表紙:メモリ・ストレージ技術の世界市場(2026年~2036年)
市場調査レポート
商品コード
1745944

メモリ・ストレージ技術の世界市場(2026年~2036年)

The Global Memory and Storage Technology Market 2026-2036


出版日
ページ情報
英文 379 Pages, 172 Tables, 87 Figures
納期
即納可能 即納可能とは
価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=202.61円
メモリ・ストレージ技術の世界市場(2026年~2036年)
出版日: 2025年06月25日
発行: Future Markets, Inc.
ページ情報: 英文 379 Pages, 172 Tables, 87 Figures
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界のメモリ・ストレージ技術の市場規模は、AI、ハイパフォーマンスコンピューティング、次世代データインフラからの爆発的な需要により、2036年までに4,000億米ドルを超えると予測され、大幅な拡大が見込まれています。2022年~2023年の深刻な景気後退から回復した後、この産業は2025年に2,000億米ドルを超える記録的な収益を達成しており、AIワークロードによって根本的に形を変えた持続的な成長軌道の幕開けを知らせています。

HBM(High Bandwidth Memory)が市場でもっともダイナミックなセグメントとして浮上しています。AIのトレーニングや推論の用途はかつてないメモリ帯域幅を要求するため、DRAM市場全体に占めるHBMのシェアは10年後までに50%に達すると予測されます。Samsung、SK hynix、Micronをはじめとする主要メーカーは、HBM3Eの生産を積極的に拡大しており、次世代HBM4技術はさらなる性能向上を約束しています。NANDフラッシュ技術は、3Dスケーリングの革新を通じて進化を続けており、各メーカーは先進のCBA(CMOS Bonded Array)アーキテクチャを使用して300層を超えようとしています。YMTCのXtacking 4.0技術や、産業のPLCストレージへの移行は、この部門の絶え間ない密度向上を示しています。一方、磁気抵抗RAM(MRAM)、抵抗変化型RAM(ReRAM)、強誘電体RAM(FeRAM)などの新メモリ技術は、特に組み込み用途やエッジコンピューティングデバイスで商業的な勢いを増しています。

中国のメモリメーカーは、YMTCが294層の3D NAND生産を達成し、CXMTが国産DDR5モジュールの発売に成功するなど、競合力学を根本的に変えつつあります。中国のメモリの市場シェアは消費者向け、企業向けともに拡大を続けており、世界の主要企業は高級製品の開発と先進技術の採用を加速せざるを得なくなっています。米国による輸出規制が続いているにもかかわらず、JHICCは生産能力を増強し、SwaySure Technologyのような新規参入企業は国内サプライチェーンを強化するなど、中国企業は目覚ましい技術の進歩を見せています。

データセンターとクラウドインフラは最大の成長促進要因であり、AI/MLワークロードに最適化された、精巧化の進むストレージソリューションを消費しています。ハイパースケール環境における従来のHDDに対するQLC SSDの経済的優位性は、ストレージの序列を再構築しており、10PBのQLCの展開は、従来の階層型ストレージアーキテクチャに比べて3,000万米ドルを超えるコスト削減を実現しています。エッジコンピューティングと自動車の用途は、自動運転車とIoTデバイスが高性能で信頼性の高いメモリソリューションを必要とするため、さらなる需要のベクトルを生み出しています。従来の平面技術が物理的限界に近づいているため、産業はスケーリングの課題に直面しています。3D DRAMアーキテクチャ、縦型トランジスタ設計、新しいセル構造は、2030年以降の重要な技術的道筋となります。W2W(wafer-to-wafer)ボンディングやチップレット集積などの先進のパッケージングのイノベーションは、製造の複雑性を管理しながら、継続的な性能向上を可能にします。

エネルギー効率の高い設計や循環型経済への取り組みに投資するメーカーを中心に、環境の持続可能性がますます技術開発に影響を及ぼすようになっています。地政学的動向は引き続きグローバルサプライチェーンを再構築し、長期的な市場力学に影響を与える地域化の動向や技術移転規制を促進します。2036年までのメモリ・ストレージ技術市場は、AIの普及、技術的ブレークスルーの達成、競合情勢の進化による根本的な変革を示します。成功には、複雑なスケーリングの課題を克服しながら、あらゆる市場セグメントにわたる次世代コンピューティング用途からの爆発的な需要を活用する必要があります。

当レポートでは、世界のメモリ・ストレージ技術市場について調査し、各セグメントの市場収益の予測、先進技術の分析とロードマップ、企業164社のプロファイルなどを提供しています。

目次

第1章 エグゼクティブサマリー

  • レポートの概要と主な調査結果
  • 市場規模と成長予測(2026年~2036年)
  • 技術ロードマップとイノベーションの動向
  • 市場力学と貿易に対する影響
  • 投資と市場見通し

第2章 イントロダクション

  • 世界のメモリ・ストレージ技術の情勢
  • コンピューティングアーキテクチャの進化
  • AIとメモリ技術
  • 最終市場の分析

第3章 市場予測(2026年~2036年)

  • 市場予測
  • DRAM市場の予測
  • NANDフラッシュ・SSD市場の予測
  • ハードディスクドライブ(HDD)市場の予測
  • クラウド・データセンター向けストレージの予測
  • エッジコンピューティング向けストレージの予測
  • AI・HPC向けメモリ/ストレージの予測
  • 新メモリ技術の予測

第4章 DRAM技術の分析とロードマップ

  • 従来のDRAMのスケーリングと課題
  • 3D DRAMアーキテクチャの開発
  • CMOSボンディングと先進の統合
  • HBM(High Bandwidth Memory)技術

第5章 NANDフラッシュ技術の分析とロードマップ

  • 3D NANDのスケーリングと層数の進化
  • CBA(CMOS Bonded Array)とXtacking技術
  • マルチレベルセル技術の進化
  • NANDインターフェースとフォームファクターの進化
  • 先進のNAND技術

第6章 新メモリ技術

  • 磁気抵抗RAM(MRAM)技術
  • MRAMの応用と開発
  • 抵抗変化型RAM(ReRAM/RRAM)技術
  • ReRAMの開発と応用
  • 強誘電体RAM(FeRAM)技術
  • 相変化メモリ(PCM)技術
  • 次世代メモリアーキテクチャ
  • 新メモリ技術の比較

