デフォルト表紙
市場調査レポート
商品コード
1474063

フォトニックICの世界市場:2024~2031年

Global Photonic IC Market - 2024-2031

出版日: | 発行: DataM Intelligence | ページ情報: 英文 206 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=159.16円
フォトニックICの世界市場:2024~2031年
出版日: 2024年05月02日
発行: DataM Intelligence
ページ情報: 英文 206 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

世界のフォトニックICの市場規模は、2023年に32億米ドルに達し、2024~2031年の予測期間中にCAGR 33.2%で成長し、2031年には317億米ドルに達すると予測されています。

フォトニックIC市場を牽引する主な要因の1つは、データ伝送と高速通信システムのニーズが高まっていることです。フォトニックICは、光信号を利用した高速データ伝送を可能にするため、データセンター、5Gネットワーク、通信、高性能コンピューティングなどのアプリケーションにとって極めて重要です。データ集約的なアプリケーションの増加により、帯域幅容量の増加に対するニーズは絶えません。フォトニックICが提供する高帯域幅機能により、光ネットワークで大量のデータを効率的に伝送することが可能になります。

主要プレーヤーによる製品投入の増加は、予測期間中の市場成長を後押しします。例えば、2021年9月28日、Freedom Photonicsは、2.5ワット回折限界1,550nm半導体レーザとアンプを市場に投入しました。最初の商用製品は、1,550nm半導体レーザと半導体光アンプで、25%超のE/O効率とほぼ回折限界のビーム品質で2.5W連続波光パワーを達成します。

北米は、フォトニックICの企業間コラボレーションの拡大により、市場を独占している地域です。例えば、2022年04月04日、Synopsys, Inc.とJuniper Networksは、通信、データコム、LiDAR、AI、ヘルスケア、HPC、光コンピューティングなどのアプリケーションで高まるフォトニック要件に対応するオープンなシリコンフォトニックプラットフォームを産業に提供する新会社を設立します。新会社は、高性能フォトニックICのための最小消費電力で新たなレベルの集積化を可能にします。

ダイナミクス

高速データ通信とインターネット接続の需要増加

インターネットトラフィックの増加により、データセンター事業者は、ソーシャルネットワーキング、クラウドコンピューティング、ストリーミングビデオ、eコマース、オンラインサービスなどのデジタルアプリケーションに対するニーズの高まりに対応するため、インフラストラクチャー用のスペースを拡大しつつあります。シリコンフォトニック技術によって実現された高速光インターコネクト、スイッチ、トランシーバは、データセンターの建物内と建物間の効率的なデータ転送を可能にし、現代のデータセンターが求めるスケーラビリティとパフォーマンスを満たします。コンピュータリソース、ストレージ、アプリケーションへのスケーラブルなオンデマンドアクセスを望む企業組織や個人が、クラウドコンピューティングサービスの継続的な利用拡大を牽引しています。

ライブデータ分析を通じて収集された情報によると、ウェブサイトトラフィックの60%以上がモバイルデバイスからもたらされています。インターネットユーザーの92.3%がモバイルデバイス経由でインターネットを利用しています。現在、世界には43億2,000万人のモバイルインターネットユーザーがいます。モバイル機器経由のインターネットトラフィックの割合はアフリカで最も高く、約69.13%を占めています。2025年までに全世界で約10億以上の5G接続が見込まれます。インターネットの普及は、フォトニックICの市場成長を後押しします。

5GネットワークとIoTアプリケーションの台頭

5Gネットワークは、接続されたデバイスやIoTアプリケーションによって生成される大量のデータをサポートするために、高速データと効率的な伝送機能を必要とします。フォトニックICは、光信号を使った高速データ伝送を可能にし、帯域幅の面で優位性を提供します。高速データ伝送への要求は、5Gインフラや光相互接続におけるPICの需要を牽引しています。5Gネットワークは、自律走行車、拡張現実、遠隔医療などのアプリケーションに不可欠な超低遅延とリアルタイム通信機能を約束します。

