デフォルト表紙
市場調査レポート
商品コード
1474065

財務予測の世界市場-2024-2031年

Global Financial Forecasting Market - 2024-2031

出版日: | 発行: DataM Intelligence | ページ情報: 英文 181 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=158.31円
財務予測の世界市場-2024-2031年
出版日: 2024年05月02日
発行: DataM Intelligence
ページ情報: 英文 181 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

世界の財務予測市場は2023年に87億米ドルに達し、2031年には211億米ドルに達すると予測され、予測期間2024-2031年のCAGRは11.7%で成長します。

銀行、ヘルスケア、金融サービスなど、さまざまな分野の大手企業が世界的に事業を拡大しています。企業は予算管理、財務実績の評価、賢明な戦略的決定を行うために、高度な財務予測ツールとソフトウェアを必要としています。先進的な財務予測サービスやソフトウェアの利用は、デジタルトランスフォーメーションプロジェクトへの注力の高まりに後押しされています。企業はクラウドベースのプラットフォームと自動化技術を活用して財務計画プロセスを強化し、財務データに対するリアルタイムの洞察を得ようとしています。

主要プレーヤーによる製品投入の増加が、予測期間中の世界市場の成長を後押ししています。例えば、NetSuiteは2023年10月17日、財務リーダーの効率性、生産性、収益性の向上を支援するEnterprise Performance Managementを発表しました。これは、財務プロセスの精度とスピードを向上させ、ビジネスインサイトを得るのに役立ちます。また、計画立案や予算編成、勘定照合にも有効です。

北米の主要企業の多くは、財務予測と予測分析ソリューションに投資し、財務計画と戦略的意思決定支援を強化しています。北米は、同地域における財務予測の製品発売が増加しているため、支配的な地域となっています。例えば、2022年11月3日、IBMはデータのサイロ化を解消し、プランニングとアナリティクスを合理化するソフトウェアを発表しました。同社の新製品は、ビジネスインテリジェンスのプランニング、予測、ダッシュボード機能のスイートであり、ユーザーにビジネス全体のデータソースの堅牢なビューを提供します。

ダイナミクス

世界なデジタルトランスフォーメーション

デジタル・トランスフォーメーションにより、企業は複数のソースから財務データに容易にアクセスし、統合できるようになった。外部データソース、CRMソフトウェア、ERPプラットフォーム、会計システム、ビジネスインテリジェンスツールからのデータもすべてこれに含まれます。データ統合とアクセスが改善された結果、より包括的な財務予測が可能になります。人工知能、機械学習、予測分析は、デジタルトランスフォーメーションが財務予測部門に提供した高度な統計機能の一例です。企業はこのテクノロジーにより、過去の情報を分析し、パターンを特定し、将来の動向を予測し、より正確な財務予測を提供できるようになりました。

高度なアナリティクスは、財務計画におけるシナリオ分析やリスク評価もサポートします。クラウドコンピューティングはスケーラブルで安価なソリューションを提供するため、その導入は財務予測業界を完全に変革しました。企業は、クラウドベースの財務予測ソフトウェアを採用することで、インターネットに接続できるデバイスを使用して、いつでもどこからでもデータや予測ツールにアクセスできます。ITインフラのコストが削減され、データ・セキュリティも向上します。

予測分析の重要性の高まり

統計アルゴリズム、機械学習技術、予測モデルの使用により、予測分析は将来の動向や結果をより正確に予測することができます。財務予測ソフトウェアは、予測分析を活用することで、より正確な財務予測と予算予測を作成し、計画と意思決定を改善することができます。過去のパターン、市場動向、顧客行動、外部要因の調査を通じて、予測分析は企業の財務リスクの認識と削減を支援します。予測分析に対応した財務予測ツールは、リスク変数を評価し、起こりうる混乱を予見し、リスクを軽減する戦略を立て、リスク管理手順と財務の安定性を改善します。

予測分析では、収益拡大、コスト削減、業務効率化のための領域を特定し、リソース配分の最適化を支援します。予測分析に対応した財務予測ソフトウェアは、資源がどのように使用されているかを調べ、非効率を発見し、ROIを高め、収益性を向上させ、企業目標をサポートする資源配分計画を提案することができます。パーソナライズされた財務予測、行動分析、顧客セグメンテーションは、予測分析によって可能になります。予測分析は、企業が消費者ベースを財務要件、嗜好、行動に従ってセグメント化するのに便利なツールです。これにより、特定の顧客カテゴリーのニーズに特化した予測モデルの作成、個別化された金融ソリューション、消費者の幸福度とロイヤルティを高めるターゲットマーケティング活動が可能になります。