第7章 サプライチェーンと製造の分析

  • グローバルサプライチェーンのマッピング
  • 製造能力と投資
  • テクノロジーノードの移行と歩留まり

第8章 地域市場の分析

  • 中国のメモリ産業の発展
  • 貿易規制と地政学的影響
  • 地域の市場力学

第9章 用途

  • AI・機械学習向けメモリソリューション
  • データセンターとクラウドストレージの進化
  • 自動車用メモリ・ストレージシステム
  • 先進用途向け組み込みメモリ

第10章 先進のパッケージングと統合の技術

  • 3D統合とパッケージングのイノベーション
  • ハイブリッドボンディングと先進の組立
  • PIM(Processing-in-Memory)とニアメモリコンピューティング

第11章 持続可能性と環境への影響

  • メモリ技術の環境フットプリント
  • 循環型経済と廃棄物管理

第12章 価格設定の分析と経済モデル

  • 過去と現在の価格設定の動向
  • コスト構造と経済性
  • 将来の価格設定の予測とモデル

第13章 技術ロードマップと将来の発展

  • 長期的な記憶技術のビジョン
  • 画期的な技術と研究
  • システムレベル統合の進化

第14章 企業プロファイル(企業164社のプロファイル)

第15章 付録

第16章 参考文献

図表

List of Tables

  • Table 1. Market Size and Growth Projections 2026-2036
  • Table 2. Key Architectural Innovations Timeline
  • Table 3.Breakthrough Technology Timeline
  • Table 4. Major Industry Players Investment Commitments
  • Table 5. Investment by category
  • Table 6. Regional Investment Distribution
  • Table 7. Total market size 2019-2025
  • Table 8. Memory & Storage Value Chain
  • Table 9. Memory and Storage Technology Market Drivers and Restraints
  • Table 10. Memory Hierarchy for Modern Computing Systems
  • Table 11. Global Data Growth and Storage Demand 2026-2036
  • Table 12. Memory/Storage Power Consumption Trends
  • Table 13. Memory Bandwidth vs Processor Performance Evolution
  • Table 14. AI and Memory Technologies
  • Table 15. Data Center Memory and Storage Requirements by Scale
  • Table 16. AI/HPC Memory Requirements by Workload Type
  • Table 17. Consumer Device Memory Evolution 2026-2036
  • Table 18. Automotive Memory Content Evolution by Vehicle Type
  • Table 19.Automotive Memory Content Evolution by Vehicle Type
  • Table 20. Edge Computing Storage Requirements by Application
  • Table 21. Embedded Memory Market by Technology Node
  • Table 22. Global Memory and Storage Market Revenue Forecast 2026-2036
  • Table 23. Market Breakdown by Technology (DRAM, NAND, HDD, Emerging NVM) 2026-2036 (Billions USD)
  • Table 24. Market Segmentation by End Applications 2026-2036 (Billions USD)
  • Table 25. Market Breakdown by Region 2026-2036 (Billions USD)
  • Table 26. DRAM Market Size by Application (AI/HPC, Data Centers, Edge), 2026-2036 (Billions USD)
  • Table 27. HBM Unit Sales and Revenue Forecast 2026-2036
  • Table 28. Mobile DRAM Market by Device Type
  • Table 29. SSD/NAND Market Size by Application Segment
  • Table 30. Enterprise SSD Market by Form Factor and Interface (Billions USD)
  • Table 31. Client SSD Market by Interface (PCIe, SATA)
  • Table 32. HDD Market Forecast by End-Use Segment 2026-2036
  • Table 33. Cloud/Data Center Storage Market by Technology (Billions USD)
  • Table 34. Edge Storage Market by Technology and Application (Billions USD)
  • Table 35. Edge Storage Growth by Vertical Market
  • Table 36. Automotive Memory and Storage Market Forecast (Billions USD)
  • Table 37. Memory and Storage for AI/HPC Servers
  • Table 38. AI Memory Requirements by Model Size and Workload
  • Table 39. GPU and Accelerator Memory Market by Technology
  • Table 40. Emerging Memory Market by Technology (MRAM, ReRAM, FeRAM, PCM), Billions USD
  • Table 41. MRAM Market Forecast by End Use Market (Billions USD), 2026-2036
  • Table 42. ReRAM Market Forecast by End Use Market (Billions USD), 2025-2036
  • Table 43. FeRAM Market Forecast by End Use Market (Billions USD), 2025-2036
  • Table 44. PCM Market Forecast by End Use Market (Billions USD), 2025-2036
  • Table 45. DRAM Node Progression and Technical Milestones
  • Table 46. DRAM Scaling Challenges by Technology Node
  • Table 47. DRAM Cell Design Evolution and Area Scaling
  • Table 48. 3D DRAM Architecture Approaches and Feasibility
  • Table 49. Capacitor-less DRAM Technology Comparison
  • Table 50. CMOS Bonding Technology Comparison
  • Table 51. CBA Implementation Timeline by Manufacturer
  • Table 52. HBM Packaging Technology Comparison (micrometer - bump vs Hybrid)]
  • Table 53. HBM Thermal Management Solutions
  • Table 54. HBM Integration Approaches by Platform Type
  • Table 55. 3D NAND Layer Count Roadmap by Company
  • Table 56. 3D NAND Scaling Challenges and Solutions
  • Table 57. 3D NAND Aspect Ratio Challenges by Layer Count
  • Table 58. YMTC Xtacking Technology Evolution (1.0 to 4.0+)
  • Table 59. CBA Technology Implementation Comparison
  • Table 60. Major Players' Bonding Technology Timeline
  • Table 61. NAND Cell Type Market Share Evolution
  • Table 62. NAND Cell Reliability Metrics by Technology
  • Table 63. PCIe Performance Evolution and SSD Adoption
  • Table 64. NVMe Feature Evolution and Performance Impact
  • Table 65. Next-Generation Storage Protocols
  • Table 66. Advanced NAND technologies
  • Table 67. CiM NAND Technology Specifications
  • Table 68. SCM NAND vs Traditional NAND Comparison
  • Table 69. MRAM Technology Types and Characteristics
  • Table 70. SOT-MRAM vs STT-MRAM Performance Comparison
  • Table 71. Advanced MRAM Switching Technologies
  • Table 72. eMRAM Technology Roadmap by Process Node
  • Table 73. Everspin MRAM Product Portfolio and Specifications
  • Table 74. Automotive MRAM Market by ECU Type
  • Table 75. MRAM Applications in Edge Computing
  • Table 76. A&D MRAM Requirements and Solutions
  • Table 77. ReRAM Material Systems and Performance
  • Table 78. ReRAM Technology Variants and Mechanisms
