デフォルト表紙
市場調査レポート
商品コード
1654712

アグリボルタイクスの世界市場:2025年~2032年

Global Agrivoltaics Market - 2025-2032


出版日
ページ情報
英文 205 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円
アグリボルタイクスの世界市場:2025年~2032年
出版日: 2025年02月13日
発行: DataM Intelligence
ページ情報: 英文 205 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

アグリボルタイクスの世界市場は、2024年に43億2,000万米ドルに達し、2032年までには84億1,000万米ドルに達し、予測期間中の2025年から2032年のCAGRは8.68%で成長すると予測されています。

アグリボルタイクスまたはソーラーパネルを使った農業や牧場は、適切なソーラー用地が不足しているため、世界中で人気を集めています。アグリボルタイクスのアレイは通常、8フィート(約1.5メートル)以上の高さに建設され、その下で農業を続けられるようにすることで、土地の本来の目的を維持しながらソーラーから現金を生み出します。畑の上に設置されたソーラーパネルは、土壌からの水分蒸発を抑えることが示されています。土壌が水分と栄養を保持することで、作物の効率は向上しました。さらに、屋上ソーラーパネルで覆われた放牧地で植物を育てると、健康的で効率的な植物の成長が促されます。さらに、パネルから供給される電力は農家に現金をもたらします。

国連によると、世界人口は2030年までに85億人、2050年までに97億人に達すると予想されています。このことは、世界中でさまざまなレベルの不確実性を生み出すと思われます。人類は、食料と土地の探求を含むいくつかの大きな障害に遭遇すると思われます。さらに、一次エネルギーへのニーズも大幅に拡大します。環境を破壊することなく、最良の結果をもたらす選択肢を模索する必要があります。アグリボルタイクスは理想的な選択肢を提供します。アグリボルタイクスシステムを採用することで、農業生産における土壌効率が向上するという研究結果が出ています。さらに、ソーラーパネルから供給される電力は、電力問題を解決し、化石燃料への依存を減らすのに役立ちます。

中国、日本、インドで太陽電池モジュールの採用が増加しているため、アジア太平洋が世界のアグリボルタイクス市場を独占しています。この地域では、中国がソーラーモジュールの主要生産国です。2015年から2018年までのわずか3年間で4GWの太陽光発電容量を設置しました。アグリボルタイクス市場は、中国の太陽光発電セクターの過剰生産能力に関連する問題に対処するため、有利な政策と国内エネルギー需要を拡大する必要性が高まった結果、急速に全国的に拡大しています。その結果、中国におけるアグリボルタイクスの設置は、このような生産能力過剰の問題を解決すると同時に、中国全土で先進的な農法の使用を促進することを目的としています。

ダイナミクス

水不足の深刻化

水不足が深刻化し、気候変動の影響が加速する中、単結晶ソーラーパネルをベースとしたアグリボルタイクスシステムが、食糧とエネルギーの安全保障のための実行可能な代替案として浮上しています。この装置は水の蒸発を抑え、作物の回復力を向上させ、クリーンなエネルギーを生成するため、気候変動に配慮した農業には欠かせないものとなっています。水ポンプと灌漑システムは、単結晶ソーラーパネルによって駆動され、ディーゼルポンプに取って代わり、持続可能な水の供給を保証します。PM-KUSUMプログラムのもと、ラジャスタン州とマハラシュトラ州の農地では、太陽光発電を利用した点滴灌漑によって水の無駄遣いを減らし、農場の生産性を25%向上させています。

水不足が深刻化し、気候変動の影響が加速する中、単結晶ソーラーパネルを利用したアグリボルタシステムは、食糧とエネルギーの安全保障のための実行可能な代替案として台頭してきています。この装置は、水の蒸発を抑え、作物の回復力を高め、クリーンなエネルギーを生成するため、気候変動に対応した農業に不可欠です。アリゾナ大学の研究者は、単結晶パネルを利用したアグリボルタイクファームズが、唐辛子やプチトマトなどの作物の水やりの必要性を30%削減することを発見しました。

政府の補助金と支援の増加

世界各国の政府は、補助金、税額控除、固定価格買取制度、金融優遇措置などで、単結晶アグリボルタイクスを支援する動きを強めています。こうした規制は、再生可能エネルギーの導入、農業の持続可能性、気候変動への耐性を高め、農家や投資家にとってアグリボルタイクスプロジェクトがより経済的に実行可能なものになることを目指しています。

米国エネルギー効率・再生可能エネルギー局は、メガワット規模の基礎研究(FARMS)資金提供プログラムを設立し、農家、農村地域社会、太陽光発電部門に新たな経済的展望を提供しています。米国エネルギー省太陽エネルギー技術局(SETO)は、2022年5月5日に800万米ドルのFARMS資金提供の機会を、12月8日に選ばれた6つのプロジェクトを通知しました。

