表紙:長期エネルギー貯蔵(LDES)の世界市場(2026年~2046年)
市場調査レポート
商品コード
1742157

長期エネルギー貯蔵(LDES)の世界市場(2026年~2046年)

The Global Long Duration Energy Storage (LDES) Market 2026-2046


出版日
ページ情報
英文 287 Pages, 136 Tables, 44 Figures
納期
即納可能 即納可能とは
価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=199.64円
長期エネルギー貯蔵(LDES)の世界市場(2026年~2046年)
出版日: 2025年06月06日
発行: Future Markets, Inc.
ページ情報: 英文 287 Pages, 136 Tables, 44 Figures
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界の長期エネルギー貯蔵(LDES)市場は、広範なエネルギー転換の中でもっとも急速に進化している、戦略的に重大なセグメントの1つです。4時間以上の放電が可能な蓄電システムと定義されるLDES技術は、送電網の安定性と信頼性を維持しながら、可変的な再生可能エネルギー源の高い普及度を可能にするために不可欠なインフラコンポーネントとして台頭しています。市場成長の促進要因は、再生可能エネルギー展開の加速、技術コストの低下、主要市場全体での支持的な政策枠組みです。LDESの総設備容量は、2024年の240万kWから2030年までに1,850万kWに拡大すると予測され、プロジェクト数は世界全体で145件から850件超に増加すると予測されます。

現在は揚水発電が主流ですが、圧縮空気エネルギー貯蔵、フロー電池、鉄空気電池、液体空気エネルギー貯蔵など、新たな技術が急速に普及しつつあります。重力貯蔵システム、グリーン水素、熱貯蔵は、特定の市場のニッチと持続時間要件に対応する革新的なアプローチです。

LDES部門は多額の投資フローを引き寄せており、2024年中にベンチャーキャピタルが21億米ドル、企業投資が18億米ドル、政府資金が12億米ドルに上りました。こうした資金が、複数の技術経路における急速な技術の進歩と商業展開に拍車をかけています。注目すべき開発は、100時間持続能力を達成したForm Energyの鉄空気システム、商業規模に達したEnergy Vaultの重力貯蔵、ユーティリティスケールの実行可能性を実証したHighview Powerの液体空気システムなどがあります。LDES市場は力強い成長が見込まれる一方、高い先行投資コスト、技術の拡張性に関する懸念、長期貯蔵サービスへの補償が不十分な規制枠組みなど、大きな課題に直面しています。しかし、学習曲線の加速化、スケールメリットの向上、市場設計の進化により、これらの障壁は徐々に解決されつつあります。技術のハイブリッド化とシステム統合に向けたこの部門の進化は、複数のグリッドサービスや用途にわたって最適化されたパフォーマンスを実現する新たな機会を生み出しています。

LDES市場は、技術的成熟が緊急の脱炭素化の要請と融合する変曲点にあり、世界のエネルギー転換の礎となる技術として位置づけられています。変動性再生可能エネルギーの普及が世界的に進むにつれ、LDESソリューションは、グリッドの安定性の維持、季節的なエネルギー貯蔵の実現、前例のない規模での太陽光発電と風力発電の統合のサポートに不可欠なものとなりつつあります。

当レポートでは、世界の長期エネルギー貯蔵(LDES)市場について調査分析し、9つの主な貯蔵技術における市場力学、技術の進化、競合のポジショニング、投資機会に関する情報を提供しています。

目次

第1章 エグゼクティブサマリー

  • 技術経路
  • LDESへの資金提供
  • 容量
  • LDES技術の市場シェア:容量別(2024年)
  • ロードマップ(2026年~2046年)
  • 市場予測(2026年~2046年)

第2章 イントロダクション

  • 市場の定義と技術分類
  • 長期エネルギー貯蔵とは
  • エネルギー貯蔵技術の分類
  • エネルギー貯蔵技術のベンチマーク
  • 電力とエネルギーの分離
  • 安全上の懸念
  • LDESにおけるリチウムイオン電池
  • LDESの顧客
  • 技術準備度
  • 期間の基準値と技術的定義
  • LDESと短期貯蔵の比較
  • 価値提案と経済的促進要因
  • 技術性能要件
  • グリッドの安定性の維持
  • 用途
  • 市場セグメント:グリッドスケール、商業、ビヨンドグリッド
  • 市場の発展の抑制要因と制限
  • 技術タイムライン

第3章 LDES市場

  • LDESと変動性再生可能エネルギーの統合
  • 市場規模
  • 用途
  • グリッドの安定性、柔軟性、統合

第4章 水素と代替キャリアー

  • 水素経済の概要
  • 長期的な貯蔵に対する期間の優位性
  • 岩塩空洞、海底、大規模貯蔵オプション
  • 水素損失のメカニズムと緩和戦略
  • ハイブリッド水素電池システム
  • 代替化学キャリアー
  • プロジェクトと商業展開
  • 鉱業
  • 住宅、商業用水素
  • 産業用水素LDES統合
  • 水素貯蔵技術とインフラ