  • Table 79. ReRAM Selector Technologies and Performance
  • Table 80. Weebit Nano ReRAM Roadmap and Specifications
  • Table 81. Crossbar ReRAM Technology and Applications
  • Table 82. 4DS Memory ReRAM Technology Characteristics
  • Table 83. Foundry ReRAM Technology Platforms
  • Table 84. Traditional FeRAM Technology Limitations
  • Table 85. PCM Material Properties and Performance
  • Table 86. STMicroelectronics ePCM Technology
  • Table 87. PCM Weight Storage for Edge AI
  • Table 88. NRAM Technology Development Status
  • Table 89. Next-Generation Ferroelectric Memory Technologies
  • Table 90. Advanced MRAM Technology Comparison
  • Table 91. Emerging Memory Application Mapping
  • Table 92. Emerging Memory Technology Performance Matrix
  • Table 93. Application Suitability Analysis
  • Table 94. Emerging Memory Technology Readiness Assessment
  • Table 95. Major Memory Companies
  • Table 96. Chinese Memory Ecosystem Development Strategy
  • Table 97. Chinese Memory Companies
  • Table 98. Emerging Memory Technologies and Players
  • Table 99. Equipment and Materials Suppliers
  • Table 100. Assembly and Test Services (OSAT) players
  • Table 101. Types of Raw Materials and Chemicals Used in Memory Manufacturing
  • Table 102.Raw Materials and Chemical Supply Chain Analysis
  • Table 103. Memory Manufacturing Capacity by Region and Technology
  • Table 104. Memory Fab Capacity and Utilization Rates
  • Table 105. Advanced Node Fab Investment Requirements
  • Table 106. 3D NAND Layer Scaling and Yield Challenges
  • Table 107. Emerging Memory Foundry Integration Status
  • Table 108. Cost Structure Evolution by Technology
  • Table 109. China Memory Market Evolution and Projections
  • Table 110. YMTC Technology Milestones and Layer Count Evolution
  • Table 111. CXMT DRAM Development and Market Impact
  • Table 112. China Memory Supply Chain Development Status
  • Table 113. Technology Export Restrictions and Industry Impact
  • Table 114. Tariff Impact Analysis by Technology Segment
  • Table 115. LLM Memory Requirements by Model Size
  • Table 116. AI Inference Memory Solutions by Application
  • Table 117. Neuromorphic Memory Architecture and Technologies
  • Table 118. QLC SSD vs HDD Total Cost of Ownership
  • Table 119. SCM Technology Options and Data Center Adoption
  • Table 120. Computational Storage Architecture and Benefits
  • Table 121. Automotive Memory Requirements by Autonomy Level
  • Table 122. Automotive Memory Qualification and Standards
  • Table 123. EV Memory Applications and Requirements
  • Table 124. IIoT Memory Technology Requirements
  • Table 125. Smart City Storage Applications and Technologies
  • Table 126. SoC Embedded Memory Technology Trends
  • Table 127. Imaging System Memory Requirements
  • Table 128. Security IC Memory Technology Requirements
  • Table 129. Embedded Memory Market by Technology and Application
  • Table 130. MCU Embedded Memory Evolution by End-Market
  • Table 131. TSV Technology Evolution and Applications
  • Table 132. WLP Technology for Advanced Memory Packaging
  • Table 133. Memory Chiplet Architecture Benefits and Challenges
  • Table 134. Next-Generation Memory Package Substrates
  • Table 135. Hybrid Bonding vs Traditional Interconnect Comparison
  • Table 136. Wafer Bonding Process Flow and Challenges
  • Table 137. FOWLP Technology for Memory Applications
  • Table 138. PiM DRAM Technology Development
  • Table 139. Near-Memory Computing Technology Comparison
  • Table 140. Commercial PiM Solutions Comparison
  • Table 141. Memory Technology Lifecycle Carbon Footprint
  • Table 142. Memory Fab Environmental Impact Metrics
  • Table 143. Memory Technology Energy Efficiency Trends
  • Table 144. Industry Sustainability Programs and Targets
  • Table 145. Memory Product Lifecycle and Recycling
  • Table 146. Critical Material Recycling Rates and Targets
  • Table 147. Sustainable Memory Design Principles
  • Table 148. EPR Programs and Industry Compliance
  • Table 149. DRAM Price History and Volatility Analysis
  • Table 150. NAND Price Trends by Density and Technology
  • Table 151. HBM vs Standard DRAM Price Premium Evolution
  • Table 152. Memory Manufacturing Cost Structure by Technology
  • Table 153. Memory Technology Development Cost Trends
  • Table 154. Yield Learning Curves and Cost Impact
  • Table 155. Memory Fab Scale Economics Analysis
  • Table 156. Memory Technology Cost Projections by Node
  • Table 157. Memory Market Price Elasticity by Segment
  • Table 158. Emerging Memory Cost Reduction Projections
  • Table 159. Value-Based Pricing Models for Memory
  • Table 160. Quantum Memory Technology Research Status
  • Table 161. Photonic Memory Technology Prospects
  • Table 162. Edge AI Memory System Requirements
  • Table 163. Comprehensive DRAM Technology Specifications
  • Table 164. 3D NAND Technology Detailed Specifications
  • Table 165. HBM Generation Specifications and Roadmap
  • Table 166. Emerging Memory Technology Detailed Comparison
  • Table 167. Memory and Storage Industry Standards
  • Table 168. Memory Technology Terms
  • Table 169. Storage Technology Terms
  • Table 170. Manufacturing Process Terms
  • Table 171. Packaging and Assembly Terms
  • Table 172. Industry Acronyms and Abbreviations