フォトニックICは、5Gネットワークにおける遅延の短縮、信号処理の強化、データルーティングの最適化において重要な役割を果たし、シームレスな接続と、リアルタイムのデータ処理と応答に依存する高性能アプリケーションを可能にします。GSM協会のデータによると、2025年までに5Gネットワークは世界人口の約3分の1をカバーします。5Gは13兆1,000億米ドルの世界経済生産高をもたらします。2023年には人口の約59%が5Gネットワークを使用し、アジア太平洋では人口の約42%が5Gネットワークを採用しています。

一般的な製造・加工技術の標準化の欠如

標準化された製造技術とプロセス技術がなければ、異なるPIC間の相互運用性は困難になります。柔軟性、拡張性、互換性はこの相互運用性の欠如によって妨げられ、様々なプロバイダーやメーカーのPICをより大規模な光システムやネットワークにシームレスに統合することが制限されます。標準化の欠如は、設計の複雑さの原因となります。なぜなら、企業は、コンポーネントの仕様、製造方法、材料、インターフェースの違いを考慮するために、独自のアプローチを作成したり、既存のアプローチを変更したりしなければならないからです。設計の複雑さは、開発時間、費用、リスクを増大させ、企業がPICベースの製品を迅速かつ効率的に市場に投入することを困難にします。

カスタマイズされた製造技術やプロセス技術は、PICの開発コストを高くすることが多いです。企業は特定の製造方法に合わせた特殊な設備、専門知識、設計ツール、試験手順、品質管理手段に投資する必要があります。高いコストは、中小企業や新興企業がPIC市場に参入したり、事業を拡大したりすることを躊躇させる可能性があります。標準化が進んでいないため、特定の要件を満たしたり、望ましい性能特性を持つPICを製造できるサプライヤーや製造施設が限られてしまいます。限られたサプライヤーのエコシステムは市場競争、選択肢、イノベーションを減少させ、価格上昇、リードタイムの長期化、サプライチェーンの脆弱性につながる可能性があります。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 高速データ通信とインターネット接続に対する需要の増加
      • 5GネットワークとIoTアプリケーションの台頭
    • 抑制要因
      • 一般的な製造・加工技術の標準化の欠如
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 コンポーネント別

  • 光レーザー
  • 変調器
  • 検出器
  • トランシーバー
  • 減衰器
  • その他

第8章 原材料別

  • ニオブ酸リチウム
  • リン化インジウム
  • シリカ・オン・シリコン
  • ガリウムヒ素
  • シリコン
  • 量子ドット
  • シリコン・オン・インシュレーター
  • その他

第9章 集積別

  • ハイブリッド
  • モノリシック
  • モジュール

第10章 アプリケーション別

  • 光通信
  • センシング
  • 光信号処理
  • バイオフォトニック

第11章 エンドユーザー別

  • 通信
  • バイオメディカル
  • データセンター
  • その他

第12章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他の欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他の南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他のアジア太平洋
  • 中東・アフリカ

第13章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第14章 企業プロファイル

  • Intel Corporation
  • Cisco Systems, Inc.
  • Infinera Corporation
  • Polariton Technologies AG
  • Teemphotonics
  • Lumentum Holdings Inc.
  • Luxtera, Inc.
  • LIGENTEC SA
  • Acacia Communications, Inc.
  • Kaiam Corporation

第15章 付録

目次
Product Code: ICT8403

Overview

Global Photonic IC Market reached US$ 3.2 Billion in 2023 and is expected to reach US$ 31.7 Billion by 2031, growing with a CAGR of 33.2% during the forecast period 2024-2031.

One major factor driving the photonic integrated circuit market is the increasing need for data transport and high-speed communication systems. Photonic integrated circuits are crucial for applications such as data centers, 5G networks, telecommunications and high-performance computing because they enable data to be sent at fast rates utilizing optical signals. The need for increasing bandwidth capacity is constant due to the growth of data-intensive applications. High bandwidth capabilities provided by photonic integrated circuits (ICs) make it possible to transmit massive amounts of data across optical networks effectively.