第5章 揚水発電エネルギー貯蔵技術

  • 従来式揚水発電(PHES)
  • 先進揚水発電(APHES)

第6章 機械的エネルギー貯蔵技術

  • 圧縮空気エネルギー貯蔵(CAES)
  • 固体重力エネルギー貯蔵(SGES)
  • 液化ガスエネルギー貯蔵(LGES)
  • フライホイールエネルギー貯蔵(FES)

第7章 LDES向け電池技術

  • 先進従来式構造電池(ACCB)
  • 金属空気電池技術
  • 高温電池システム
  • ナトリウムイオン
  • ナトリウム硫黄(Na-S)電池
  • レドックスフロー電池(RFB)
  • 特殊電池技術

第8章 熱エネルギー貯蔵

  • 技術の概要
  • 用途
  • 熱エネルギー貯蔵システムの設計
  • 蓄熱システムのタイプ
  • 溶融塩とコンクリートの比較
  • TRL
  • 電熱エネルギー貯蔵(ETES)
  • 技術アプローチ
  • 先進のETES技術
  • SWOT分析
  • 企業

第9章 市場予測と技術ロードマップ(2026年~2046年)

  • 世界のLDESの市場金額の予測(2026年~2046年)
  • 設備容量の予測:地域別
  • 年間需要:国/州別(GWh)(2022年~2046年)
  • 年間設備容量:技術別(GWh)(2022年~2046年)
  • 市場金額:技術別(2026年~2046年)
  • 市場シェア分析:地域別
  • 期間セグメントの成長予測
  • 長期的な市場の進化

第10章 企業プロファイル(企業94社のプロファイル)

