.6.2.3.2. Cellulose nanofibers
          • 4.6.2.3.2.1. Applications
          • 4.6.2.3.2.2. Market analysis
          • 4.6.2.3.2.3. Producers and production capacities
        • 4.6.2.3.3. Bacterial Nanocellulose (BNC)
          • 4.6.2.3.3.1. Production
          • 4.6.2.3.3.2. Applications
    • 4.6.3. Protein-based bio-polymers
      • 4.6.3.1. Types, applications and producers
      • 4.6.3.2. Casein polymers
        • 4.6.3.2.1. Market analysis
        • 4.6.3.2.2. Production
        • 4.6.3.2.3. Applications
    • 4.6.4. Algal and fungal
      • 4.6.4.1. Algal
        • 4.6.4.1.1. Advantages
        • 4.6.4.1.2. Production
        • 4.6.4.1.3. Producers
      • 4.6.4.2. Mycelium
        • 4.6.4.2.1. Properties
        • 4.6.4.2.2. Applications
        • 4.6.4.2.3. Commercialization
    • 4.6.5. Chitosan
      • 4.6.5.1. Technology description
  • 4.7. NATURAL FIBERS
    • 4.7.1. Manufacturing method, matrix materials and applications of natural fibers
    • 4.7.2. Advantages of natural fibers
    • 4.7.3. Commercially available next-gen natural fiber products
    • 4.7.4. Market drivers for next-gen natural fibers
    • 4.7.5. Challenges
    • 4.7.6. Plants (cellulose, lignocellulose)
      • 4.7.6.1. Seed fibers
        • 4.7.6.1.1. Cotton
          • 4.7.6.1.1.1. Production volumes 2018-2036
        • 4.7.6.1.2. Kapok
          • 4.7.6.1.2.1. Production volumes 2018-2036
        • 4.7.6.1.3. Luffa
      • 4.7.6.2. Bast fibers
        • 4.7.6.2.1. Jute
        • 4.7.6.2.2. Production volumes 2018-2036
          • 4.7.6.2.2.1. Hemp
          • 4.7.6.2.2.2. Production volumes 2018-2036
        • 4.7.6.2.3. Flax
          • 4.7.6.2.3.1. Production volumes 2018-2036
        • 4.7.6.2.4. Ramie
          • 4.7.6.2.4.1. Production volumes 2018-2036
        • 4.7.6.2.5. Kenaf
          • 4.7.6.2.5.1. Production volumes 2018-2036
      • 4.7.6.3. Leaf fibers
        • 4.7.6.3.1. Sisal
          • 4.7.6.3.1.1. Production volumes 2018-2036
        • 4.7.6.3.2. Abaca
          • 4.7.6.3.2.1. Production volumes 2018-2036
      • 4.7.6.4. Fruit fibers
        • 4.7.6.4.1. Coir
          • 4.7.6.4.1.1. Production volumes 2018-2036
        • 4.7.6.4.2. Banana
          • 4.7.6.4.2.1. Production volumes 2018-2036
        • 4.7.6.4.3. Pineapple
      • 4.7.6.5. Stalk fibers from agricultural residues
        • 4.7.6.5.1. Rice fiber
        • 4.7.6.5.2. Corn
      • 4.7.6.6. Cane, grasses and reed
        • 4.7.6.6.1. Switch grass
        • 4.7.6.6.2. Sugarcane (agricultural residues)
        • 4.7.6.6.3. Bamboo
          • 4.7.6.6.3.1. Production volumes 2018-2036
        • 4.7.6.6.4. Fresh grass (green biorefinery)
    • 4.7.7. Animal (fibrous protein)
      • 4.7.7.1. Wool
        • 4.7.7.1.1. Alternative wool materials
        • 4.7.7.1.2. Producers
      • 4.7.7.2. Silk fiber
        • 4.7.7.2.1. Alternative silk materials
          • 4.7.7.2.1.1. Producers
      • 4.7.7.3. Leather
        • 4.7.7.3.1. Alternative leather materials
          • 4.7.7.3.1.1. Producers
      • 4.7.7.4. Fur
        • 4.7.7.4.1. Producers
      • 4.7.7.5. Down
        • 4.7.7.5.1. Alternative down materials
          • 4.7.7.5.1.1. Producers
    • 4.7.8. Markets for natural fibers
      • 4.7.8.1. Composites
      • 4.7.8.2. Applications
      • 4.7.8.3. Natural fiber injection moulding compounds
        • 4.7.8.3.1. Properties
        • 4.7.8.3.2. Applications
      • 4.7.8.4. Non-woven natural fiber mat composites
        • 4.7.8.4.1. Automotive
        • 4.7.8.4.2. Applications
      • 4.7.8.5. Aligned natural fiber-reinforced composites
      • 4.7.8.6. Natural fiber biobased polymer compounds
      • 4.7.8.7. Natural fiber biobased polymer non-woven mats
        • 4.7.8.7.1. Flax
        • 4.7.8.7.2. Kenaf
      • 4.7.8.8. Natural fiber thermoset bioresin composites
      • 4.7.8.9. Aerospace
        • 4.7.8.9.1. Market overview
      • 4.7.8.10. Automotive
        • 4.7.8.10.1. Market overview
        • 4.7.8.10.2. Applications of natural fibers
      • 4.7.8.11. Building/construction
        • 4.7.8.11.1. Market overview
        • 4.7.8.11.2. Applications of natural fibers
      • 4.7.8.12. Sports and leisure
        • 4.7.8.12.1. Market overview
      • 4.7.8.13. Textiles
        • 4.7.8.13.1. Market overview
        • 4.7.8.13.2. Consumer apparel
        • 4.7.8.13.3. Geotextiles
      • 4.7.8.14. Packaging
        • 4.7.8.14.1. Market overview
    • 4.7.9. Global production of natural fibers
  • 4.8. LIGNIN
    • 4.8.1. Introduction
      • 4.8.1.1. What is lignin?
        • 4.8.1.1.1. Lignin structure
      • 4.8.1.2. Types of lignin
        • 4.8.1.2.1. Sulfur containing lignin
        • 4.8.1.2.2. Sulfur-free lignin from biorefinery process
      • 4.8.1.3. Properties
      • 4.8.1.4. The lignocellulose biorefinery
      • 4.8.1.5. Markets and applications
      • 4.8.1.6. Challenges for using lignin
    • 4.8.2. Lignin production processes
      • 4.8.2.1. Lignosulphonates
      • 4.8.2.2. Kraft Lignin
        • 4.8.2.2.1. LignoBoost process
        • 4.8.2.2.2. LignoForce method
        • 4.8.2.2.3. Sequential Liquid Lignin Recovery and Purification
        • 4.8.2.2.4. A-Recovery+
      • 4.8.2.3. Soda lignin
      • 4.8.2.4. Biorefinery lignin
        • 4.8.2.4.1. Commercial and pre-commercial biorefinery lignin production facilities and processes
      • 4.8.2.5. Organosolv lignins
      • 4.8.2.6. Hydrolytic lignin
    • 4.8.3. Markets for lignin
      • 4.8.3.1. Market drivers and trends for lignin
      • 4.8.3.2. Production capacities
        • 4.8.3.2.1. Technical lignin availability (dry ton/y)
        • 4.8.3.2.2. Biomass conversion (Biorefinery)
      • 4.8.3.3. Estimated consumption of lignin
      • 4.8.3.4. Prices
      • 4.8.3.5. Heat and power energy
      • 4.8.3.6. Pyrolysis and syngas
      • 4.8.3.7. Aromatic compounds
        • 4.8.3.7.1. Benzene, toluene and xylene
        • 4.8.3.7.2. Phenol and phenolic resins
        • 4.8.3.7.3. Vanillin
      • 4.8.3.8. Plastics and polymers

