デフォルト表紙
市場調査レポート
商品コード
1654717

予測腐食管理の世界市場:2025年~2032年

Global Predictive Corrosion Management Market - 2025-2032


出版日
ページ情報
英文 204 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
予測腐食管理の世界市場:2025年~2032年
出版日: 2025年02月13日
発行: DataM Intelligence
ページ情報: 英文 204 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

予測腐食管理の世界市場は、2024年に12億4,411万米ドルに達し、2032年までには23億1,988万米ドルに達すると予測され、予測期間中の2025年から2032年のCAGRは8.1%で成長する見込みです。

世界の予測腐食管理市場は、インフラの完全性を維持し、腐食による経済的損失を最小限に抑える必要性の高まりに後押しされ、大幅な成長を遂げています。航空宇宙、石油・ガス、運輸などの業界では、腐食を事前に管理し、安全性を高め、メンテナンスコストを削減するために、予測分析を採用するケースが増えています。

腐食モニタリングシステムにおけるモノのインターネット(IoT)デバイスと人工知能(AI)アルゴリズムの採用は、予知保全戦略に革命をもたらしています。これらの技術は、リアルタイムのデータ収集と分析を可能にし、腐食の早期発見とタイムリーな介入を可能にすることで、ダウンタイムとメンテナンスコストの削減を実現します。産業界は持続可能な実践にますます焦点を当て、厳しい環境規制を遵守するようになっています。

アジア太平洋は、工業化とインフラ整備の加速により、予測腐食管理市場が急成長しています。中国やインドなどの国々はインフラプロジェクトに多額の投資を行っており、効果的な腐食管理ソリューションの需要が高まっています。予測腐食管理は、腐食による漏出や流出を防止することで、環境への危険を軽減し、規制基準への準拠を確実にします。製造業や建設業における先端技術の採用が、この地域の市場をさらに後押ししています。

市場力学

腐食による経済的影響の増大

腐食は世界的に大きな経済的負担をもたらし、さまざまな産業やインフラシステムに影響を及ぼしています。米国だけでも、腐食の年間コストは2,760億米ドル以上と推定され、国内総生産(GDP)の約3.1%を占めています。この多大な経済的影響は、効果的な腐食管理戦略の重要な必要性を強調しています。輸送、公共事業、インフラなどの産業は特に脆弱であり、腐食はメンテナンスコストの増加、操業停止時間、深刻な場合には致命的な故障につながります。

予測腐食管理は、このような経済的損失を軽減する積極的なアプローチを提供します。先進的なモニタリング技術とデータ分析を活用することで、腐食に関連する問題が深刻化する前に予測することができ、タイムリーなメンテナンスや修理が可能になります。これにより、資産の寿命を延ばすだけでなく、腐食損傷に関連する全体的なコストを削減することができます。例えば、運輸部門では、金属構造物の腐食は、インフラや公益事業などの経済に大きな影響を与えます。

腐食モニタリング技術の進歩

腐食モニタリングの分野では、大幅な技術進歩が見られ、腐食を効果的に予測・管理する能力が向上しています。センサー技術、データ分析、材料科学の革新は、より正確で信頼性の高い予測腐食管理システムの開発に貢献しています。注目すべき進歩の一つは、モノのインターネット(IoT)デバイスを腐食モニタリングフレームワークに統合したことです。IoT対応センサーは、環境条件、材料劣化、構造完全性に関するリアルタイムデータを継続的に収集することができます。

こうした先進技術の採用は、業界標準やガイドラインによってさらに後押しされています。全米腐食技術者協会(NACE)などの組織は、腐食管理要素を組織システムに統合するためのフレームワークとベストプラクティスを提供し、高度なモニタリングと予測技術の利用を促進しています。まとめると、腐食モニタリング技術の進歩は、予測腐食管理分野の重要な推進力です。

高いエネルギー消費と環境への懸念

予測腐食管理市場は、成長軌道を阻害しかねないいくつかの抑制要因に直面しています。重要な課題の1つは、人工知能や機械学習などの先進技術に関連する導入コストの高さです。多くの組織、特に中小企業では、これらの高度なシステムに十分な予算を割り当てることが難しく、市場への浸透や採用率が制限される可能性があります。さらに、ハードウェアやソフトウェア・ソリューションへの初期投資は、厳しい予算で運営されている企業にとって障壁となる可能性があります。

もう一つの抑制要因は、予知保全と腐食管理の分野における熟練労働者の不足です。複雑な技術の統合には、データ分析と腐食科学に精通した労働力が必要です。企業は有能な人材の確保に苦労しているため、効果的な予知戦略の実施に遅れが生じ、最終的に業務効率に影響を与え、コストが増加する可能性があります。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 腐食による経済的影響の増大
      • 腐食監視技術の進歩
    • 抑制要因
      • 高いエネルギー消費と環境問題
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • 持続可能な分析
  • DMIの見解