第11章 参考文献

図表

List of Tables

  • Table 1.Technology Classification and Maturity Overview
  • Table 2. Funding and annual deal count by LDES technology (2018-2025)
  • Table 3. Global LDES Market Size, Capacity, and Growth (2024-2046)
  • Table 4. Technology Market Share Evolution
  • Table 5. LDES Technology Market Share by Capacity (2024)
  • Table 6. LDES Technology Roadmap Timeline 2026-2046
  • Table 7. Total LDES Market Value by Size Categories (% and $B) 2026-2046
  • Table 8. Application Segment Analysis (Market Share % and Value $B)
  • Table 9. Regional Market Share and Capacity Development
  • Table 10. Technology Preferences by Region
  • Table 11. Storage Duration Categories and Technology Suitability
  • Table 12. Technology Performance Benchmarking Matrix
  • Table 13. LDES Technology Readiness Level Assessment
  • Table 14. Advantages and Disadvantages of Energy Storage Technologies
  • Table 15. Storage Duration Categories and Technology Suitability
  • Table 16. LDES vs Short Duration Storage Technical Comparison Matrix
  • Table 17. LDES Value Proposition Framework by Application
  • Table 18. LDES Performance Requirements by Application Segment
  • Table 19. LDES Application Categories and Use Case Matrix
  • Table 20. Market Segment Definitions: Grid-Scale, Commercial, Beyond-Grid
  • Table 21. Market Development Constraints and Risk Factors
  • Table 22. VRE Penetration vs Storage Duration Requirements by Region
  • Table 23. Storage Duration Needs vs VRE Penetration Levels
  • Table 24. Global VRE Generation Trends
  • Table 25. Regional Breakdown of Electricity Generated by VRE
  • Table 26. Electricity Generated from VRE in Key US States
  • Table 27. Total Electricity Generated Across Key US States
  • Table 28. GW, GWh and Duration of Storage vs Electricity Generation % from VRE
  • Table 29. LDES adoption by country
  • Table 30. Generation from Energy Storage as % of Total Electricity Generation vs Electricity Generation Mix from VRE
  • Table 31. Regional VRE Integration Challenges
  • Table 32. Solar and Wind Deployment Targets by Country 2025-2035
  • Table 33. Required Storage Duration by VRE Penetration Level
  • Table 34. LDES Market Timing vs Global VRE Penetration
  • Table 35. Global LDES Market Size ($B) 2025-2046
  • Table 36. LDES Market Size by Technology Segment 2024-2046
  • Table 37. LDES Capacity Deployment by Technology (GWh)
  • Table 38. Regional LDES Project Distribution and Development Status
  • Table 39. Commercial vs Demonstration Scale Projects
  • Table 40. LDES Applications Across Grid Services
  • Table 41. BTM Commercial LDES Applications
  • Table 42. Beyond-Grid LDES Applications by Sector and Technology
  • Table 43. LDES Suitability for Ancillary Services by Technology
  • Table 44. Grid Flexibility Requirements by Technology Solution
  • Table 45. Supply-Side vs Demand-Side Flexibility Options Matrix
  • Table 46. Interconnector technologies
  • Table 47. Interconnector companies
  • Table 48. V2G Market Potential by Region and Technology Readiness
  • Table 49. Forms of V2G
  • Table 50. DER and VPP Integration with LDES Technologies
  • Table 51. Hydrogen Production for Grid Flexibility Applications
  • Table 52. Storage Duration vs Technology Cost Crossover Analysis
  • Table 53. Underground Hydrogen Storage Options Comparison Matrix
  • Table 54. Hydrogen Loss Mechanisms and Mitigation Technologies
  • Table 55. Hybrid Hydrogen-Battery Systems Performance Analysis
  • Table 56. Chemical Carrier LDES Comparison: H2 vs CH4 vs NH3
  • Table 57. Chemical Storage Options Technology Readiness vs Market Potential
  • Table 58. Power-to-X Round-Trip Efficiency by Chemical Carrier
  • Table 59. Hydrogen LDES Projects and Commercial Deployments
  • Table 60. Mining Industry LDES Applications by Technology
  • Table 61. Residential and Commercial Hydrogen
  • Table 62. Commercial Activities in Hydrogen for LDES
  • Table 63. Hydrogen Storage Options for LDES
  • Table 64. Underground Hydrogen Storage Method Comparison
  • Table 65. Surface Hydrogen Storage Safety Requirements by Application
  • Table 66. Metal Hydride vs Compressed vs Liquid Storage Comparison
  • Table 67. Pumped Hydro Storage (PHS) Summary
  • Table 68. PHES Type Classification and Development Timeline Comparison
  • Table 69. PHES Environmental Impact Mitigation Technologies
  • Table 70. Global PHES Project Pipeline by Region and Status
  • Table 71. PHES Capital Cost vs Capacity Analysis
  • Table 72. Large-scale PHES installations exceeding 1,000 MW capacity
  • Table 73. PHES Technical Performance Benchmarking
  • Table 74. APHES Innovation Pathway
  • Table 75. Advanced Pumped Hydro Energy Storage technologies
  • Table 76. Underwater Energy Storage Technology Comparison
  • Table 77. Advanced Pumped Hydro Energy Storage Companies
  • Table 78. Mechanical Energy Storage Classification
  • Table 79. Compressed Air Energy Storage (CAES) Market Summary
  • Table 80. CAES Applications
  • Table 81. Key CAES Existing and Future Projects
  • Table 82. CAES vs LAES Technical and Economic Comparison
  • Table 83. CAES Technology Classification and Performance Matrix
  • Table 84. Isochoric vs Isobaric CAES System Comparison
  • Table 85. Adiabatic Systems and Cooling Options
  • Table 86. Gravity Energy Storage Market Summary
  • Table 87. SGES Applications and Companies
  • Table 88.LAES Applications and Customers
  • Table 89. LAES Strengths and Weaknesses
  • Table 90. LAES Technology Fundamentals and System Components
  • Table 91. Battery Options for Long-Duration Energy Storage
  • Table 92. Metal-air battery options for LDES
  • Table 93. Multi-Metal Air Battery Technology Comparison
  • Table 94. Performance Metrics by Application
  • Table 95. Iron-Air Strengths and Weaknesses
  • Table 96. Rechargeable Zinc Battery Design Pros/Cons
  • Table 97. Rechargeable Zinc Battery Companies,
  • Table 98. Zn-ion Companies
  • Table 99. Zinc Bromine Company Profiles
  • Table 100. High-Temperature Battery Technology Performance Matrix
  • Table 101. Comparison of cathode materials
  • Table 102. Layered transition metal oxide cathode materials for sodium-ion batteries
  • Table 103. General cycling performance characteristics of common layered transition metal oxide cathode materials
  • Table 104. Comparison of Na-ion battery anode materials
  • Table 105. Hard Carbon producers for sodium-ion battery anodes
  • Table 106. Comparison of carbon materials in sodium-ion battery anodes
  • Table 107. Comparison between Natural and Synthetic Graphite
  • Table 108. Properties of graphene, properties of competing materials, applications thereof
  • Table 109. Comparison of carbon based anodes
  • Table 110. Alloying materials used in sodium-ion batteries
  • Table 111. Na-ion electrolyte formulations
  • Table 112. Pros and cons compared to other battery types
  • Table 113. Sodium-ion batteries Application in LDES
  • Table 114. Sodium-ion battery companies
  • Table 115. Summary of main flow battery types
  • Table 116. Different RFB Chemistry Strengths and Weaknesses
  • Table 117. RFB LDES Applications
  • Table 118. RFB Companies
  • Table 119. Regular vs Hybrid RFB Technology
  • Table 120. Types of Thermal Storage Systems
  • Table 121. Thermal Energy Storage TRL and System Specifications Map
  • Table 122. ETES Technology Applications
  • Table 123. Advanced ETES Technologies
  • Table 124. TES technologies
  • Table 125. Extreme Temperature ETES Technology Comparison
  • Table 126. Thermal Energy Storage Companies
  • Table 127. Global LDES Market Value Evolution ($B) 2026-2046
  • Table 128. Regional LDES Capacity Installation Forecasts (GWh) 2026-2046
  • Table 129. Annual LDES Demand Forecasts by Key Country/State (GWh)
  • Table 130. Annual LDES Installation Forecasts by Technology (GWh)
  • Table 131. LDES Market Value Forecasts by Technology ($B) 2026-2046
  • Table 132. Regional LDES Market Share Evolution 2026-2046
  • Table 133. LDES Duration Segment Growth Projections by Technology
  • Table 134. LDES Technology Cost Competitiveness Timeline Matrix
  • Table 135. LDES Market Saturation and Technology Replacement Cycles
  • Table 136. Emerging LDES Applications and Market Potential Assessment