List of Figures

  • Figure 1. Memory and Storage Technology Roadmap
  • Figure 2. Computing Memory Hierarchy and Performance Gaps
  • Figure 3. Global Memory and Storage Market Revenue Forecast 2026-2036
  • Figure 4. Market Breakdown by Technology (DRAM, NAND, HDD, Emerging NVM (Billions USD)
  • Figure 5. Market Segmentation by End Applications 2026-2036 (Billions USD)
  • Figure 6. Market Breakdown by Region 2026-2036 (Billions USD)
  • Figure 7. DRAM Market Size by Application (AI/HPC, Data Centers, Edge), 2026-2036 (Billions USD)
  • Figure 8. DDR Technology Roadmap and Market Transition
  • Figure 9. SSD/NAND Market Size by Application Segment
  • Figure 10. SSD Technology Mix Evolution 2026-2036
  • Figure 11. HDD Capacity Evolution and HAMR/MAMR Timeline
  • Figure 12. HAMR and MAMR Technology Adoption Timeline
  • Figure 13. Cloud/Data Center Storage Market by Technology
  • Figure 14. Storage Demand by Customer Type and Capacity Tier
  • Figure 15. Automotive Memory and Storage Market Forecast (Billions USD)
  • Figure 16. GPU and Accelerator Memory Market by Technology
  • Figure 17. Emerging Memory Market by Technology (MRAM, ReRAM, FeRAM, PCM), Billions USD
  • Figure 18. Emerging Memory Application Mix and Revenue Split
  • Figure 19. MRAM Market Forecast by Application Segment (Billions USD), 2026-2036
  • Figure 20. ReRAM Market Forecast by End Use Market (Billions USD), 2025-2036
  • Figure 21. FeRAM Market Forecast by End Use Market (Billions USD), 2025-2036
  • Figure 22. PCM Market Forecast by End Use Market (Billions USD), 2025-2036
  • Figure 23. DRAM Process Technology Innovation Timeline
  • Figure 24. 3D DRAM Horizontal Capacitor Architecture
  • Figure 25. Advanced DRAM Cell Architectures
  • Figure 26. Vertical Transistor DRAM Cell Design
  • Figure 27. Multi-Wafer Bonding Process Flow
  • Figure 28. HBM Technology Roadmap and Specifications
  • Figure 29. HBM 3D Stack Architecture and TSV Design
  • Figure 30. 3D NAND architecture
  • Figure 31. 3D NAND Layer Count Evolution 2026-2036
  • Figure 32. 3D NAND Process Flow Complexity Evolution
  • Figure 33. YMTC 3D Xtacking-R NAND Flash
  • Figure 34. Concept of CBA technology and cross-sectional schematic of 3D flash memory
  • Figure 35. Cross-sectional device structure comparison between conventional CUA and CBA technology
  • Figure 36. Future 3D NAND Multi-Wafer Architecture
  • Figure 37. Advanced ECC and Signal Processing Evolution
  • Figure 38. SSD Form Factor Evolution Timeline
  • Figure 39. AI-Specific NAND Architecture Features
  • Figure 40. STT-MRAM Cell Structure and Operation
  • Figure 41. ReRAM Crossbar Array Design
  • Figure 42. 3D XPoint Architecture
  • Figure 43. Emerging Memory Cost Roadmap
  • Figure 44. Global Memory Supply Chain Structure
  • Figure 45. DRAM Technology Node Migration Timeline
  • Figure 46. AI Training Memory Architecture Evolution
  • Figure 47. Hyperscale Storage Tier Architecture
  • Figure 48. Wearable Device Memory Evolution
  • Figure 49. MCU Embedded Memory Technology Roadmap
  • Figure 50. SiP Memory Architecture Evolution
  • Figure 51. CiM NAND Architecture for AI Acceleration
  • Figure 52. AiM Technology for LLM Inference
  • Figure 53. Emerging Memory Price Roadmap
  • Figure 54. Memory Technology Roadmap to 2036
  • Figure 55. Memory Technology Performance Roadmap
  • Figure 56. Memory Power Efficiency Roadmap
  • Figure 57. Memory Reliability Technology Roadmap
  • Figure 58. DNA Storage Technology Timeline and Applications
  • Figure 59. Neuromorphic Memory Technology Development
  • Figure 60. Memory-Centric Computing Technology Roadmap
  • Figure 61. In-Memory Database Technology Evolution
  • Figure 62. Autonomous System Memory Technology Roadmap
  • Figure 63. DDR4 SDRAM Space Qualified Memory - 3D PLUS
  • Figure 64. MicroSD memory card
  • Figure 65. AP Memory
  • Figure 66. AS3004316-035nX0IBCY Avalanche Technology
  • Figure 67. Cerebas WSE-2
  • Figure 68. DDR5 dynamic random access memory technology
  • Figure 69. Crossbar, Inc. ReRAM
  • Figure 70. Dosilicon memory
  • Figure 71. Etron Technology DRAM
  • Figure 72. Everspin MRAM chip
  • Figure 73. SONOS-type flash memory
  • Figure 74. Colossus(TM) MK2 GC200 IPU
  • Figure 75. Groq Tensor Streaming Processor (TSP)
  • Figure 76. GSI Technology DDR SRAM
  • Figure 77. Pentonic 2000
  • Figure 78. Mythic MP10304 Quad-AMP PCIe Card
  • Figure 79. Numemory's new NM101 memory chip
  • Figure 80. Nuvoton M2L31
  • Figure 81. Nvidia H200 AI chip
  • Figure 82. Grace Hopper Superchip
  • Figure 83. Panmnesia memory expander module (top) and chassis loaded with switch and expander modules (below)
  • Figure 84. Cloud AI 100
  • Figure 85. Cardinal SN10 RDU
  • Figure 86. Weebit Nano RRAM technology
  • Figure 87. Weebit Nano/ Embedded AI Systems (EMASS), ReRAM demo
目次

The global memory and storage technology market is poised for significant expansion, projected to exceed $400 billion by 2036, driven by explosive demand from artificial intelligence, high-performance computing, and next-generation data infrastructure. After recovering from the severe cyclical downturn of 2022-2023, the industry achieved record revenues surpassing $200 billion in 2025, marking the beginning of a sustained growth trajectory fundamentally reshaped by AI workloads.