Growing product launches by major key players help to boost market growth over the forecast period. For instance, on September 28, 2021, Freedom Photonics launched 2.5-watt diffraction-limited 1550 nm Semiconductor Lasers and Amplifiers in the market. The first commercial offerings are 1550 nm semiconductor lasers and semiconductor optical amplifiers, which achieve 2.5 W continuous wave optical power with >25% E/O efficiency and nearly diffraction-limited beam quality

North America is a dominating region in the market due to the growing collaboration between the companies for photonic IC. For instance, on April 04, 2022, Synopsys, Inc. and Juniper Networks are going to open a new company that will provide the industry with an open silicon photonics platform to address the growing photonic requirements in applications such as telecom, datacom, LiDAR, AI, healthcare, HPC and optical computing. The new company can enable a new level of integration with the lowest power consumption for high-performance Photonic Integrated Circuits.

Dynamics

Increasing Demand for High-Speed Data Communication and Internet Connectivity

Due to a rise in internet traffic, data center operators are building more space for their infrastructure to meet the growing need for digital applications such as social networking, cloud computing, streaming video, e-commerce and online services. High-speed optical interconnects, switches and transceivers made possible by silicon photonics technology enable effective data transfer both inside and between data center buildings, meeting the scalability and performance demands of contemporary data centers. Businesses organizations and individuals wishing scalable, on-demand access to computer resources, storage and applications are driving the continued growth in the usage of cloud computing services.

According to information gathered through live data analysis, over 60% of website traffic comes from mobile devices. 92.3% of internet users receive their internet via a mobile device. There are currently 4.32 billion mobile internet users globally. The proportion of internet traffic via mobile devices is greatest in Africa which accounted for around 69.13%. There are around over 1 billion 5G connections globally by 2025. The increase in the adoption of the internet helps to boost the market growth of photonics IC.

Rise of 5G Networks and IoT Applications

5G networks require high-speed data and efficient transmission capabilities to support massive amounts of data generated by connected devices and IoT applications. Photonic ICs enable the transmission of data at high speeds using optical signals, offering advantages in terms of bandwidth. The requirement for high-speed data transmission drives the demand for PICs in 5G infrastructure and optical interconnects. 5G networks promise ultra-low latency and real-time communication capabilities essential for applications like autonomous vehicles, augmented reality and telemedicine.

Photonic ICs play a vital role in reducing latency, enhancing signal processing and optimizing data routing in 5G networks, enabling seamless connectivity and high-performance applications that rely on real-time data processing and response. According to the data given by GSM Association, by 2025 5G networks will cover around 1/3rd of the global population. 5G introduced 13.1 Trillion dollars of global economic output. In 2023 around 59% of the population is using 5G network and in Asia-Pacific around 42% of the population adopted 5G network.

Lack of Standardization in the Common Fabrication and Process Techniques

Without standardized fabrication and process techniques, interoperability between different PICs becomes challenging. Flexibility, scalability and compatibility are hindered by this lack of interoperability, which restricts the seamless integration of PICs from various providers or manufacturers into larger optical systems or networks. Lack of standardization can cause design complexity since businesses have to create distinctive approaches or modify existing ones to account for differences in component specifications, fabrication methods, materials and interfaces. Design complexity makes it more difficult for businesses to quickly and efficiently launch PIC-based products onto the market by raising development time, expenses and risks.

Customized fabrication and process techniques often result in higher development costs for PICs. Companies need to invest in specialized equipment, expertise, design tools, testing procedures and quality control measures tailored to their specific fabrication methods. The higher costs can deter smaller companies or startups from entering the PIC market or scaling their operations. The lack of standardization limits the availability of suppliers or fabrication facilities capable of meeting specific requirements or producing PICs with desired performance characteristics. The limited supplier ecosystem reduces market competition, choice and innovation, potentially leading to higher prices, longer lead times and supply chain vulnerabilities.

Segment Analysis

The global photonic ic market is segmented based on component, raw material, integration, application, end-user and region.