List of Figures

  • Figure 1. LDES technology pathways
  • Figure 2. Technology Commercialization Timeline by LDES Category
  • Figure 3. Global LDES Market Size ($B) 2025-2046
  • Figure 4. LDES Market Size by Technology Segment 2024-2046
  • Figure 5. Behind the Meter vs. Front of the Meter
  • Figure 6. Levels of Grid Interface
  • Figure 7. G2V and V2G power flows block diagram
  • Figure 8. Hydrogen Economy Evolution
  • Figure 9. Underground hydrogen storage in salt caverns
  • Figure 10. Schematic diagram of a pumped hydro storage system
  • Figure 11. PHES Environmental Impact Assessment Framework
  • Figure 12. Conventional PHES SWOT Analysis Matrix
  • Figure 13. APHES Innovation Pathway and Technology Classification
  • Figure 14. Quidnet Geomechanical Pumped Storage Technology Diagram
  • Figure 15. Underground Mine Pumped Storage Concept and Implementation
  • Figure 16. Seawater Pumped Hydro Configuration
  • Figure 17;. Schematic of Compressed Air Energy Storage (CAES) operation
  • Figure 18. Adiabatic CAES System Design and Heat Management
  • Figure 19. Schematic diagram of SC-CAES system, where air is pressurized into a supercritical state at high temperature and pressure, and then expanded when required
  • Figure 20. CAES Technology SWOT Analysis for LDES
  • Figure 21. Gravity Storage SWOT Analysis
  • Figure 22. Energy Dome CO2 Battery technology operation schematic
  • Figure 23. Schematic diagram of liquid air energy storage (LAES) system, where air is liquefied under pressure and stored at low temperature, and then expanded into gaseous form again at high temperature
  • Figure 24. LAES Technology SWOT Analysis for LDES
  • Figure 25. Liquid CO2 SWOT Analysis for LDES Applications
  • Figure 26. (a) Flywheel energy storage system where energy is stored as rotational kinetic energy of a cylinder in vacuum; (b) schematic diagram of flywheel energy storage (FES), also called accumulator
  • Figure 27. ACCB SWOT Analysis for Beyond-Grid LDES Applications
  • Figure 28. Iron-Air Battery Technology Roadmap and Performance Metrics
  • Figure 29. Form Energy USA Iron-Air Technology Architecture
  • Figure 30. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG)
  • Figure 31. Overview of graphite production, processing and applications
  • Figure 32. Schematic diagram of a multi-walled carbon nanotube (MWCNT)
  • Figure 33. Schematic of a Na-S battery
  • Figure 34. Scheme of a redox flow battery
  • Figure 35. Combined Heat and Electricity ETES System Architectures
  • Figure 36. ETES Technology SWOT Analysis for LDES Applications
  • Figure 37. Global LDES Market Value Evolution ($B) 2026-2046
  • Figure 38. Market Map for LDES companies
  • Figure 39. Ambri's Liquid Metal Battery
  • Figure 40. ESS Iron Flow Chemistry
  • Figure 41. Form Energy's iron-air batteries
  • Figure 42. Highview Power- Liquid Air Energy Storage Technology
  • Figure 43. phelas Liquid Air Energy Storage System AURORA
目次

The global Long Duration Energy Storage (LDES) market represents one of the most rapidly evolving and strategically critical segments within the broader energy transition landscape. Defined as storage systems capable of discharging electricity for four or more hours, LDES technologies are emerging as essential infrastructure components for enabling high penetration levels of variable renewable energy sources while maintaining grid stability and reliability. Market growth is driven by accelerating renewable energy deployment, declining technology costs, and supportive policy frameworks across major markets. Total installed LDES capacity is expected to expand from 2.4 GW in 2024 to 18.5 GW by 2030, with project counts increasing from 145 to over 850 installations globally.