データ・セキュリティへの懸念

機密性の高い財務データを管理し、予算や投資計画を用いて収入を予測することは、すべて財務予測の一部です。データ漏洩の結果、企業の競争力やデータプライバシー法を遵守する能力を危険にさらし、機密の財務情報が流出しました。予測が信頼できるものであるためには、財務データの完全性と正確性が保証されなければならないです。財務データの完全性は、データ操作や改ざんなどのデータセキュリティリスクによって損なわれ、誤った予測や財務の不始末を招きかねません。

財務予測には、GDPRやCCPAなどの法的基準やデータ保護法の遵守が必要です。データセキュリティの問題により、企業はデータプライバシーを規制する法律や監査証跡の要件を遵守することが難しくなり、罰則や法的な影響を受けることになります。マルウェア攻撃や内部脅威を含むサイバーセキュリティリスクは、財務予測システムやソフトウェアに影響を及ぼす可能性があります。暗号化の欠如や不十分なアクセス制限により、財務データが盗難や不正変更、サイバー攻撃にさらされる可能性があります。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 世界なデジタル変革
      • 予測分析の重要性の高まり
    • 抑制要因
      • データセキュリティへの懸念
    • 機会
    • 影響分析

第5章 業界分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 ソリューション別

  • ソフトウェア
  • サービス

第8章 展開別

  • クラウドベース
  • オンプレミス

第9章 企業規模別

  • 中小企業
  • 大企業

第10章 エンドユーザー別

  • 銀行・金融サービス・保険(BFSI)
  • eコマース
  • ヘルスケア
  • 製造
  • IT・通信
  • その他

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第13章 企業プロファイル

  • Centage
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • Sageworks
  • Anaplan, Inc.
  • Palantir Solutions
  • Planguru
  • Palantir Solutions
  • Axiom Software
  • Sage Group Plc
  • Oracle
  • IBM

第14章 付録

目次
Product Code: ICT8405

Overview

Global Financial Forecasting Market reached US$ 8.7 Billion in 2023 and is expected to reach US$ 21.1 Billion by 2031, growing with a CAGR of 11.7% during the forecast period 2024-2031.

Major players in various sectors, including banking, healthcare and financial services, are growing their businesses globally. Businesses require advanced financial forecasting tools and software as they expand to manage budgets, evaluate financial performance and come to wise strategic decisions. The use of advanced financial forecasting services and software is being driven by a greater focus on digital transformation projects. Businesses are leveraging cloud-based platforms and automation technologies to enhance financial planning processes and gain real-time insights into financial data.

Growing product launches by the major key players help boost global market growth over the forecast period. For instance, on October 17, 2023, NetSuite launched Enterprise Performance Management which helps finance leaders increase efficiency, productivity and profitability. It helps to improve the accuracy and speed of financial processes and gain business insights. It is also beneficial for planning and budgeting and account reconciliation.

Many major key players in North America invest in financial forecasting software and predictive analytics solutions to enhance financial planning and strategic decision support. North America is a dominating region due to the growing product launches of financial forecasting in the region. For instance, on November 03, 2022, IBM launched software to break down data silos and streamline planning and analytics. The company's new product is a suite of business intelligence planning, forecasting and dashboard capabilities that offer users a robust view of data sources across their entire business.

Dynamics

Global Digital Transformation

Companies now have easier access to and integration of financial data from several sources because of digital transformation. Data from external data sources, CRM software, ERP platforms, accounting systems and business intelligence tools are all included in this. Improved data integration and accessibility result in financial predictions that are more comprehensive. Artificial intelligence, machine learning and predictive analytics are a few examples of advanced statistical capabilities that digital transformation has provided to the Financial Forecasting sector. Businesses may now analyze past information, identify patterns, forecast future trends and provide more precise financial estimates due to this technology.

Advanced analytics also support scenario analysis and risk assessment in financial planning. As cloud computing provides scalable and cheap solutions, its adoption has completely transformed the financial forecasting industry. Businesses access their data and forecasting tools from any location at any time using any device with an internet connection by adopting cloud-based financial forecasting software. The lowers the cost of IT infrastructure and improves data security.