High Bandwidth Memory (HBM) emerges as the market's most dynamic segment. HBM's share of the total DRAM market is expected to reach 50% by decade's end, as AI training and inference applications demand unprecedented memory bandwidth. Leading manufacturers including Samsung, SK hynix, and Micron are aggressively scaling HBM3E production, with next-generation HBM4 technology promising even greater performance gains. NAND flash technology continues evolving through 3D scaling innovations, with manufacturers pushing beyond 300 layers using advanced CMOS Bonded Array (CBA) architectures. YMTC's Xtacking 4.0 technology and the industry's transition to Penta-Level Cell (PLC) storage demonstrate the sector's relentless density improvements. Meanwhile, emerging memory technologies-including Magnetoresistive RAM (MRAM), Resistive RAM (ReRAM), and Ferroelectric RAM (FeRAM)-are gaining commercial traction, particularly in embedded applications and edge computing devices.

Chinese memory manufacturers are fundamentally altering competitive dynamics, with YMTC achieving 294-layer 3D NAND production and CXMT successfully launching domestic DDR5 modules. China's memory market share continues expanding across consumer and enterprise segments, forcing global leaders to accelerate premium product development and advanced technology adoption. Despite ongoing U.S. export restrictions, Chinese companies demonstrate remarkable technological progress, with JHICC ramping capacity and new entrants like SwaySure Technology strengthening domestic supply chains.

Data centers and cloud infrastructure represent the largest growth driver, consuming increasingly sophisticated storage solutions optimized for AI/ML workloads. The economic advantages of QLC SSDs over traditional HDDs in hyperscale environments are reshaping storage hierarchies, with 10PB QLC deployments delivering $30+ million cost savings over traditional tiered storage architectures. Edge computing and automotive applications create additional demand vectors, as autonomous vehicles and IoT devices require high-performance, reliable memory solutions. The industry faces mounting scaling challenges as conventional planar technologies approach physical limits. 3D DRAM architectures, vertical transistor designs, and novel cell structures represent critical technological pathways beyond 2030. Advanced packaging innovations, including wafer-to-wafer bonding and chiplet integration, enable continued performance improvements while managing manufacturing complexity.

Environmental sustainability increasingly influences technology development, with manufacturers investing in energy-efficient designs and circular economy initiatives. Geopolitical tensions continue reshaping global supply chains, driving regionalization trends and technology transfer restrictions that impact long-term market dynamics. The memory and storage technology market to 2036 represents a fundamental transformation driven by AI proliferation, technological breakthrough achievements, and evolving competitive landscapes. Success requires navigating complex scaling challenges while capitalizing on explosive demand from next-generation computing applications across all market segments.

"The Global Memory and Storage Technology Market 2026-2036" provides insights into the rapidly evolving memory and storage landscape, delivering critical analysis for technology leaders, investors, and strategic decision-makers navigating the industry's transformation through 2036.

Report contents include:

  • Market Forecasting and Technology Segmentation:
    • Global market revenue projections spanning 2026-2036 with detailed breakdowns by technology, application, and geographic region
    • DRAM market analysis including High Bandwidth Memory (HBM) growth trajectories, DDR evolution, and mobile memory trends
    • NAND flash and SSD market forecasts covering enterprise, consumer, and emerging cell technologies including QLC and PLC developments
    • Hard disk drive market evolution with energy-assisted recording technologies (HAMR/MAMR) adoption timelines
    • Emerging memory technologies market sizing for MRAM, ReRAM, FeRAM, and PCM across embedded and standalone applications
  • Advanced Technology Analysis and Roadmaps:
    • Detailed DRAM technology progression from planar scaling challenges to 3D architecture development
    • CMOS bonding and advanced integration technologies including vertical transistor implementations
    • HBM technology evolution covering 3D stacking, thermal management, and processor integration strategies
    • NAND flash scaling analysis beyond 300 layers with CBA and Xtacking technology implementations
    • Comprehensive emerging memory technology comparison including performance benchmarking and commercialization timelines
  • Supply Chain and Manufacturing Intelligence:
    • Global manufacturing capacity analysis by technology and region with capital expenditure trends
    • Technology node migration strategies and yield learning curve optimization
    • Equipment supplier analysis covering critical manufacturing tools and materials
    • Regional market dynamics including China's memory industry development and trade restriction impacts
  • Application-Specific Market Analysis:
    • AI and machine learning memory requirements including LLM infrastructure scaling
    • Data center and cloud storage evolution with QLC SSD economic analysis
    • Automotive memory systems covering ADAS levels and autonomous vehicle storage architectures
    • Edge computing and IoT memory solutions across industrial and consumer applications
    • Embedded memory analysis for microcontrollers, SoCs, and advanced semiconductor applications
  • Strategic Business Intelligence:
    • Advanced packaging and integration technologies including 3D stacking and chiplet architectures
    • Processing-in-memory and computational storage development with commercial product analysis
    • Sustainability and environmental impact assessment across technology lifecycles
    • Comprehensive pricing analysis with historical trends and future projection models
    • Technology roadmaps extending to 2036 with breakthrough technology research including quantum and neuromorphic memory
  • Company Intelligence and Market Positioning:
    • Detailed profiles of 164 companies across the memory and storage ecosystem including 3D Plus, 4DS Memory, Adata Technology, Advantest Corporation, AMD (Advanced Micro Devices), Ambiq Micro, Amkor Technology, ANAFLASH, AP Memory, Apacer Technology, Applied Materials, ASE Group, ASM International, ASML Holding, Atomera, Avalanche Technology, Axelera AI, BeSang Inc., Besi (BE Semiconductor), Celestial AI, Cerebras Systems, Crocus Nanoelectronics, Crossbar Inc., CXMT (ChangXin Memory Technologies), d-Matrix, Dosilicon, eMemory, ESMT (Elite Semiconductor), Etron Technology, Everspin Technologies, Expedera, Ferroelectric Memory Company, Floadia Corporation, Fudan Microelectronics, Giantec Semiconductor, GigaDevice Semiconductor, GlobalFoundries, Google LLC, Graphcore, Groq, GSI Technology, Gwanak Analog Co. Ltd., Hailo, Hefei Reliance Memory, HFC (Hefei Core Storage), HHGrace, Hikstor, Hitachi Ltd., Houmo.ai, IBM Corporation, IMEC, Infineon Technologies, Innostar Semiconductor, Innovation Memory, Inston Inc., Intel Corporation, Intelligent Hardware Korea (IHWK), Intelligent Memory, Intrinsic Semiconductor Technologies, ISSI (Integrated Silicon Solution), JCET Group, JHICC (Jinhua Integrated Circuit), JONSPIN Road, Kingston Technology, Kioxia Corporation, Kneron Inc., Lam Research, Longsys Electronics, LQUOM, Luminous Computing, Lyontek Inc., Macronix International, Marvell Technology, Maxio Technology, MediaTek Inc., Microchip Technology, Micron Technology, MonolithIC 3D, Montage Technology, Mythic, Nantero Inc., Nanya Technology, NEC Corporation, Neo Semiconductor, NetList Inc., Netsol, Neumonda, NeuroBlade, NGD Systems, NTT, Numem Inc., Numemory, Nuvoton Technology, Nvidia, Onto Innovation, and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Report Overview and Key Findings
  • 1.2. Market Size and Growth Projections 2026-2036
  • 1.3. Technology Roadmap and Innovation Trends
  • 1.4. Market Dynamics and Trade Implications
  • 1.5. Investment and Market Outlook