Pumped hydro storage currently dominates, however, emerging technologies are rapidly gaining traction, including compressed air energy storage, flow batteries, iron-air batteries, and liquid air energy storage. Gravity storage systems, green hydrogen, and thermal storage represent innovative approaches addressing specific market niches and duration requirements.

The LDES sector has attracted substantial investment flows, with $2.1 billion in venture capital, $1.8 billion in corporate investment, and $1.2 billion in government funding during 2024. This capital is fueling rapid technological advancement and commercial deployment across multiple technology pathways. Notable developments include Form Energy's iron-air systems achieving 100-hour duration capabilities, Energy Vault's gravity storage reaching commercial scale, and Highview Power's liquid air systems demonstrating utility-scale viability. Despite strong growth prospects, the LDES market faces significant challenges including high upfront capital costs, technology scalability concerns, and regulatory frameworks that inadequately compensate long-duration storage services. However, accelerating learning curves, improving economics of scale, and evolving market designs are progressively addressing these barriers. The sector's evolution toward technology hybridization and system integration is creating new opportunities for optimized performance across multiple grid services and applications.

The LDES market stands at an inflection point where technological maturation converges with urgent decarbonization imperatives, positioning it as a cornerstone technology for the global energy transition.

"The Global Long Duration Energy Storage Market 2026-2046" provides an authoritative analysis of the LDES landscape from 2026 to 2046, examining market dynamics, technology evolution, competitive positioning, and investment opportunities across nine primary storage technologies. As variable renewable energy penetration increases globally, LDES solutions are becoming indispensable for maintaining grid stability, enabling seasonal energy storage, and supporting the integration of solar and wind power at unprecedented scales.

Contents include:

  • Market Definition and Technology Framework:
    • Comprehensive LDES definition with duration thresholds and technical specifications
    • Technology classification system covering nine primary LDES categories
    • Value proposition analysis and economic drivers for each application segment
    • Performance requirements mapping across grid-scale, commercial, and beyond-grid applications
    • Market development constraints, limitations, and risk factor assessment
  • LDES Market Analysis and VRE Integration:
    • Variable renewable energy penetration analysis and storage duration requirements
    • Global VRE generation trends with regional breakdown and integration challenges
    • Market timing analysis for LDES technology adoption based on renewable deployment
    • Comprehensive market sizing with growth projections and capacity deployment forecasts
    • Regional project distribution analysis covering commercial and demonstration scale projects
  • Applications and Grid Integration:
    • Energy storage applications across utility, behind-the-meter, and remote deployment scenarios
    • Grid services analysis including ancillary services and grid support functions
    • Supply-side and demand-side flexibility solutions with LDES integration strategies
    • Renewable curtailment mitigation and system overbuild management approaches
    • Vehicle-to-grid integration, smart charging, and distributed energy resource coordination
  • Hydrogen and Alternative Carriers:
    • Hydrogen economy overview with duration advantages for long-term storage
    • Salt cavern, subsea, and large-scale storage infrastructure analysis
    • Hydrogen loss mechanisms, mitigation strategies, and hybrid system integration
    • Alternative chemical carriers comparison (hydrogen vs methane vs ammonia)
    • Underground storage technologies, interconnector systems, and safety considerations
  • Pumped Hydro Energy Storage:
    • Conventional PHES analysis covering types, environmental impact, and global projects
    • Advanced pumped hydro technologies including pressurized underground systems
    • Mine storage applications, heavy liquid systems, and seawater pumped hydro
    • Underwater energy storage solutions and brine storage in salt caverns
    • Economic modeling, financial analysis, and SWOT assessment
  • Mechanical Energy Storage Technologies:
    • Compressed Air Energy Storage (CAES) technology overview and market positioning
    • CAES vs LAES comparison with thermodynamic cycle optimization analysis
    • Solid Gravity Energy Storage (SGES) applications and market potential
    • Liquefied Gas Energy Storage including liquid air and liquid CO2 systems
    • Technology-specific SWOT analyses and competitive positioning assessment
  • Battery Technologies for LDES:
    • Advanced conventional construction batteries for beyond-grid applications
    • Metal-air battery technologies including iron-air, zinc-air, and aluminum-air systems
    • Rechargeable zinc batteries covering zinc-ion, zinc-bromine configurations
    • High-temperature battery systems and advanced metal-ion technologies
    • Redox Flow Batteries (RFB) market analysis with regular vs hybrid technology comparison
  • Thermal Energy Storage:
    • Electro-thermal energy storage (ETES) fundamentals and application analysis
    • Advanced ETES technologies with extreme temperature and photovoltaic conversion
    • Combined heat and electricity systems with performance optimization strategies
    • Technology SWOT analysis and market positioning assessment
  • Market Forecasts and Long-Term Evolution:
    • Global LDES market value forecasts with regional capacity installation projections
    • Grid vs beyond-grid market development analysis with technology-specific growth patterns
    • Annual demand and installation forecasts by country, state, and technology category
    • Long-term market evolution including technology convergence, hybridization trends
    • Cost competitiveness timelines, market saturation analysis, and emerging applications