Rising Importance of Predictive Analysis

With the use of statistical algorithms, machine learning techniques and predictive models, predictive analysis can more accurately anticipate future trends and results. Financial forecasting software can generate more precise financial forecasts and budget estimates by utilizing predictive analysis, thereby improving planning and decision-making. Through the research of past patterns, market trends, customer behavior and external factors, predictive analysis assists companies in recognizing and reducing financial risks. Predictive analytics-enabled financial forecasting tools evaluate risk variables, foresee possible disruptions and create strategies to mitigate risk, improving risk management procedures and financial stability.

Predictive analysis identifies areas for revenue growth, cost reduction and operational efficiency, which aids in resource allocation optimization. Predictive analytics-enabled financial forecasting software may examine how resources are used, spot inefficiencies and suggest resource allocation plans that increase ROI, boost profitability and support corporate goals. Personalized financial forecasts, behavioral analysis and client segmentation are made possible by predictive analysis. Predictive analytics is a useful tool for businesses to segment their consumer base according to their financial requirements, preferences and behaviors. The makes it possible to create forecasting models that are specifically tailored to the needs of certain client categories, individualized financial solutions and targeted marketing efforts that increase consumer happiness and loyalty.

Data Security Concerns

Controlling sensitive financial data and projecting income using budgets and investment plans are all part of financial forecasting. Confidential financial information was exposed as a result of data breaches endangering the competitiveness of companies and their ability to comply with data privacy laws. For forecasting to be dependable, financial data integrity and accuracy must be guaranteed. The integrity of financial data is compromised by data security risks like data manipulation and tampering, which can result in erroneous projections and financial mismanagement.

Financial forecasting requires compliance with legal standards and data protection laws, including GDPR and CCPA. Data security issues make it more difficult for companies to adhere to laws regulating data privacy and audit trail requirements, which result in penalties and legal ramifications. Cybersecurity risks including malware attacks and insider threats might affect financial forecasting systems and software. Lack of encryption and insufficient access restrictions can leave financial data exposed to theft, unauthorized changes and cyberattacks.

Segment Analysis

The global financial forecasting market is segmented based on solution, deployment, enterprise size, end-user and region.

Growing Consumers' Demand For Financial Forecasting Software

Based on the solution, the financial forecasting market is segmented into software and services.

Financial forecasting software accounted largest market share in the market due to its advanced functionality. Advanced features and functionality, such as budgeting scenario analysis, predictive modeling, what-if analysis, sensitivity analysis and forecasting accuracy, are provided to meet a variety of forecasting demands. With the help of these tools, companies can make data-driven choices, analyze various situations and provide thorough financial predictions. Software for financial forecasting nowadays is available on a variety of platforms, devices and operating systems and it is easy to use and intuitive. Without requiring a high level of technical knowledge, finance professionals and executives analyze financial projections more easily due to user-friendly interfaces, interactive dashboards and customizable reporting tools.

Growing innovative software product launches helps to boost segment growth over the forecast period. For instance, on March 23, 2021, Phocas launched new Budgeting and Forecasting software in the market. The newly launched software enables teams to build budgets in a live data analytics environment. The cloud-based software allows teams to budget and forecast in one place from anywhere.

Geographical Penetration

North America is Dominating the Financial Forecasting Market

North America has advanced technological infrastructure including robust internet connectivity and high-speed data networks. Businesses in various sectors more easily embrace advanced financial forecasting software and digital platforms thanks to these technical improvements. Leading financial services corporations, investment firms and financial institutions are heavily concentrated in North America. Because of the highly developed financial services sector in the region, more sophisticated financial forecasting tools and analytics platforms are being used to assist investment and decision-making processes.

Growing adoption of the financial forecasting models by banks in North America helps to boost regional market growth. For instance, on January 13, 2022, Bank of America launched the CashPro Forecasting tool in the market. It is a financial tool that uses artificial intelligence(AI)and machine learning. The solution is developed in collaboration with a fintech that specializes in applying machine learning to financial forecasting to help solve financial problems for companies.

Competitive Landscape

The major global players in the market include Centage, Sageworks, Anaplan, Inc., Palantir Solutions, Planguru, Palantir Solutions, Axiom Software, Sage Group Plc oracle and IBM.

