表紙:リチウムイオンバッテリーのリサイクルの世界市場:2024年~2040年
市場調査レポート
商品コード
1359918

リチウムイオンバッテリーのリサイクルの世界市場:2024年~2040年

The Global Market for Li-ion Battery Recycling 2024-2040

出版日: | 発行: Future Markets, Inc. | ページ情報: 英文 168 Pages, 29 Tables, 28 Figures | 納期: 即納可能 即納可能とは

価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=205.16円
リチウムイオンバッテリーのリサイクルの世界市場:2024年~2040年
出版日: 2023年10月31日
発行: Future Markets, Inc.
ページ情報: 英文 168 Pages, 29 Tables, 28 Figures
納期: 即納可能 即納可能とは
  • 全表示
  • 概要
  • 図表
  • 目次
概要

バッテリーのリサイクル産業が軌道に乗り始めています。もともとは、携帯機器から比較的少量のリチウムイオン(Li-ion)バッテリーをリサイクルしていました。これは現在でも市場の大半を占めていますが、EVの大幅な伸びと材料価格の上昇、さらに供給に関する懸念が、リチウムイオンバッテリーのリサイクル技術の開発を後押ししています。General Motors、Ford、Tesla、Toyota、Hyundai、Panasonicなどの企業が今後数年のうちに新しいバッテリー工場の開設を計画しているため、リチウムイオンバッテリーの生産量は大幅に増加し(2030年までに120万トン以上のリチウムイオンバッテリーが寿命を迎える)、リサイクルにとって大きな機会となります。

当レポートでは、世界のリチウムイオンバッテリー市場について調査し、市場の概要とともに、リサイクル技術、バリューチェーン、規制、持続可能性への影響、競合情勢を包括的に分析しています。また、2040年までの予測、市場に参入する企業のプロファイルなどを提供しています。

目次

第1章 イントロダクション

  • リチウムイオンバッテリー
  • 電気自動車(EV)市場
  • リチウムイオンバッテリーのリサイクルバリューチェーン
  • 循環型ライフサイクル
  • 世界の規制と政策
  • 持続可能性と環境上の利点

第2章 リサイクルの方法と技術

  • 黒色塊粉末
  • さまざまなカソード化学物質のリサイクル
  • 準備
  • 前処理
  • リサイクル技術の比較
  • 湿式冶金
  • 乾式冶金
  • 直接リサイクル
  • その他の方法
  • 特定部品のリサイクル
  • リチウムイオンバッテリー以外のリサイクル

第3章 市場分析

  • 市場促進要因
  • 市場の課題
  • 現在の市場
  • 最近の市場ニュース、資金調達、開発状況
  • リチウムイオンバッテリーリサイクルの経済的な事例
  • 競合情勢
  • 現在および計画されている世界の生産能力
  • 今後の展望
  • 世界市場:2018年~2040年

第4章 企業プロファイル

第5章 用語と定義

第6章 調査手法

第7章 参考文献

図表

List of Tables

  • Table 1. Lithium-ion (Li-ion) battery supply chain
  • Table 2. Commercial Li-ion battery cell composition
  • Table 3. Key technology trends shaping lithium-ion battery cathode development
  • Table 4. Cathode Materials Used in Commercial LIBs and Recycling Methods
  • Table 5. Fate of end-of-life Li-ion batteries
  • Table 6. Closed-loop value chain for electric vehicle (EV) batteries
  • Table 7. Li-ion battery recycling value chain
  • Table 8. Potential circular life cycle for lithium-ion batteries
  • Table 9. Regulations pertaining to the recycling and treatment of EOL batteries in the EU, USA, and China
  • Table 10. China regulations and policies related to batteries
  • Table 11. Sustainability and environmental benefits of Li-ion recycling
  • Table 12. Typical lithium-ion battery recycling process flow
  • Table 13. Main feedstock streams that can be recycled for lithium-ion batteries
  • Table 14. Comparison of LIB recycling methods
  • Table 15. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries
  • Table 16. Market drivers for lithium-ion battery recycling
  • Table 17. Market challenges in lithium-ion battery recycling
  • Table 18. Recent market news, funding and developments in Li-ion battery recycling
  • Table 19. Economic assessment of battery recycling options
  • Table 20. Retired lithium-batteries
  • Table 21. Global capacities, current and planned (tonnes/year)
  • Table 22. Global lithium-ion battery recycling market in tonnes segmented by cathode chemistry, 2018-2040
  • Table 23. Global Li-ion battery recycling market, 2018-2040 (ktonnes)
  • Table 24. Global Li-ion battery recycling market, 2018-2040 (billions USD)
  • Table 25. Li-ion battery recycling market, by region, 2018-2040 (ktonnes)
  • Table 26. Li-ion battery recycling market, in Europe, 2018-2040 (ktonnes)
  • Table 27. Li-ion battery recycling market, in China, 2018-2040 (ktonnes)
  • Table 28. Li-ion battery recycling market, in Rest of Asia-Pacific, 2018-2040 (ktonnes)
  • Table 29. Li-ion battery recycling market, in North America, 2018-2040 (ktonnes)