The report features comprehensive profiles of 94 companies across the LDES ecosystem including 1414 Degrees, ALCAES, Ambri, Antora Energy, Augwind Energy, AZA Battery, BASF, Battolyser Systems, Brenmiller Energy, Cavern Energy, CellCube, CGDG, Cheesecake Energy, CMBlu, Corre Energy, Dalian Rongke Power, e-Zinc, Echogen Power Systems, Electrified Thermal Solutions, Elestor, Energy Dome, Energy Vault, EnergyNest, Enerpoly, Enervenue, Enlighten Innovations, EnerVenue, EOS Energy Enterprises, Equinor, ESS Inc., Fluence, Form Energy, Fourth Power, Gelion, Glaciem Cooling Technologies, Gravitricity, Green Gravity, H2 Inc., Highview Power, InLyte Energy and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Technology Pathways
  • 1.2. Funding for LDES
  • 1.3. Capacity
  • 1.4. LDES Technology Market Share by Capacity (2024)
  • 1.5. Roadmap 2026-2046
  • 1.6. Market Forecasts and Projections 2026-2046
    • 1.6.1. Total LDES Market Revenues
    • 1.6.2. Regional Market

2. INTRODUCTION

  • 2.1. Market Definition and Technology Classification
  • 2.2. What is Long Duration Energy Storage?
  • 2.3. Energy Storage Technology Classification
  • 2.4. Energy Storage Technology Benchmarking
  • 2.5. Power and Energy Decoupling
  • 2.6. Safety considerations
  • 2.7. Lithium-ion batteries in LDES
  • 2.8. LDES customers
  • 2.9. Technology Readiness Level
  • 2.10. Duration Thresholds and Technical Definitions
  • 2.11. LDES vs Short Duration Storage Comparison
  • 2.12. Value Proposition and Economic Drivers
  • 2.13. Technology Performance Requirements
  • 2.14. Maintaining Grid Stability
  • 2.15. Applications
  • 2.16. Market Segments: Grid-Scale, Commercial, Beyond-Grid
  • 2.17. Market Development Constraints and Limitations
  • 2.18. Technology Timeline

3. LDES MARKET

  • 3.1. LDES and Variable Renewable Energy Integration
    • 3.1.1. Variable Renewable Energy (VRE) Penetration and Storage Duration Requirements
    • 3.1.2. Global VRE Generation Trends
    • 3.1.3. Relationship between VRE penetration and storage requirements
    • 3.1.4. The global electricity generation mix
    • 3.1.5. Early LDES Technologies Adoption
    • 3.1.6. Storage Duration vs VRE Penetration
  • 3.2. Market Size
    • 3.2.1. Global LDES Market Size and Growth Projections
    • 3.2.2. Capacity Deployment by Technology
    • 3.2.3. Regional Project Distribution and Development
    • 3.2.4. Commercial vs Demonstration Scale Projects
  • 3.3. Applications
    • 3.3.1. Energy Storage Applications
    • 3.3.2. Grid Services and Utility
    • 3.3.3. Behind-the-Meter
    • 3.3.4. Beyond-Grid and Remote Applications
    • 3.3.5. Ancillary Services and Grid Support Functions
  • 3.4. Grid Stability, Flexibility and Integration
    • 3.4.1. Grid Flexibility Requirements and Solutions
    • 3.4.2. Supply-Side and Demand-Side Flexibility Options
    • 3.4.3. Renewable Curtailment and System Overbuild
    • 3.4.4. Interconnector Technologies
      • 3.4.4.1. Cable Designs
      • 3.4.4.2. Installation and Maintenance
      • 3.4.4.3. Companies
    • 3.4.5. Vehicle-to-Grid Integration and Smart Charging
      • 3.4.5.1. Vehicle-to-Grid and Grid-to-Vehicle
      • 3.4.5.2. Vehicle-to-Everything (V2X)
      • 3.4.5.3. Grid integration of V2G technologies
      • 3.4.5.4. Bi-directional charging infrastructure
      • 3.4.5.5. Smart Charging Implementations
      • 3.4.5.6. Electric vehicle charging infrastructure
    • 3.4.6. Distributed Energy Resources and Virtual Power Plants
    • 3.4.7. Hydrogen Production for Grid Flexibility