COVID-19 Impact Analysis

The epidemic highlighted the importance of risk assessment and scenario planning in financial forecasts. To evaluate the effects of various scenarios on financial outcomes, businesses developed more complex forecasting models that contain several scenarios, stress testing and sensitivity analysis. The models were important due to the unprecedented uncertainties they've faced. Changes in consumer behavior across sectors were brought about by COVID-19. Financial forecasting models were required to take into consideration changes in consumer preferences and the need for necessities compared to discretionary spending categories.

The epidemic affected manufacturing and distribution for companies all over the world by disrupting global supply lines. When projecting costs, revenues and supply chain resilience, financial forecasting models are required to account for supply chain interruptions, inventory management difficulties, shortages of raw materials, logistical restrictions and spending patterns. In several countries, COVID-19 set off an economic downturn that resulted in decreased GDP and closures of businesses. Economic indicators, recovery trajectories, stimulus package impacts, interest rate changes, inflation rates and fiscal policy measures impacting macroeconomic circumstances and company performance were all forecasted using financial forecasting models.

Russia-Ukraine War Impact Analysis

Global Financial forecasting market is volatile due to the geopolitical tensions brought on by the conflict between Russia and Ukraine. Financial forecasting models struggle to accurately predict market movements and those influenced by geopolitical events because of that unpredictability. Financial forecasting models struggle to predict asset prices, investment performance and market movements because of growing unpredictability, aversion to risk and mood changes brought on by geopolitical events.

International supply lines might be disrupted by the conflict between Russia and Ukraine that affect the energy and industrial sectors. Businesses operating in impacted countries or industries find it difficult to forecast raw material costs and supply chain stability as a result of supply chain disruptions, which can also have an impact on procurement and inventory levels. Political volatility and regulatory changes must all be considered in financial forecasting models' risk evaluations and mitigation plans. Businesses need to modify their scenario planning, risk management processes and backup plans to handle the geopolitical risks and uncertainties imposed on by the war between Russia and Ukraine.

By Solution

  • Software
  • Services

By Deployment

  • Cloud-Based
  • On-Premises

By Enterprise Size

  • Small & Medium Enterprises
  • Large Enterprises

By End-User

  • Banking, Financial Services and Insurance (BFSI)
  • E-commerce
  • Healthcare
  • Manufacturing
  • IT and Telecommunications
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On January 11, 2024, Nayms launched the first institutional tokenized (Re)insurance marketplace on base, announcing next investment opportunity. The base is a cheap, safe layer-2 Ethereum solution. With this introduction, investors will find it easier to take advantage of yield-generating (re)insurance options that are offered as a tokenized asset class on Nayms' marketplace.
  • On September 29, 2022, XA Group, a Dubai based company launched Addenda, Blockchain-based motor insurance platform in the market. The newly launched product will allow insurers to reconcile motor recovery receivables between each other.
  • On October 05, 2023, Breach Insurance, a Boston-based insurance company launched Crypto Shield Pro, Institutional-Grade Crypto Insurance and Free Active Wallet Monitoring Service in the market.

Why Purchase the Report?

  • To visualize the global financial forecasting market segmentation based on solution, deployment, enterprise size, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of financial forecasting market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global financial forecasting market report would provide approximately 70 tables, 61 figures and 181 Pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1.Methodology and Scope

  • 1.1.Research Methodology
  • 1.2.Research Objective and Scope of the Report

2.Definition and Overview

3.Executive Summary

  • 3.1.Snippet by Solution
  • 3.2.Snippet by Deployment
  • 3.3.Snippet by Enterprise Size
  • 3.4.Snippet by End-User
  • 3.5.Snippet by Region

4.Dynamics

  • 4.1.Impacting Factors
    • 4.1.1.Drivers
      • 4.1.1.1.Global Digital Transformation
      • 4.1.1.2.Rising Importance of Predictive Analysis
    • 4.1.2.Restraints
      • 4.1.2.1.Data Security Concerns
    • 4.1.3.Opportunity
    • 4.1.4.Impact Analysis

5.Industry Analysis

  • 5.1.Porter's Five Force Analysis
  • 5.2.Supply Chain Analysis
  • 5.3.Pricing Analysis
  • 5.4.Regulatory Analysis
  • 5.5.Russia-Ukraine War Impact Analysis
  • 5.6.DMI Opinion