選ばれたプロジェクトは、アグリボルタイクスの設計が農業とエネルギー生産の両方に与える影響を調査するための影響調査を実施するほか、アグリボルタイクスを既存の太陽光発電所に統合し、アグリボルタイクスへの参入障壁を下げるためのリソースを提供します。さらに、実験プロジェクトは、プロジェクトパートナーの農業普及活動を支援し、アグリボルタイクスの方法について農家を教育します。

高い投資コスト

単結晶アグリボルタイクスにおける最も大きな障害のひとつは、ソーラーパネルの設置、取り付け構造、エネルギー貯蔵、グリッド統合に必要な多額の初期費用です。伝統的な農業や独立型の太陽光発電所と比べて、アグリボルタイクスシステムは専門的なインフラとエンジニアリングを必要とするため、特に貧しい国の多くの農家にとって資本集約的なものとなっています。多くのアグリボルタイク所では、断続的な太陽エネルギー供給を制御するために蓄電池が必要となり、その分費用がかさみます。

インドのアグリボルタイクパイロット・プロジェクトの農家は、通常の太陽光発電所と比較して、単結晶太陽光発電と蓄電池システムを建設する際の資本費用が高くなっています。大企業や産業規模のアグリボルタイクファームズは、投資優遇措置の恩恵を受けているが、零細農家は、アグリボルタイクに特化した金融商品の不足、投資収益率(ROI)の遅い高額な初期費用、地域によっては政府補助金へのアクセスが限られているため、資金確保に苦労しています。政府補助金や金融優遇措置、独創的な資金調達アプローチがなければ、中小規模農家への普及は依然として難しいです。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 水不足の深刻化
      • 政府の補助金と支援の増加
    • 抑制要因
      • 高い投資コスト
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • 持続可能な分析
  • DMIの見解

第6章 システム設計別

  • 固定
  • 動的

第7章 細胞タイプ別

  • 単結晶
  • 多結晶

第8章 作物別

  • 野菜
  • 果物
  • 作物
  • その他

第9章 ソーラーテクノロジー

  • 太陽光発電(PV)パネル
  • 集光型太陽光発電(CPV)

第10章 サスティナビリティ分析

  • 環境分析
  • 経済分析
  • ガバナンス分析

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州地域
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況・シェア分析
  • M&A分析

第13章 企業プロファイル

  • Next2Sun Technology GmbH
    • 会社概要
    • 製品ポートフォリオと概要
    • 財務概要
    • 主な発展
  • SunAgri
  • Ombrea
  • Namaste Solar
  • Mirai Solar
  • SunSeed APV Private Limited
  • Enel Green Power Spa
  • JA Solar Holdings Co. Ltd.
  • BayWa AG
  • Insolight SA.

第14章 付録

目次
Product Code: EP9135

Global Agrivoltaics Market reached US$ 4.32 billion in 2024 and is expected to reach US$ 8.41 billion by 2032, growing with a CAGR of 8.68% during the forecast period 2025-2032.

Agrivoltaics or farming or ranching with solar panels, is gaining popularity around the world since suitable solar land becomes scarce. An agrivoltaics array is normally built above 8 feet to allow agricultural to continue beneath it, generating cash from solar while maintaining the land's original purpose. Solar panels installed above fields have been shown to reduce water evaporation from the soil. Crop efficiency increased as the soil retained moisture and nourishment. Furthermore, growing vegetation on grazing area covered with rooftop solar panels encourages healthy and efficient plant growth. In addition, the power provided by the panels generates cash for the farmer.

In accordance to the United Nations, the global population is anticipated to reach 8.5 billion by 2030 and 9.7 billion by 2050. This will create varied levels of uncertainty throughout the world. Humans will encounter several major obstacles, including the quest for food and land. Furthermore, the need for primary energy will expand significantly. There is a need to explore for choices that will produce the best results while posing no damage to the environment. Agrivoltaics provides the ideal option. Studies have demonstrated that employing agrivoltaics systems improves soil efficiency in agricultural output. Furthermore, the power provided by solar panels will help to solve the power issue and reduce reliance on fossil fuels.

Asia-Pacific dominates the worldwide agrivoltaics market as solar modules are increasingly adopted in China, Japan and India. In the region, China is the leading producer of solar modules. It installed 4GW of agrivoltaic capacity in just three years, from 2015 to 2018. The Agrivoltaics Market is quickly expanding across the country as a result of favorable policies and the growing need to broaden domestic energy demand in order to address the issues connected with China's photovoltaic sector overcapacity. As a result, the installation of Agrivoltaics in China is intended to address these overcapacity issues while also encouraging the use of advanced agricultural practices throughout the country.