4. HYDROGEN AND ALTERNATIVE CARRIERS

  • 4.1. Hydrogen Economy Overview
  • 4.2. Duration Advantages for Long-Term Storage
  • 4.3. Salt Caverns, Subsea and Large-Scale Storage Options
  • 4.4. Hydrogen Loss Mechanisms and Mitigation Strategies
  • 4.5. Hybrid hydrogen-battery systems
  • 4.6. Alternative Chemical Carriers
    • 4.6.1. Hydrogen vs Methane vs Ammonia for LDES
    • 4.6.2. Comparative Analysis of Chemical Storage Options
    • 4.6.3. Synthesis and Reconversion Efficiency
  • 4.7. Projects and Commercial Deployments
  • 4.8. Mining Industry
  • 4.9. Residential and Commercial Hydrogen
  • 4.10. Industrial Hydrogen LDES Integration
  • 4.11. Hydrogen Storage Technologies and Infrastructure
    • 4.11.1. Industrial integration applications
    • 4.11.2. Remote and off-grid applications
    • 4.11.3. Outlook for hydrogen in LDES applications
    • 4.11.4. Hydrogen Storage Options for LDES
    • 4.11.5. Underground Storage Choices for LDES Applications
    • 4.11.6. Hydrogen Interconnectors for Energy Transmission
    • 4.11.7. Surface Storage Systems and Safety Considerations
    • 4.11.8. Metal Hydride and Alternative Storage Methods

5. PUMPED HYDRO ENERGY STORAGE TECHNOLOGIES

  • 5.1. Conventional Pumped Hydro Energy Storage (PHES)
    • 5.1.1. PHES Types and Development Timescales
    • 5.1.2. PHES Environmental Impact Mitigation Technologies
    • 5.1.3. Global Projects and Development
    • 5.1.4. Economics and Financial Modeling
    • 5.1.5. Large-Scale Pumped Hydro Schemes
    • 5.1.6. SWOT Analysis
  • 5.2. Advanced Pumped Hydro Energy Storage (APHES)
    • 5.2.1. Technology Overview
    • 5.2.2. Technologies
      • 5.2.2.1. Pressurized Underground Systems
      • 5.2.2.2. Underground Mine Pumped Storage
      • 5.2.2.3. Heavy Liquid Systems
      • 5.2.2.4. Seawater Pumped Hydro (S-PHES)
      • 5.2.2.5. Underwater Energy Storage
      • 5.2.2.6. Brine Storage in Salt Caverns
    • 5.2.3. SWOT Analysis
    • 5.2.4. Companies

6. MECHANICAL ENERGY STORAGE TECHNOLOGIES

  • 6.1. Compressed Air Energy Storage (CAES)
    • 6.1.1. Technology Overview
    • 6.1.2. CAES Applications
    • 6.1.3. CAES vs LAES
    • 6.1.4. Technology Options
    • 6.1.5. Thermodynamic Cycles and Performance Optimization
    • 6.1.6. Isochoric vs Isobaric Storage Systems
    • 6.1.7. Adiabatic Systems and Cooling Options
    • 6.1.8. Supercritical CAES
    • 6.1.9. Companies
    • 6.1.10. SWOT Analysis
  • 6.2. Solid Gravity Energy Storage (SGES)
    • 6.2.1. Technology Overview
    • 6.2.2. Applications
    • 6.2.3. SWOT Analysis
  • 6.3. Liquefied Gas Energy Storage (LGES)
    • 6.3.1. Technology Overview
    • 6.3.2. Liquid Air Energy Storage (LAES)
      • 6.3.2.1. SWOT Analysis
    • 6.3.3. Liquid Carbon Dioxide Energy Storage
      • 6.3.3.1. SWOT Analysis
  • 6.4. Flywheel Energy Storage (FES)
    • 6.4.1. Overview