第6章 技術別

  • 電気化学技術
  • コーティング技術
  • 腐食防止剤
  • 監視システム
  • その他

第7章 展開モード別

  • オンプレミス
  • クラウドベース
  • ハイブリッド

第8章 用途別

  • メーカー
  • サービスプロバイダー
  • 政府機関
  • 研究開発
  • その他

第9章 エンドユーザー別

  • 航空宇宙
  • 自動車
  • 石油・ガス
  • 海洋
  • 建設
  • 発電
  • その他

第10章 サスティナビリティ分析

  • 環境分析
  • 経済分析
  • ガバナンス分析

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州地域
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況・シェア分析
  • M&A分析

第13章 企業プロファイル

  • Baker Hughes
    • 会社概要
    • 製品ポートフォリオと概要
    • 財務概要
    • 主な発展
  • WebCorr Corrosion Consulting Services
  • Microsoft
  • Honeywell International Inc.
  • SMARTCORR
  • Cosasco
  • Alabama Specialty Products
  • SGS SA
  • ICORR Technologies
  • Permasense Emerson

第14章 付録

目次
Product Code: ICT9139

Global Predictive Corrosion Management Market reached US$ 1,244.11 million in 2024 and is expected to reach US$ 2,319.88 million by 2032, growing with a CAGR of 8.1% during the forecast period 2025-2032.

The global predictive corrosion management market is witnessing substantial growth, propelled by the increasing need to maintain infrastructure integrity and minimize economic losses due to corrosion. Industries such as aerospace, oil and gas and transportation are increasingly adopting predictive analytics to proactively manage corrosion, thereby enhancing safety and reducing maintenance costs.

The adoption of Internet of Things (IoT) devices and Artificial Intelligence (AI) algorithms in corrosion monitoring systems is revolutionizing predictive maintenance strategies. These technologies enable real-time data collection and analysis, allowing for early detection of corrosion and timely intervention, thereby reducing downtime and maintenance costs. Industries are increasingly focusing on sustainable practices and adhering to stringent environmental regulations.

Asia-Pacific is experiencing rapid growth in the predictive corrosion management market, driven by accelerated industrialization and infrastructure development. Countries such as China and India are investing heavily in infrastructure projects, leading to a heightened demand for effective corrosion management solutions. Predictive corrosion management aids in preventing leaks and spills caused by corrosion, thereby mitigating environmental hazards and ensuring compliance with regulatory standards. The adoption of advanced technologies in manufacturing and construction sectors further propels the market in this region.

Dynamics

Increasing Economic Impact of Corrosion

Corrosion poses a significant economic burden globally, affecting various industries and infrastructure systems. In US alone, the annual cost of corrosion is estimated to be over US$ 276 billion, accounting for approximately 3.1% of the nation's Gross Domestic Product (GDP). This substantial financial impact underscores the critical need for effective corrosion management strategies. Industries such as transportation, utilities and infrastructure are particularly vulnerable, with corrosion leading to increased maintenance costs, operational downtime and, in severe cases, catastrophic failures.

Predictive corrosion management offers a proactive approach to mitigate these economic losses. By utilizing advanced monitoring technologies and data analytics organizations can anticipate corrosion-related issues before they escalate, allowing for timely maintenance and repairs. This not only extends the lifespan of assets but also reduces the overall cost associated with corrosion damage. For instance, in the transportation sector, corrosion of metallic structures significantly impacts the economy, including infrastructure and utilities.

Advancements in Corrosion Monitoring Technologies

The field of corrosion monitoring has witnessed significant technological advancements, enhancing the ability to predict and manage corrosion effectively. Innovations in sensor technology, data analytics and materials science have collectively contributed to the development of more accurate and reliable predictive corrosion management systems. One notable advancement is the integration of Internet of Things (IoT) devices into corrosion monitoring frameworks. IoT-enabled sensors can continuously collect real-time data on environmental conditions, material degradation and structural integrity.

The adoption of these advanced technologies is further supported by industry standards and guidelines. Organizations such as the National Association of Corrosion Engineers (NACE) provide frameworks and best practices for integrating corrosion management elements into organizational systems, promoting the use of advanced monitoring and predictive techniques. In summary, advancements in corrosion monitoring technologies are a significant driver for the predictive corrosion management sector.