List of Figures

  • Figure 1. Li-ion battery cell pack
  • Figure 2. Lithium Cell Design
  • Figure 3. Functioning of a lithium-ion battery
  • Figure 4. LIB cathode recycling routes
  • Figure 5. Process for recycling lithium-ion batteries from EVs
  • Figure 6. Circular life cycle of lithium ion-batteries
  • Figure 7. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials
  • Figure 8. Mechanical separation flow diagram
  • Figure 9. Recupyl mechanical separation flow diagram
  • Figure 10. Flow chart of recycling processes of lithium-ion batteries (LIBs)
  • Figure 11. Hydrometallurgical recycling flow sheet
  • Figure 12. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling
  • Figure 13. Umicore recycling flow diagram
  • Figure 14. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling
  • Figure 15. Schematic of direct recyling process
  • Figure 16. SWOT analysis for Direct Li-ion Battery Recycling
  • Figure 17. Schematic diagram of a Li-metal battery
  • Figure 18. Schematic diagram of Lithium-sulfur battery
  • Figure 19. Schematic illustration of all-solid-state lithium battery
  • Figure 20. Global scrapped EV (BEV+PHEV) forecast to 2040
  • Figure 21. Global Li-ion battery recycling market, 2018-2040 (chemistry)
  • Figure 22. Global Li-ion battery recycling market, 2018-2040 (ktonnes)
  • Figure 23. Global Li-ion battery recycling market, 2018-2040 (Billion USD)
  • Figure 24. Global Li-ion battery recycling market, by region, 2018-2040 (ktonnes)
  • Figure 25. Li-ion battery recycling market, in Europe, 2018-2040 (ktonnes)
  • Figure 26. Li-ion battery recycling market, in China, 2018-2040 (ktonnes)
  • Figure 27. Li-ion battery recycling market, in Rest of Asia-Pacific, 2018-2040 (ktonnes)
  • Figure 28. Li-ion battery recycling market, in North America, 2018-2040 (ktonnes)
目次
Product Code: REBATT23

The battery recycling industry is starting to take off. Originally, companies recycled Lithium-ion (Li-ion) batteries from mobile devices in relatively small quantities. While this still accounts for the majority of the market, the huge growth in EVs and increase in materials prices plus concerns regarding supply has driven development of Li-ion battery recycling technologies. With new battery plants planned by companies including General Motors, Ford, Tesla, Toyota, Hyundai and Panasonic open over the next few years, lithium-ion battery production will increase greatly (with >1.2 million tons of lithium-ion batteries reaching end of life by 2030), presenting a significant opportunity for recycling.

“The Global Market for Li-ion Battery Recycling 2024-2040” provides an in-depth analysis of market drivers, challenges, value chain, technologies, and competitive landscape.

This 168 page market report provides a comprehensive analysis of recycling technologies, value chain, regulations, sustainability impacts, and competitive landscape. Detailed regional analysis covers Europe, China, Asia Pacific, and North America. The report examines battery collection, discharging, dismantling, and mechanical pre-processing. The competitive landscape is analyzed including market leaders and start-ups. Extensive demand forecasts are presented along with growth opportunity analysis. The future technology roadmap compares emerging recycling approaches versus conventional methods.