Growing Adoption of Interposer Approach Type Photonic ICs

Based on the Application, the Photonic IC market is segmented into optical communications, sensing, optical signal processing and biophotonics.

The biophotonics application segment accounted the largest share of the market due to the growing emergence of nanotechnology in biophotonics. Due to the government's efforts to advance the biophotonics sector, US is a significant market for the business. Additionally, the biophotonics business in US has been pushed by the development of nanotechnology. The Jenoptik Light and Optics Biophotonics business received many new development orders in North America in November 2020. The initial challenge is to create a camera system for medical equipment that will be utilized in a robotic surgical instrument.

The major players in the market launched new products in the market which helps to boost regional market growth. For instance, in March 2021, Zeiss expanded its presence in North America by launching a new research & development, sales and customer service center in U.S. with an investment of US$ 180 Billion. The new site will incorporate the X-ray microscopy business along with the ZEISS Microscopy Customer Center to provide support for opportunities in materials research, life sciences and industrial applications.

Geographical Penetration

North America is Dominating the Photonic IC Market

A robust ecosystem of universities and research centers is present in North America, propelling technical innovation in integrated circuits and photonics. Entrepreneurship are highly valued in the region and this has led to breakthroughs in manufacturing processes and system integration. North America receives the benefits of broad industry-academia-government agency-research group collaboration and partnerships. Working together makes it easier to share expertise, transfer technology and conduct joint research initiatives aimed at creating cutting-edge PIC solutions for a range of sectors, including data centers, telecommunications, healthcare, aerospace, defense and the automotive sector.

Growing major key players' focus on the photonic IC helps to boost regional market growth over the forecast period. For instance, on October 16, 2022, Enosemi completed a commercial agreement with Luminous Computing to license and sell the silicon photonics design IP originally developed at Luminous, a key technology for AI supercomputing applications. The management team of Enosemi is experienced in silicon photonics, analog mixed signals, lasers, packaging, control and system hardware.

Competitive Landscape

The major global players in the market include Intel Corporation, Cisco Systems, Inc., Infinera Corporation, Polariton Technologies AG, teem photonics, Lumentum Holdings Inc., Luxtera, Inc., LIGENTEC SA, Acacia Communications, Inc., Kaiam Corporation and TCG Crest.

COVID-19 Impact Analysis

Global supply networks in the semiconductor sector were impacted by the pandemic. Production and shipping of PICs and related components were delayed as a result of reduced capacity and logistical difficulties. Disruptions in the supply chain impacted the supply of raw materials, manufacturing testing and packaging, which in turn hampered the availability of PICs in the market and the overall efficiency of the supply chain.

Shifts in the economy and lockdowns brought on by the epidemic prompted changes in the market need for PICs. PIC-based solutions were in higher demand in some industries such as data centers and healthcare to facilitate remote work and healthcare technology. In contrast, demand in other industries such as consumer electronics-was lower as a result of slower manufacturing and lower consumer expenditure. The need for high-speed data transmission and communication infrastructure broadened during the pandemic due to developments in telemedicine, distant work and digital collaboration. PICs played an important role in supporting these applications by enabling high-speed optical communication, signal processing, data routing and network connectivity, driving market growth in telecommunication and data center segments.

Russia-Ukraine War Impact Analysis

The semiconductor industry is one of the globally supply chains impacted by the war between Russia and Ukraine. via companies such as EpiLas GmbH, which in the semiconductor supply chain produces epitaxial wafers for optoelectronic devices. Any interruptions in the transportation of essential components or materials from Ukraine might have an impact on PIC production and availability, potentially leading to delays or shortages in the market. A rise in demand for data center infrastructure, particularly optical communication systems based on PICs occurs as corporations and organizations emphasize data protection and continuity in unpredictable geopolitical times.

Major key players in the semiconductor industry reassess their manufacturing strategies in response to geopolitical risks. The led to a diversification of manufacturing locations, increased investment in domestic and efforts to secure alternative suppliers for critical components used in PICs. Geopolitical tensions contribute to market volatility, impacting the pricing of PICs. Uncertainty in material costs and trade tariffs leads to fluctuations in component prices, affecting the profitability of companies involved in the PIC market.