High Energy Consumption and Environmental Concerns

The Predictive Corrosion Management Market faces several restraints that could hinder its growth trajectory. One significant challenge is the high cost of implementation associated with advanced technologies such as artificial intelligence and machine learning. Many organizations, particularly smaller firms, may find it difficult to allocate sufficient budgets for these sophisticated systems, which can limit market penetration and adoption rates. Additionally, the initial investment in hardware and software solutions can be a barrier for companies operating on tight budgets.

Another restraint is the shortage of skilled labor in the field of predictive maintenance and corrosion management. The integration of complex technologies requires a workforce that is well-versed in data analytics and corrosion science. As companies struggle to find qualified personnel, they may experience delays in implementing effective predictive strategies, ultimately impacting operational efficiency and increasing costs.

Segment Analysis

The global predictive corrosion management market is segmented based on technology, deployment mode, application, end-user and region.

Critical Need to ensure the Safety, Reliability and Longevity of Aircraft Structures

Aircraft are exposed to various environmental factors that contribute to corrosion, including humidity, temperature fluctuations and exposure to saltwater in coastal regions. The use of lightweight materials, such as aluminum alloys, while beneficial for performance, also increases susceptibility to corrosion. The aerospace industry in North America, led by companies like Boeing and Lockheed Martin, is heavily investing in predictive corrosion monitoring to enhance aircraft longevity and safety.

The FAA's Aircraft Maintenance Manual specifies rigorous corrosion inspections and maintenance requirements. Predictive corrosion management helps reduce aircraft maintenance costs by 15-20%, as reported by the U.S. Department of Defense (DoD). The National Aeronautics and Space Administration (NASA) has been at the forefront of developing corrosion control strategies for aerospace applications. NASA's Corrosion Technology Laboratory focuses on understanding corrosion mechanisms and developing predictive models to enhance the durability of aerospace materials.

In commercial aviation, airlines are adopting predictive maintenance programs that incorporate corrosion monitoring to optimize maintenance schedules and reduce operational disruptions. For example, Delta Air Lines has implemented an advanced predictive maintenance system that monitors various aircraft systems, including structural components susceptible to corrosion. This system analyzes data from sensors and maintenance records to predict potential issues, allowing for proactive maintenance and reducing unscheduled downtime.

Geographical Penetration

Advanced Industrial Infrastructure of North America Drives the demand of Predictive Corrosion

North America dominates the predictive corrosion management market due to its advanced industrial infrastructure, high adoption of predictive maintenance technologies and stringent regulatory frameworks. The region is home to key industries such as aerospace, oil and gas and automotive, all of which are highly vulnerable to corrosion-related issues. According to the National Association of Corrosion Engineers (NACE), the annual cost of corrosion in the U.S. alone exceeds US$ 276 billion, representing 3.1% of the country's GDP. This substantial economic burden drives the widespread adoption of predictive corrosion management solutions.

Furthermore, North America is at the forefront of technological innovations in predictive maintenance. The integration of Artificial Intelligence (AI), Machine Learning (ML) and Internet of Things (IoT) into corrosion management systems allows industries to detect early signs of material degradation and take preventive actions. According to the National Institute of Standards and Technology (NIST), AI-powered predictive maintenance can reduce unexpected equipment failures by up to 75%, translating to billions of dollars in cost savings annually.

Competitive Landscape

The major global players in the market include Baker Hughes, WebCorr Corrosion Consulting Services, Microsoft, Honeywell International Inc., SMARTCORR, Cosasco, Alabama Specialty Products, SGS SA, ICORR Technologies and Permasense Emerson.

Sustainable Analysis

Predictive corrosion management plays a crucial role in promoting sustainability by reducing material waste, minimizing hazardous emissions and extending asset lifespans. Corrosion leads to premature degradation of infrastructure, resulting in massive amounts of metal waste. According to the U.S. Environmental Protection Agency (EPA), approximately 60 million tons of metal waste is generated annually due to corroded infrastructure. Predictive corrosion management extends the lifespan of industrial assets, reducing the need for frequent replacements and minimizing material consumption.

Traditional corrosion management practices involve frequent repairs, replacements and production of new materials, all of which contribute to increased carbon emissions. The World Resources Institute (WRI) highlights that steel production (a key material affected by corrosion) accounts for 7-9% of global CO2 emissions. By proactively preventing corrosion, industries can reduce the demand for new steel production, thereby lowering their carbon footprint.