2. INTRODUCTION

  • 2.1. Global Memory and Storage Technology Landscape
    • 2.1.1. Market Definition and Scope
    • 2.1.2. Historical Market Evolution (2019-2025)
    • 2.1.3. Current Market Size and Structure
    • 2.1.4. Technology Classification Framework
    • 2.1.5. Value Chain Analysis
    • 2.1.6. Market Drivers and Restraints
  • 2.2. Computing Architecture Evolution
    • 2.2.1. Memory Hierarchy for Modern Computing Systems
    • 2.2.2. Data Growth Impact on Storage Requirements
    • 2.2.3. Energy Consumption Challenges
    • 2.2.4. Performance Bottlenecks and Memory Wall Challenges
  • 2.3. AI and Memory Technologies
    • 2.3.1.1. HBM stacks
    • 2.3.1.2. GDDR
    • 2.3.1.3. SRAM
    • 2.3.1.4. STT-RAM
    • 2.3.1.5. ReRAM
  • 2.4. End-Market Analysis
    • 2.4.1. Data Centers and Cloud Infrastructure
    • 2.4.2. High-Performance Computing (HPC) and AI Applications
    • 2.4.3. Mobile and Consumer Electronics
    • 2.4.4. Automotive and Industrial Applications
    • 2.4.5. Edge Computing and IoT Devices
    • 2.4.6. Embedded Systems and Microcontrollers

3. MARKET FORECASTS (2026-2036)

  • 3.1. Market Projections
    • 3.1.1. Global Market Size by Revenue (USD Billion)
    • 3.1.2. Market Size by Technology Segment
    • 3.1.3. Market Size by Application Segment
    • 3.1.4. Regional Market Distribution
  • 3.2. DRAM Market Forecast
    • 3.2.1. Total DRAM Market Projections
    • 3.2.2. DDR Memory Evolution and Adoption
    • 3.2.3. High Bandwidth Memory (HBM) Growth
    • 3.2.4. LPDDR and Mobile Memory Trends
  • 3.3. NAND Flash and SSD Market Forecast
    • 3.3.1. Total NAND Market Projections
    • 3.3.2. SSD Cell Type Evolution (SLC, TLC, QLC, PLC)
    • 3.3.3. Enterprise and Data Center SSD Growth
    • 3.3.4. Consumer and Client SSD Market
  • 3.4. Hard Disk Drive (HDD) Market Forecast
    • 3.4.1. HDD Market Size by Application
    • 3.4.2. Capacity and Technology Roadmap
    • 3.4.3. Energy-Assisted Recording Technologies
  • 3.5. Cloud and Data Center Storage Forecast
    • 3.5.1. Total Cloud Storage Market Size
    • 3.5.2. Hyperscale vs Enterprise Demand
    • 3.5.3. Storage Tiering and Architecture Evolution
  • 3.6. Edge Computing Storage Forecast
    • 3.6.1. Edge Storage Market Size
    • 3.6.2. IoT and Industrial Edge Applications
    • 3.6.3. Automotive Storage Requirements
  • 3.7. AI and HPC Memory/Storage Forecast
    • 3.7.1. AI/HPC Memory Requirements
    • 3.7.2. Training vs Inference Workload Demands
    • 3.7.3. Accelerator Memory Solutions
  • 3.8. Emerging Memory Technologies Forecast
    • 3.8.1. Total Emerging NVM Market Size
    • 3.8.2. Embedded vs Stand-alone Applications
    • 3.8.3. Technology-Specific Forecasts
      • 3.8.3.1. MRAM
      • 3.8.3.2. ReRAM
      • 3.8.3.3. FeRAM
      • 3.8.3.4. PCM

4. DRAM TECHNOLOGY ANALYSIS AND ROADMAPS

  • 4.1. Conventional DRAM Scaling and Challenges
    • 4.1.1. Planar DRAM Node Progression (1Alpha- to 0d)
    • 4.1.2. Scaling Limitations and Physical Challenges
    • 4.1.3. Cell Design Evolution and 6F2 to 4F2 Transition
    • 4.1.4. Process Technology Improvements
  • 4.2. 3D DRAM Architecture Development
    • 4.2.1. 3D DRAM Integration Pathways
    • 4.2.2. Horizontal Capacitor Designs (1T-1C)
    • 4.2.3. Capacitor-less Solutions (2T0C, 1T Floating Body)
    • 4.2.4. Gain Cell and Floating Body Implementations
  • 4.3. CMOS Bonding and Advanced Integration
    • 4.3.1. Wafer-to-Wafer Bonding Technologies
    • 4.3.2. Vertical Transistor (VT) Implementation
    • 4.3.3. CMOS Bonded Array (CBA) for DRAM
    • 4.3.4. Multi-Wafer Bonding Challenges
  • 4.4. High Bandwidth Memory (HBM) Technology
    • 4.4.1. HBM Generation Evolution (HBM3E to HBM4+)
    • 4.4.2. 3D Stacking Technology and TSV Implementation
    • 4.4.3. Packaging Innovation and Hybrid Bonding Transition
    • 4.4.4. Thermal Management and Power Delivery
    • 4.4.5. HBM Integration with Processors and GPUs