Dynamics

Rising Water Scarcity

With increasing water shortages and the accelerated effects of climate change, agrivoltaic systems based on monocrystalline solar panels are emerging as a viable alternative for food and energy security. The devices reduce water evaporation, improve crop resilience and generate clean energy, making them critical to climate-smart agriculture. Water pumps and irrigation systems are powered by monocrystalline solar panels, which replace diesel pumps and ensure a sustainable water supply. Under the PM-KUSUM program, agrivoltaic farms in Rajasthan and Maharashtra use solar-powered drip irrigation to reduce water waste and increase farm productivity by 25%.

With increasing water shortages and the accelerated effects of climate change, agrivoltaic systems based on monocrystalline solar panels are emerging as a viable alternative for food and energy security. The devices reduce water evaporation, improve crop resilience and generate clean energy, making them critical to climate-smart agriculture. Researchers at the University of Arizona discovered that agrivoltaic farms utilizing monocrystalline panels cut watering needs by 30% for crops such as chili peppers and cherry tomatoes.

Rising Government Subsidies and Support

Governments around the world are increasingly supporting monocrystalline agrivoltaics with subsidies, tax credits, feed-in tariffs and financial incentives. The regulations seek to increase renewable energy adoption, agricultural sustainability and climate resilience, hence making agrivoltaic projects more economically viable for farmers and investors.

The U.S. Office of Energy Efficiency and Renewable Energy has established the Foundational Agrivoltaics Research for Megawatt Scale (FARMS) Funding Program, which provides new economic prospects for farmers, rural communities and the solar sector. The US Department of Energy's Solar Energy Technologies Office (SETO) notified the US$ 8 million FARMS funding opportunity on May 5, 2022 and the six chosen projects on December 8, 2022.

The selected projects will conduct impact studies to investigate the influence of agrivoltaics designs on both agricultural and energy production, as well as integrate agrivoltaics into existing solar farms and provide resources to lower entry barriers to agrivoltaics. Furthermore, the experimental projects will assist project partners with agricultural extensions and educate farmers about agrivoltaics methods.

High Investment Costs

One of the most significant obstacles in monocrystalline agrivoltaics is the large initial expenditure necessary for solar panel installation, mounting structures, energy storage and grid integration. Compared to traditional farming or freestanding solar farms, agrivoltaic systems need specialized infrastructure and engineering, making them capital-intensive for many farmers, particularly in poor countries. Many agrivoltaic farms demand battery storage devices to control intermittent solar energy supply, which increases expenses.

Farmers in India's agrivoltaic pilot projects saw higher capital expenses when building monocrystalline solar and battery storage systems compared to regular solar farms. Large corporations and industrial-scale agrivoltaic farms benefit from investment incentives, but smallholder farmers struggle to secure funding due to a shortage of agrivoltaic-specific financial products, high upfront costs with slow return on investment (ROI) and limited access to government subsidies in some regions. Without government subsidies, financial incentives or creative financing approaches, widespread adoption among small and medium-sized farms remains difficult.

Segment Analysis

The global agrivoltaics market is segmented based on system design, cell type, crop, solar technology and region.

Critical Need to ensure the Safety, Reliability and Longevity of Aircraft Structures

Monocrystalline, which combines high-efficiency monocrystalline solar panels with agricultural systems, is gaining interest as solar technology advances and demand for sustainable energy solutions grows. They are made using a single crystal growth process and can achieve commercial efficiencies ranging from 20% to 24%. Furthermore, this technology is the most efficient and reliable method of generating electricity. The EU Green Deal, India's KUSUM Scheme and the United States Investment Tax Credit (ITC) all encourage farmers to invest in agrivoltaics.

The key factors that contribute to their rising demand are their longevity, embedded energy per panel, better efficiency and sleeker aesthetics. Farmers are increasingly using on-site solar power to lessen their reliance on fossil fuels for irrigation, processing and storage. Hybrid agrivoltaic farms, which combine monocrystalline solar energy with battery storage technologies, provide continuous power delivery. Monocrystalline agrivoltaics is quickly developing due to its high efficiency, government incentives, climate resilience and technological advances.

Geographical Penetration

Strong Government Support and Incentives in North America

North America has been a leader in the agrivoltaics market, owing to strong government backing and incentives to encourage renewable energy usage. US, in particular, stands out as the region's largest market, owing to the presence of key companies and the development of complete solar supply chains and infrastructures.

In June 2021, the Dual-Use Solar Act was passed in New Jersey. This legislation established a pilot project "to enable only a handful of farmers to have agrivoltaics systems on their farms while the technology is being evaluated, observed and refined." The New Jersey Agricultural Experiment Station was allotted US$ 2 million in the 2022 state budget to establish research and demonstration agrivoltaics systems on its research farms.