Impact of Artificial Intelligence (AI) and Internet of Things (IoT)

Artificial Intelligence (AI) and the Internet of Things (IoT) are revolutionizing corrosion management by enabling real-time monitoring and predictive analytics. In Schleswig-Holstein, Germany, the CHAI research project is leveraging AI and IoT to enhance corrosion detection in ports and waterways. With a US$ 81378638.98 investment from the federal state and leadership from the Helmholtz Center Hereon, the project integrates sensor technology and machine learning algorithms to monitor environmental conditions such as temperature, water composition and solar radiation. This data allows AI to analyze and predict corrosion patterns more accurately, reducing the reliance on costly manual inspections and enabling proactive maintenance strategies.

By training AI models on collected sensor data, researchers predict the severity and speed of corrosion under various conditions, optimizing preventative measures for maritime infrastructure. The involvement of Christian Albrechts Universitat zu Kiel (CAU), the Port of Kiel and AC Korro-Service GmbH ensures that this technology transition benefits both scientific research and industrial applications. As the AI continues to learn from expanding datasets, its predictions will become increasingly precise, allowing organizations like the Port of Kiel to implement automated maintenance strategies.

Key Developments

  • In July 2024, Cambridge, UK-based Corrosion RADAR, a provider of predictive Corrosion Under Insulation (CUI) monitoring solutions, announced that it has secured a US$ 6.13 investment. This funding will support the company's efforts in advancing its innovative CUI monitoring technology, which helps industries detect and prevent corrosion-related failures.
  • In June 2024, Aramco, a global leader in integrated energy and chemicals, announced the deployment of Corrosion RADAR's advanced Corrosion Under Insulation (CUI) monitoring solution at the Ju'aymah NGL Fractionation Plant. This strategic installation at key locations within the plant aims to enhance safety, reliability and operational efficiency.
  • In May 2024, OLI Systems introduced its MSE (Mixed Solvent Electrolyte) corrosion model, marking a significant advancement in corrosion prediction technology. This model, developed through extensive research and validation, is the first of its kind designed to predict corrosion across a broader range of process compositions, effectively eliminating the traditional water-dependency barrier.

By Technology

  • Electrochemical Techniques
  • Coating Technologies
  • Corrosion Inhibitors
  • Monitoring Systems
  • Others

By Deployment Mode

  • On-Premises
  • Cloud-Based
  • Hybrid

By Application

  • Manufacturers
  • Service Providers
  • Government Agencies
  • Research & Development
  • Others

By End-User

  • Aerospace
  • Automotive
  • Oil and Gas
  • Marine
  • Construction
  • Power Generation
  • Others

By Region

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Why Purchase the Report?

  • To visualize the global predictive corrosion management market segmentation based on technology, deployment mode, application, end-user and region.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points at the predictive corrosion management market level for all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global predictive corrosion management market report would provide approximately 70 tables, 70 figures and 204 pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Technology
  • 3.2. Snippet by Deployment Mode
  • 3.3. Snippet by Application
  • 3.4. Snippet by End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Increasing Economic Impact of Corrosion
      • 4.1.1.2. Advancements in Corrosion Monitoring Technologies
    • 4.1.2. Restraints
      • 4.1.2.1. High Energy Consumption and Environmental Concerns
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Sustainable Analysis
  • 5.6. DMI Opinion

6. By Technology

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 6.1.2. Market Attractiveness Index, By Technology
  • 6.2. Electrochemical Techniques*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Coating Technologies
  • 6.4. Corrosion Inhibitors
  • 6.5. Monitoring Systems
  • 6.6. Others

7. By Deployment Mode

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Mode
    • 7.1.2. Market Attractiveness Index, By Deployment Mode
  • 7.2. On-Premises*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Cloud-Based
  • 7.4. Hybrid

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Manufacturers*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Service Providers
  • 8.4. Government Agencies
  • 8.5. Research & Development
  • 8.6. Others

9. By End-User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.1.2. Market Attractiveness Index, By End-User
  • 9.2. Aerospace*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Automotive
  • 9.4. Oil and Gas
  • 9.5. Marine
  • 9.6. Construction
  • 9.7. Power Generation
  • 9.8. Others

10. Sustainability Analysis

  • 10.1. Environmental Analysis
  • 10.2. Economic Analysis
  • 10.3. Governance Analysis

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Mode
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. US
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Mode
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Data Center Type
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Spain
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Key Region-Specific Dynamics
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Mode
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.8.1. Brazil
      • 11.4.8.2. Argentina
      • 11.4.8.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Mode
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Mode
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Baker Hughes*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. WebCorr Corrosion Consulting Services
  • 13.3. Microsoft
  • 13.4. Honeywell International Inc.
  • 13.5. SMARTCORR
  • 13.6. Cosasco
  • 13.7. Alabama Specialty Products
  • 13.8. SGS SA
  • 13.9. ICORR Technologies
  • 13.10. Permasense Emerson

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us