7. BATTERY TECHNOLOGIES FOR LDES

  • 7.1. Advanced Conventional Construction Batteries (ACCB)
    • 7.1.1. Technology Overview and Beyond-Grid Applications
    • 7.1.2. SWOT Analysis
  • 7.2. Metal-Air Battery Technologies
    • 7.2.1. Air cathodes
    • 7.2.2. Iron-Air Batteries
    • 7.2.3. Zinc-based Batteries
      • 7.2.3.1. Applications
      • 7.2.3.2. Zinc-air (Zn-air)
        • 7.2.3.2.1. Properties
        • 7.2.3.2.2. Challenges
        • 7.2.3.2.3. Companies
      • 7.2.3.3. Zn-ion
        • 7.2.3.3.1. Overview
        • 7.2.3.3.2. Zn-ion and Rechargeable Zn-MnO2 Chemistry
        • 7.2.3.3.3. Zn-MnO2 Commercialisation
        • 7.2.3.3.4. Zn-ion/Zn-MnO2 Strengths and Weaknesses
        • 7.2.3.3.5. Companies
      • 7.2.3.4. Zn-Br
        • 7.2.3.4.1. Overview
        • 7.2.3.4.2. ZnBr Flow Batteries
        • 7.2.3.4.3. Static ZnBr Batteries
        • 7.2.3.4.4. Companies
  • 7.3. High-Temperature Battery Systems
    • 7.3.1. High-temperature molten-salt battery systems
    • 7.3.2. Commercalization
  • 7.4. Sodium-Ion
    • 7.4.1. Overview
    • 7.4.2. Cathode materials
      • 7.4.2.1. Layered transition metal oxides
        • 7.4.2.1.1. Types
        • 7.4.2.1.2. Cycling performance
        • 7.4.2.1.3. Advantages and disadvantages
    • 7.4.3. Anode materials
      • 7.4.3.1. Hard carbons
      • 7.4.3.2. Carbon black
      • 7.4.3.3. Graphite
      • 7.4.3.4. Carbon nanotubes
      • 7.4.3.5. Graphene
      • 7.4.3.6. Alloying materials
      • 7.4.3.7. Sodium Titanates
      • 7.4.3.8. Sodium Metal
    • 7.4.4. Electrolytes
    • 7.4.5. Comparative analysis with other battery types
    • 7.4.6. Application in LDES
    • 7.4.7. Large-scale lithium-sodium hybrid energy storage station
    • 7.4.8. Companies
  • 7.5. Sodium-sulfur (Na-S) batteries
    • 7.5.1. Technology description
    • 7.5.2. Applications
  • 7.6. Redox Flow Batteries (RFB)
    • 7.6.1. Market Overview
    • 7.6.2. Architecture of redox flow batteries
    • 7.6.3. Cost structures
    • 7.6.4. RFB vs Li-ion
    • 7.6.5. Competitive landscape among redox flow battery technologies
    • 7.6.6. All vanadium RFB (VRFB)
    • 7.6.7. All-Iron RFB
    • 7.6.8. Zinc-Bromine (Zn-Br) RFB
    • 7.6.9. Zinc-Iron (Zn-Fe) RFB
    • 7.6.10. Alkaline Zn-Ferricyanide RFB
    • 7.6.11. RFB for LDES Applications
    • 7.6.12. Companies
    • 7.6.13. Regular vs Hybrid RFB Technologies and Chemistries
  • 7.7. Specialty Battery Technologies
    • 7.7.1. Nickel Hydrogen Batteries
    • 7.7.2. Aluminum-Sulfur Batteries
    • 7.7.3. Silicon Nanowire Batteries
    • 7.7.4. Solid-State Electrolyte Batteries

8. THERMAL ENERGY STORAGE

  • 8.1. Technology Overview
  • 8.2. Applications
  • 8.3. Thermal energy storage system design
  • 8.4. Types of Thermal Storage Systems
  • 8.5. Comparison between molten salt and concrete
  • 8.6. TRL
  • 8.7. Electro-Thermal Energy Storage (ETES)
    • 8.7.1. Applications
  • 8.8. Technology approaches
  • 8.9. Advanced ETES Technologies
    • 8.9.1. Extreme Temperature and Photovoltaic Conversion
    • 8.9.2. Combined Heat and Electricity Systems
  • 8.10. SWOT Analysis
  • 8.11. Companies

9. MARKET FORECASTS AND TECHNOLOGY ROADMAPS 2026-2046

  • 9.1. Global LDES Market Value Forecasts (2026-2046)
  • 9.2. Capacity Installation Forecasts by Region
  • 9.3. Annual Demand by Country/State (GWh) 2022-2046
  • 9.4. Annual Installations by Technology (GWh) 2022-2046
  • 9.5. Market Value by Technology ($B) 2026-2046
  • 9.6. Regional Market Share Analysis
  • 9.7. Duration Segment Growth Projections
  • 9.8. Long-Term Market Evolution
    • 9.8.1. Technology Convergence and Hybridization
    • 9.8.2. Cost Competitiveness Timelines
    • 9.8.3. Market Saturation and Replacement Cycles
    • 9.8.4. Emerging Applications and Use Cases

10. COMPANY PROFILES (94 company profiles)

11. REFERENCES