States such as California, Massachusetts and New York have led the way in agrivoltaic efforts, owing to favorable regulatory frameworks that encourage investment and innovation in this industry. Incentive schemes have significantly reduced installation and procurement costs, making agrivoltaic projects more commercially viable. The programs have encouraged cooperation between prominent agrivoltaic installation businesses and big farms, enabling for the deployment of customized solutions that adapt to specific crop and operational needs.

Competitive Landscape

The major global players in the market include Next2Sun Technology GmbH, SunAgri, Ombrea, Namaste Solar, Mirai Solar, SunSeed APV Private Limited, Enel Green Power Spa, JA Solar Holdings Co. Ltd., BayWa AG and Insolight SA.

Sustainable Analysis

The global agrivoltaics market is an important junction of renewable energy and sustainable agriculture, encouraging effective land use, water conservation and food-energy security. Agrivoltaics allows for dual land usage, which means that solar energy can be generated while crops are grown on the same area. This decreases the requirement for deforestation or land conversion to support energy installations. In France, the Sun'Agri agrivoltaic project has successfully deployed adaptive solar shade structures in vineyards, enhancing land production without requiring more agricultural land.

Agrivoltaic farms help to retain soil moisture, lowering the risk of desertification in arid places. The shading effect of solar panels promotes biodiversity by providing habitat for pollinators and beneficial insects. The Fraunhofer Institute's agrivoltaic pilot farm in Germany demonstrated a 15% improvement in soil moisture retention, hence improving soil health. Continued technology breakthroughs, policy incentives and investment in rural agrivoltaic projects will boost its global adoption.

Key Developments

  • In December 2023, Turkey began the Agrivoltaics research effort to examine products and production processes. To assist with this effort, researchers developed tracker devices specifically for crops cultivated with Agrivoltaics technologies.
  • In October 2023, the National Solar Energy Federation of India (NSEFI) established the Agrivoltaics Alliance in Delhi, India. The fundamental goal of this effort is to simplify crop production. It hopes to reduce the number of diseased veggies on the market by making incremental improvements, cutting manufacturing costs and making the best use of natural sunshine.
  • In December 2022, the US Department of Energy awarded US$ 8 million to six solar energy research projects throughout six states and the District of Columbia under the Foundational Agrivoltaics Research for Megawatt Scale (FARMS) initiative.

By System Design

  • Fixed
  • Dynamic
  • Others

By Cell Type

  • Monocrystalline
  • Polycrystalline

By Crop

  • Vegetables
  • Fruits
  • Crops
  • Others

By Solar Technology

  • Photovoltaic (PV) Panels
  • Concentrated Photovoltaics (CPV)

By Region

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Why Purchase the Report?

  • To visualize the global agrivoltaics market segmentation based on system design, cell type, crop, solar technology and region.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points at the agrivoltaics market level for all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global agrivoltaics market report would provide approximately 70 tables, 61 figures and 205 pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by System Design
  • 3.2. Snippet by Cell Type
  • 3.3. Snippet by Crop
  • 3.4. Snippet by Solar Technology
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Rising Water Scarcity
      • 4.1.1.2. Rising Government Subsidies and Support
    • 4.1.2. Restraints
      • 4.1.2.1. High Investment Costs
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Sustainable Analysis
  • 5.6. DMI Opinion

6. By System Design

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Design
    • 6.1.2. Market Attractiveness Index, By System Design
  • 6.2. Fixed*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Dynamic

7. By Cell Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 7.1.2. Market Attractiveness Index, By Cell Type
  • 7.2. Monocrystalline*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Polycrystalline

8. By Crop

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 8.1.2. Market Attractiveness Index, By Crop
  • 8.2. Vegetables*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Fruits
  • 8.4. Crops
  • 8.5. Others

9. By Solar Technology

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solar Technology
    • 9.1.2. Market Attractiveness Index, By Solar Technology
  • 9.2. Photovoltaic (PV) Panels*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Concentrated Photovoltaics (CPV)

10. Sustainability Analysis

  • 10.1. Environmental Analysis
  • 10.2. Economic Analysis
  • 10.3. Governance Analysis

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Design
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solar Technology
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. US
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Design
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solar Technology
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Spain
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Key Region-Specific Dynamics
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Design
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solar Technology
    • 11.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.8.1. Brazil
      • 11.4.8.2. Argentina
      • 11.4.8.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Design
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solar Technology
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By System Design
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Cell Type
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Crop
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Solar Technology

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Next2Sun Technology GmbH*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. SunAgri
  • 13.3. Ombrea
  • 13.4. Namaste Solar
  • 13.5. Mirai Solar
  • 13.6. SunSeed APV Private Limited
  • 13.7. Enel Green Power Spa
  • 13.8. JA Solar Holdings Co. Ltd.
  • 13.9. BayWa AG
  • 13.10. Insolight SA.

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us