6.COVID-19 Analysis

  • 6.1.Analysis of COVID-19
    • 6.1.1.Scenario Before COVID-19
    • 6.1.2.Scenario During COVID-19
    • 6.1.3.Scenario Post COVID-19
  • 6.2.Pricing Dynamics Amid COVID-19
  • 6.3.Demand-Supply Spectrum
  • 6.4.Government Initiatives Related to the Market During Pandemic
  • 6.5.Manufacturers Strategic Initiatives
  • 6.6.Conclusion

7.By Solution

  • 7.1.Introduction
    • 7.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 7.1.2.Market Attractiveness Index, By Solution
  • 7.2.Software*
    • 7.2.1.Introduction
    • 7.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3.Services

8.By Deployment

  • 8.1.Introduction
    • 8.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 8.1.2.Market Attractiveness Index, By Deployment
  • 8.2.Cloud-Based*
    • 8.2.1.Introduction
    • 8.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3.On-Premises

9.By Enterprise Size

  • 9.1.Introduction
    • 9.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Enterprise Size
    • 9.1.2.Market Attractiveness Index, By Enterprise Size
  • 9.2.Small & Medium Enterprises *
    • 9.2.1.Introduction
    • 9.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3.Large Enterprises

10.By End-User

  • 10.1.Introduction
    • 10.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2.Market Attractiveness Index, By End-User
  • 10.2.Banking, Financial Services and Insurance (BFSI)*
    • 10.2.1.Introduction
    • 10.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3.E-commerce
  • 10.4.Healthcare
  • 10.5.Manufacturing
  • 10.6.IT and Telecommunications
  • 10.7.Others

11.By Region

  • 11.1.Introduction
    • 11.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2.Market Attractiveness Index, By Region
  • 11.2.North America
    • 11.2.1.Introduction
    • 11.2.2.Key Region-Specific Dynamics
    • 11.2.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 11.2.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 11.2.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Organization Size
    • 11.2.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1.U.S.
      • 11.2.7.2.Canada
      • 11.2.7.3.Mexico
  • 11.3.Europe
    • 11.3.1.Introduction
    • 11.3.2.Key Region-Specific Dynamics
    • 11.3.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 11.3.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 11.3.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Organization Size
    • 11.3.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1.Germany
      • 11.3.7.2.UK
      • 11.3.7.3.France
      • 11.3.7.4.Italy
      • 11.3.7.5.Spain
      • 11.3.7.6.Rest of Europe
  • 11.4.South America
    • 11.4.1.Introduction
    • 11.4.2.Key Region-Specific Dynamics
    • 11.4.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 11.4.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 11.4.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Organization Size
    • 11.4.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1.Brazil
      • 11.4.7.2.Argentina
      • 11.4.7.3.Rest of South America
  • 11.5.Asia-Pacific
    • 11.5.1.Introduction
    • 11.5.2.Key Region-Specific Dynamics
    • 11.5.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 11.5.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 11.5.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Organization Size
    • 11.5.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1.China
      • 11.5.7.2.India
      • 11.5.7.3.Japan
      • 11.5.7.4.Australia
      • 11.5.7.5.Rest of Asia-Pacific
  • 11.6.Middle East and Africa
    • 11.6.1.Introduction
    • 11.6.2.Key Region-Specific Dynamics
    • 11.6.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Solution
    • 11.6.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment
    • 11.6.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Organization Size
    • 11.6.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12.Competitive Landscape

  • 12.1.Competitive Scenario
  • 12.2.Market Positioning/Share Analysis
  • 12.3.Mergers and Acquisitions Analysis

13.Company Profiles

  • 13.1.Centage*
    • 13.1.1.Company Overview
    • 13.1.2.Product Portfolio and Description
    • 13.1.3.Financial Overview
    • 13.1.4.Key Developments
  • 13.2.Sageworks
  • 13.3.Anaplan, Inc.
  • 13.4.Palantir Solutions
  • 13.5.Planguru
  • 13.6.Palantir Solutions
  • 13.7.Axiom Software
  • 13.8.Sage Group Plc
  • 13.9.Oracle
  • 13.10.IBM

LIST NOT EXHAUSTIVE

14.Appendix

  • 14.1.About Us and Services
  • 14.2.Contact Us