5. NAND FLASH TECHNOLOGY ANALYSIS AND ROADMAPS

  • 5.1. 3D NAND Scaling and Layer Count Evolution
    • 5.1.1. Layer Stacking Progress by Manufacturer
    • 5.1.2. Scaling Challenges Beyond 300 Layers
    • 5.1.3. Aspect Ratio Limitations and Solutions
    • 5.1.4. Manufacturing Process Complexity
  • 5.2. CMOS Bonded Array (CBA) and Xtacking Technologies
    • 5.2.1. Xtacking Architecture by YMTC
    • 5.2.2. Kioxia and SanDisk CBA Implementation
    • 5.2.3. Samsung and SK hynix Bonding Approaches
    • 5.2.4. Multi-Wafer Bonding for 500+ Layer Scaling
  • 5.3. Multi-Level Cell Technology Evolution
    • 5.3.1. TLC to QLC Transition and Market Adoption
    • 5.3.2. Penta-Level Cell (PLC) Development
    • 5.3.3. Cell Reliability and Endurance Challenges
    • 5.3.4. Error Correction and Signal Processing
  • 5.4. NAND Interface and Form Factor Evolution
    • 5.4.1. PCIe Generation Progression (Gen4 to Gen6+)
    • 5.4.2. EDSFF and Enterprise Form Factor Transition
    • 5.4.3. NVMe Protocol Development
    • 5.4.4. CXL and Memory Semantic Protocols
  • 5.5. Advanced NAND Technologies
    • 5.5.1. Compute-in-Memory NAND (Macronix CiM)
    • 5.5.2. AI-Optimized NAND Solutions
    • 5.5.3. Storage Class Memory NAND

6. EMERGING MEMORY TECHNOLOGIES

  • 6.1. Magnetoresistive RAM (MRAM) Technology
    • 6.1.1. STT-MRAM vs SOT-MRAM Technology Comparison
    • 6.1.2. Spin-Transfer Torque (STT) MRAM Development
    • 6.1.3. Spin-Orbit Torque (SOT) MRAM Innovation
    • 6.1.4. VCMA-MRAM and Advanced Switching Mechanisms
    • 6.1.5. Embedded MRAM (eMRAM) for Advanced Nodes
  • 6.2. MRAM Applications and Market Development
    • 6.2.1. Discrete MRAM Products
    • 6.2.2. Automotive MRAM Applications
    • 6.2.3. Edge AI and IoT MRAM Solutions
    • 6.2.4. Aerospace and Defense MRAM
  • 6.3. Resistive RAM (ReRAM/RRAM) Technology
    • 6.3.1. Oxide-based ReRAM Technology
    • 6.3.2. Conductive Bridge RAM (CBRAM)
    • 6.3.3. Selector Device Integration
    • 6.3.4. Crossbar Array Architecture
  • 6.4. ReRAM Development and Applications
    • 6.4.1. Weebit Nano SiOx ReRAM Technology
    • 6.4.2. Crossbar Inc.High-Density ReRAM
    • 6.4.3. 4DS Memory Interface Switching ReRAM
    • 6.4.4. Foundry ReRAM Integration (TSMC, GlobalFoundries)
  • 6.5. Ferroelectric RAM (FeRAM) Technology
    • 6.5.1. Traditional PZT-based FeRAM
    • 6.5.2. HfO2-based Ferroelectric Technology
    • 6.5.3. Ferroelectric FET (FeFET) Development
  • 6.6. Phase Change Memory (PCM) Technology
    • 6.6.1. PCM Material Systems and Optimization
    • 6.6.2. 3D XPoint Technology Legacy (Intel Optane)
    • 6.6.3. Embedded PCM (ePCM) for Microcontrollers
    • 6.6.4. PCM for Neural Network Applications
  • 6.7. Next-Generation Memory Architectures
    • 6.7.1. NRAM and Carbon Nanotube Memory
    • 6.7.2. CeRAM and Advanced Ferroelectric Solutions
    • 6.7.3. SOT-MRAM and VCMA Memory Development
  • 6.8. Emerging Memory Technology Comparison
    • 6.8.1. Performance Benchmarking Matrix
    • 6.8.2. Application Suitability Analysis
    • 6.8.3. Technology Readiness and Commercialization Timeline
    • 6.8.4. Cost and Scalability Projections

7. SUPPLY CHAIN AND MANUFACTURING ANALYSIS

  • 7.1. Global Supply Chain Mapping
    • 7.1.1. Memory Manufacturing Ecosystem
    • 7.1.2. Major Memory Manufacturers
    • 7.1.3. Chinese Memory Companies
    • 7.1.4. Emerging Memory Technology Companies
    • 7.1.5. Equipment and Materials Suppliers
    • 7.1.6. Assembly and Test Services (OSAT)
    • 7.1.7. Raw Materials and Chemical Supply
  • 7.2. Manufacturing Capacity and Investment
    • 7.2.1. Global Wafer Capacity by Technology and Region
    • 7.2.2. Fab Utilization and Investment Trends
    • 7.2.3. Next-Generation Fab Requirements
  • 7.3. Technology Node Migration and Yield
    • 7.3.1. DRAM Node Progression and Yield Learning
    • 7.3.2. NAND Layer Count Scaling and Manufacturing
    • 7.3.3. Emerging Memory Manufacturing Integration
    • 7.3.4. Cost Structure Evolution by Technology

8. REGIONAL MARKET ANALYSIS

  • 8.1. China Memory Industry Development
    • 8.1.1. Chinese Memory Market Size and Growth
    • 8.1.2. YMTC Technology Progress and Roadmap
    • 8.1.3. CXMT DRAM Development and Market Impact
    • 8.1.4. Chinese Memory Supply Chain Localization
  • 8.2. Trade Restrictions and Geopolitical Impact
    • 8.2.1. US-China Trade War Impact on Memory Industry
    • 8.2.2. Export Control Effects on Technology Transfer
    • 8.2.3. Supply Chain Regionalization Trends
    • 8.2.4. 2025 Tariff Landscape and Risk Assessment
  • 8.3. Regional Market Dynamics
    • 8.3.1. North America
    • 8.3.2. Europe
    • 8.3.3. Asia-Pacific