5. MARKETS FOR BIOPLASTICS

  • 5.1. Packaging (Flexible and Rigid)
    • 5.1.1. Processes for bioplastics in packaging
    • 5.1.2. Applications
    • 5.1.3. Flexible packaging
      • 5.1.3.1. Production volumes 2019-2036
    • 5.1.4. Rigid packaging
      • 5.1.4.1. Production volumes 2019-2036
  • 5.2. Consumer Goods
    • 5.2.1. Applications
    • 5.2.2. Production volumes 2019-2036
  • 5.3. Automotive
    • 5.3.1. Applications
    • 5.3.2. Production volumes 2019-2036
  • 5.4. Building and Construction
    • 5.4.1. Applications
    • 5.4.2. Production volumes 2019-2036
  • 5.5. Textiles and Fibers
    • 5.5.1. Apparel
    • 5.5.2. Footwear
    • 5.5.3. Medical textiles
    • 5.5.4. Production volumes 2019-2036
  • 5.6. Electronics
    • 5.6.1. Applications
    • 5.6.2. Production volumes 2019-2036
  • 5.7. Agriculture and Horticulture
    • 5.7.1. Production volumes 2019-2036
  • 5.8. Production of Biopolymers, by region
    • 5.8.1. North America
    • 5.8.2. Europe
    • 5.8.3. Asia-Pacific
    • 5.8.4. Latin America

6. COMPANY PROFILES (581 company profiles)

7. APPENDIX

  • 7.1. Research Methodology
  • 7.2. Key terms and definitions

8. REFERENCES