By Component

  • Optical Laser
  • Modulator
  • Detector
  • Transceivers
  • Attenuators
  • Others

By Raw Material

  • Lithium Niobate
  • Indium Phosphide
  • Silica-on-Silicon
  • Gallium Arsenide
  • Silicon
  • Quantum Dots
  • Silicon-on-Insulator
  • Others

By Integration

  • Hybrid
  • Monolithic
  • Module

By Application

  • Optical Communications
  • Sensing
  • Optical Signal Processing
  • Bio Photonics

By End-User

  • Telecommunications
  • Biomedical
  • Data Centres
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On December 14, 2022, OpenLight launched First 800G DR8 Photonic Integrated Circuit Design for the Advance Global Datacenter Interconnect Industry. The new design provides consumers with an easy-to-use, validated approach to jump-start their transceiver production design.
  • On October 02, 2023, DustPhotonics launched Industry-First Merchant 800G Silicon Photonics Chip in the market for Hyperscale Data Centers and AI Applications. The new solution is suitable for DR8 and DR8+ applications which offers 8 optical channels independently modulated at 100Gb/s for an aggregate bandwidth of 800Gb/s.
  • On October 20, 2023, the Indian Institute of Technology Madras collaborated with the Ministry of Electronics & Information Technology for the launch of the Centre of Excellence for Silicon Photonics. Silicon photonic technology is suitable for various applications such as quantum computation, quantum key distribution and artificial intelligence.

Why Purchase the Report?

  • To visualize the global photonic IC market segmentation based on component, raw material, integration, application, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of photonic IC market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global photonic IC market report would provide approximately 78 tables, 82 figures and 206 Pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1.Methodology and Scope

  • 1.1.Research Methodology
  • 1.2.Research Objective and Scope of the Report

2.Definition and Overview

3.Executive Summary

  • 3.1.Snippet by Component
  • 3.2.Snippet by Raw Material
  • 3.3.Snippet by Integration
  • 3.4.Snippet by Application
  • 3.5.Snippet by End-User
  • 3.6.Snippet by Region

4.Dynamics

  • 4.1.Impacting Factors
    • 4.1.1.Drivers
      • 4.1.1.1.Increasing Demand for High-Speed Data Communication and Internet Connectivity
      • 4.1.1.2.Rise of 5G Networks and IoT Applications
    • 4.1.2.Restraints
      • 4.1.2.1.Lack of Standardization in the Common Fabrication and Process Techniques
    • 4.1.3.Opportunity
    • 4.1.4.Impact Analysis

5.Industry Analysis

  • 5.1.Porter's Five Force Analysis
  • 5.2.Supply Chain Analysis
  • 5.3.Pricing Analysis
  • 5.4.Regulatory Analysis
  • 5.5.Russia-Ukraine War Impact Analysis
  • 5.6.DMI Opinion

6.COVID-19 Analysis

  • 6.1.Analysis of COVID-19
    • 6.1.1.Scenario Before COVID-19
    • 6.1.2.Scenario During COVID-19
    • 6.1.3.Scenario Post COVID-19
  • 6.2.Pricing Dynamics Amid COVID-19
  • 6.3.Demand-Supply Spectrum
  • 6.4.Government Initiatives Related to the Market During Pandemic
  • 6.5.Manufacturers Strategic Initiatives
  • 6.6.Conclusion

7.By Component

  • 7.1.Introduction
    • 7.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 7.1.2.Market Attractiveness Index, By Component
  • 7.2.Optical Laser*
    • 7.2.1.Introduction
    • 7.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3.Modulator
  • 7.4.Detector
  • 7.5.Transceivers
  • 7.6.Attenuators
  • 7.7.Others