Report contents include:

  • Market Size by chemistry, ktonnes, revenues and region, forecast to 2040.
  • Market trends, drivers and challenges analysis.
  • In-depth analysis of recycling methods and technologies.
  • Recycling of beyond-lithium batteries,
  • Analysis of the current market and future outlook.
  • Recent news and market developments including funding and capacities.
  • Global production capacities current and planned.
  • Profiles of 88 companies. Companies profiled include Akkuser Oy, BASF, Battery Pollution Technologies, Circunomics, Cylib, Econili Battery, GEM Co., Ltd., Green Li-ion, Green Mineral, Li-Cycle, Neu Battery Materials, Redwood Materials, Renewable Metals, Sumitomo and Tozero.

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Lithium-ion batteries
    • 1.1.1. What is a Li-ion battery?
    • 1.1.2. Li-ion cathode
    • 1.1.3. Li-ion anode
    • 1.1.4. Battery failure
    • 1.1.5. End-of-life
    • 1.1.6. Sustainability
  • 1.2. The Electric Vehicle (EV) market
    • 1.2.1. Emerging market for replacement battery packs
    • 1.2.2. Closed-loop value chain for EV batteries
  • 1.3. Lithium-Ion Battery recycling value chain
  • 1.4. Circular life cycle
  • 1.5. Global regulations and policies
    • 1.5.1. China
    • 1.5.2. EU
    • 1.5.3. US
    • 1.5.4. India
    • 1.5.5. South Korea
    • 1.5.6. Japan
    • 1.5.7. Australia
    • 1.5.8. Transportation
  • 1.6. Sustainability and environmental benefits

2. RECYCLING METHODS AND TECHNOLOGIES

  • 2.1. Black mass powder
  • 2.2. Recycling different cathode chemistries
  • 2.3. Preparation
  • 2.4. Pre-Treatment
    • 2.4.1. Discharging
    • 2.4.2. Mechanical Pre-Treatment
    • 2.4.3. Thermal Pre-Treatment
  • 2.5. Comparison of recycling techniques
  • 2.6. Hydrometallurgy
    • 2.6.1. Method overview
      • 2.6.1.1. Solvent extraction
    • 2.6.2. SWOT analysis
  • 2.7. Pyrometallurgy
    • 2.7.1. Method overview
    • 2.7.2. SWOT analysis
  • 2.8. Direct recycling
    • 2.8.1. Method overview
      • 2.8.1.1. Electrolyte separation
      • 2.8.1.2. Separating cathode and anode materials
      • 2.8.1.3. Binder removal
      • 2.8.1.4. Relithiation
      • 2.8.1.5. Cathode recovery and rejuvenation
      • 2.8.1.6. Hydrometallurgical-direct hybrid recycling
    • 2.8.2. SWOT analysis
  • 2.9. Other methods
    • 2.9.1. Mechanochemical Pretreatment
    • 2.9.2. Electrochemical Method
    • 2.9.3. Ionic Liquids
  • 2.10. Recycling of Specific Components
    • 2.10.1. Anode (Graphite)
    • 2.10.2. Cathode
    • 2.10.3. Electrolyte
  • 2.11. Recycling of Beyond Li-ion Batteries
    • 2.11.1. Conventional vs Emerging Processes
    • 2.11.2. Li-Metal batteries
    • 2.11.3. Lithium sulfur batteries (Li-S)
    • 2.11.4. All-solid-state batteries (ASSBs)

3. MARKET ANALYSIS

  • 3.1. Market drivers
  • 3.2. Market challenges
  • 3.3. The current market
  • 3.4. Recent market news, funding and developments
  • 3.5. Economic case for Li-ion battery recycling
    • 3.5.1. Metal prices
    • 3.5.2. Second-life energy storage
    • 3.5.3. LFP batteries
    • 3.5.4. Other components and materials
    • 3.5.5. Reducing costs
  • 3.6. Competitive landscape
  • 3.7. Global capacities, current and planned
  • 3.8. Future outlook
  • 3.9. Global market 2018-2040
    • 3.9.1. Chemistry
    • 3.9.2. Ktonnes
    • 3.9.3. Revenues
    • 3.9.4. Regional
      • 3.9.4.1. Europe
        • 3.9.4.1.1. Regional overview
      • 3.9.4.2. China
        • 3.9.4.2.1. Regional overview
      • 3.9.4.3. Rest of Asia-Pacific
        • 3.9.4.3.1. Regional overview
      • 3.9.4.4. North America
        • 3.9.4.4.1. Regional overview

4. COMPANY PROFILES

5. TERMS AND DEFINITIONS

6. RESEARCH METHODOLOGY

7. REFERENCES