9. APPLICATIONS

  • 9.1. AI and Machine Learning Memory Solutions
    • 9.1.1. Large Language Model (LLM) Memory Requirements
    • 9.1.2. AI Training Infrastructure Memory Scaling
    • 9.1.3. AI Inference Memory Optimization
    • 9.1.4. Neuromorphic Computing Memory Requirements
  • 9.2. Data Center and Cloud Storage Evolution
    • 9.2.1. Hyperscale Data Center Storage Architecture
    • 9.2.2. QLC SSD vs HDD Economic Analysis
    • 9.2.3. Storage Class Memory (SCM) Integration
    • 9.2.4. Computational Storage Development
  • 9.3. Automotive Memory and Storage Systems
    • 9.3.1. Automotive Memory Evolution by ADAS Level
    • 9.3.2. In-Vehicle Storage for Autonomous Vehicles
    • 9.3.3. Automotive-Grade Memory Reliability
    • 9.3.4. Electric Vehicle Memory Applications
    • 9.3.5. Industrial IoT Memory
    • 9.3.6. Smart City Infrastructure Storage
    • 9.3.7. Wearable and Mobile Device Memory
  • 9.4. Embedded Memory for Advanced Applications
    • 9.4.1. Microcontroller Embedded Memory Evolution
    • 9.4.2. SoC and ASIC Embedded Memory Requirements
    • 9.4.3. Imaging and AR/VR Memory
    • 9.4.4. Security and Cryptographic Memory Applications
    • 9.4.5. Embedded SRAM and eFlash Market Analysis
    • 9.4.6. MCU Memory Requirements by Vertical Market

10. ADVANCED PACKAGING AND INTEGRATION TECHNOLOGIES

  • 10.1. 3D Integration and Packaging Innovation
    • 10.1.1. Through-Silicon Via (TSV) Technology
    • 10.1.2. Wafer-Level Packaging (WLP) for Memory
    • 10.1.3. Chiplet Architecture and Memory Integration
    • 10.1.4. Advanced Substrate Technologies
  • 10.2. Hybrid Bonding and Advanced Assembly
    • 10.2.1. Copper-Copper Hybrid Bonding
    • 10.2.2. Direct Wafer Bonding for 3D Integration
    • 10.2.3. Fan-Out Wafer Level Packaging (FOWLP)
    • 10.2.4. System-in-Package (SiP) Memory Solutions
  • 10.3. Processing-in-Memory and Near-Memory Computing
    • 10.3.1. DRAM-Based Processing-in-Memory
    • 10.3.2. NAND Compute-in-Memory Solutions
    • 10.3.3. Near-Data Computing Architectures
    • 10.3.4. Accelerator-in-Memory Solutions
    • 10.3.5. Commercial PiM and CiS Solutions
    • 10.3.6. Recent PiM Product Launches and Specifications
    • 10.3.7. LLM-Optimized Memory Solutions

11. SUSTAINABILITY AND ENVIRONMENTAL IMPACT

  • 11.1. Memory Technology Environmental Footprint
    • 11.1.1. Carbon Footprint Analysis by Technology
    • 11.1.2. Water and Chemical Usage in Manufacturing
    • 11.1.3. Energy Efficiency Evolution
    • 11.1.4. Sustainable Manufacturing Initiatives
  • 11.2. Circular Economy and End-of-Life Management
    • 11.2.1. Memory Product Lifecycle Analysis
    • 11.2.2. Critical Material Recovery and Recycling
    • 11.2.3. Design for Sustainability Initiatives
    • 11.2.4. Extended Producer Responsibility

12. PRICING ANALYSIS AND ECONOMIC MODELS

  • 12.1. Historical and Current Pricing Trends
    • 12.1.1. DRAM Pricing Cycles and Volatility
    • 12.1.2. NAND Flash Pricing Evolution
    • 12.1.3. HBM Premium Pricing Analysis
    • 12.1.4. Emerging Memory Pricing Dynamics
  • 12.2. Cost Structure and Economics
    • 12.2.1. Memory Manufacturing Cost Breakdown
    • 12.2.2. Technology Development and R&D Costs
    • 12.2.3. Scale Economics and Fab Utilization
  • 12.3. Future Pricing Projections and Models
    • 12.3.1. Technology Cost Roadmaps 2026-2036
    • 12.3.2. Supply-Demand Price Elasticity
    • 12.3.3. Emerging Memory Price Reduction Timeline
    • 12.3.4. Value-Based Pricing for Advanced Solutions

13. TECHNOLOGY ROADMAPS AND FUTURE DEVELOPMENTS

  • 13.1. Long-Term Memory Technology Vision
    • 13.1.1. Memory Technology Roadmap to 2036
    • 13.1.2. Performance and Density Scaling Projections
    • 13.1.3. Power Efficiency Evolution
    • 13.1.4. Reliability and Endurance Improvements
  • 13.2. Breakthrough Technologies and Research
    • 13.2.1. Quantum Memory and Storage Concepts
    • 13.2.2. DNA Storage Technology Development
    • 13.2.3. Photonic Memory Solutions
    • 13.2.4. Neuromorphic Memory Architectures
  • 13.3. System-Level Integration Evolution
    • 13.3.1. Memory-Centric Computing Architectures
    • 13.3.2. In-Memory Database Technologies
    • 13.3.3. Edge AI Memory System Integration
    • 13.3.4. Autonomous System Memory Architectures

14. COMPANY PROFILES (164 company profiles

15. APPENDICES

  • 15.1. Methodology
  • 15.2. Technology Specifications and Standards
    • 15.2.1. DRAM Technology Specifications
    • 15.2.2. NAND Flash Technology Specifications
    • 15.2.3. Specifications
    • 15.2.4. Emerging Memory Technology Specifications
    • 15.2.5. Industry Standards and Protocols
  • 15.3. Technical Glossary and Definitions

16. REFERENCES