8.By Raw Material

  • 8.1.Introduction
    • 8.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 8.1.2.Market Attractiveness Index, By Raw Material
  • 8.2.Lithium Niobate*
    • 8.2.1.Introduction
    • 8.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3.Indium Phosphide
  • 8.4.Silica-on-Silicon
  • 8.5.Gallium Arsenide
  • 8.6.Silicon
  • 8.7.Quantum Dots
  • 8.8.Silicon-on-Insulator
  • 8.9.Others

9.By Integration

  • 9.1.Introduction
    • 9.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Integration
    • 9.1.2.Market Attractiveness Index, By Integration
  • 9.2.Hybrid*
    • 9.2.1.Introduction
    • 9.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3.Monolithic
  • 9.4.Module

10.By Application

  • 10.1.Introduction
    • 10.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.1.2.Market Attractiveness Index, By Application
  • 10.2.Optical Communications*
    • 10.2.1.Introduction
    • 10.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3.Sensing
  • 10.4.Optical Signal Processing
  • 10.5.BioPhotonics

11.By End-User

  • 11.1.Introduction
    • 11.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.1.2.Market Attractiveness Index, By End-User
  • 11.2.Telecommunications*
    • 11.2.1.Introduction
    • 11.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 11.3.Biomedical
  • 11.4.Data Centres
  • 11.5.Others

12.By Region

  • 12.1.Introduction
    • 12.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 12.1.2.Market Attractiveness Index, By Region
  • 12.2.North America
    • 12.2.1.Introduction
    • 12.2.2.Key Region-Specific Dynamics
    • 12.2.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 12.2.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 12.2.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Integration
    • 12.2.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.2.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.2.8.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.2.8.1.U.S.
      • 12.2.8.2.Canada
      • 12.2.8.3.Mexico
  • 12.3.Europe
    • 12.3.1.Introduction
    • 12.3.2.Key Region-Specific Dynamics
    • 12.3.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 12.3.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 12.3.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Integration
    • 12.3.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.3.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.3.8.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.3.8.1.Germany
      • 12.3.8.2.UK
      • 12.3.8.3.France
      • 12.3.8.4.Italy
      • 12.3.8.5.Spain
      • 12.3.8.6.Rest of Europe
  • 12.4.South America
    • 12.4.1.Introduction
    • 12.4.2.Key Region-Specific Dynamics
    • 12.4.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 12.4.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 12.4.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Integration
    • 12.4.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.4.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.4.8.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.4.8.1.Brazil
      • 12.4.8.2.Argentina
      • 12.4.8.3.Rest of South America
  • 12.5.Asia-Pacific
    • 12.5.1.Introduction
    • 12.5.2.Key Region-Specific Dynamics
    • 12.5.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 12.5.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 12.5.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Integration
    • 12.5.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.5.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.5.8.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.5.8.1.China
      • 12.5.8.2.India
      • 12.5.8.3.Japan
      • 12.5.8.4.Australia
      • 12.5.8.5.Rest of Asia-Pacific
  • 12.6.Middle East and Africa
    • 12.6.1.Introduction
    • 12.6.2.Key Region-Specific Dynamics
    • 12.6.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 12.6.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Raw Material
    • 12.6.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Integration
    • 12.6.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.6.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

13.Competitive Landscape

  • 13.1.Competitive Scenario
  • 13.2.Market Positioning/Share Analysis
  • 13.3.Mergers and Acquisitions Analysis

14.Company Profiles

  • 14.1.Intel Corporation*
    • 14.1.1.Company Overview
    • 14.1.2.Product Portfolio and Description
    • 14.1.3.Financial Overview
    • 14.1.4.Key Developments
  • 14.2.Cisco Systems, Inc.
  • 14.3.Infinera Corporation
  • 14.4.Polariton Technologies AG
  • 14.5.Teemphotonics
  • 14.6.Lumentum Holdings Inc.
  • 14.7.Luxtera, Inc.
  • 14.8.LIGENTEC SA
  • 14.9.Acacia Communications, Inc.
  • 14.10.Kaiam Corporation

LIST NOT EXHAUSTIVE

15.Appendix

  • 15.1.About Us and Services
  • 15.2.Contact Us