デフォルト表紙
市場調査レポート
商品コード
1474062

量子チップの世界市場:2024~2031年

Global Quantum Chip Market - 2024-2031

出版日: | 発行: DataM Intelligence | ページ情報: 英文 181 Pages | 納期: 即日から翌営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=155.13円
量子チップの世界市場:2024~2031年
出版日: 2024年05月02日
発行: DataM Intelligence
ページ情報: 英文 181 Pages
納期: 即日から翌営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

世界の量子チップの市場規模は、2023年に1億6,870万米ドルに達し、2024~2031年の予測期間中にCAGR 52.6%で成長し、2031年には49億6,080万米ドルに達すると予測されています。

市場は、量子プロセッサーなどの量子コンピューティング技術の進歩により拡大しています。量子プロセッサの機能や性能は、量子ビットの設計、エラー訂正方法、量子ネットワーク、量子ソフトウェアの開発によって向上しており、さまざまな用途への魅力が高まっています。量子コンピューティングの研究開発に対する世界の資金調達と投資は増加しています。政府、テクノロジー企業、ベンチャーキャピタル、個人投資家は、量子チップの発明、商業化、エコシステム開発を支援するために多額の資金を投入しており、これが市場開拓の原動力となっています。

主要企業による製品投入の増加は、予測期間中の同分野の成長を後押ししています。例えば、Amazonは2023年11月28日、エラーを減らす新しい量子チップを発表しました。これは、AWS量子チームが社内で製造したカスタム設計のチップです。この最先端ガジェットの開発は、エラー訂正された量子コンピューターの目標に向けた重要な一歩です。

北米は、量子チップに対する政府の取り組みが活発化していることから、市場を独占している地域です。例えば、2024年2月22日、カナダ政府は量子コンピューティングの研究と教育を加速させるため、Xanaduを支援しました。量子機械学習、量子化学、量子コンピューティングのためのクラウドベースのソフトウェアフレームワークであるPennyLaneの開発は、Regional Quantum Initiative(RQI)の一部であるこの融資により、より迅速に進むと思われます。

ダイナミクス

技術の進歩

技術の進歩に伴い、より長いコヒーレンス時間、より多くの量子ビット、より低いエラー率、より大きな量子体積など、より優れた性能指標を持つ量子チップが作られました。量子プロセッサーへのニーズは、研究機関や企業が、より複雑な計算や用途に対応できる性能の向上を求めていることに起因しています。量子チップの集積化と小型化は、製造プロセスの改善によって可能になった。

小型化された量子チップは、量子コンピューティングシステムやセンサーに統合されやすくなるため、商業的な利用範囲や可能性が広がります。量子チップの設計の進歩と多様化は、シリコンベースの量子ビット、トポロジカル量子ビット、トラップイオン、超伝導量子ビットなど、現在進行中の量子ビット技術の開発によって促進されています。量子ビットにはいくつかの種類があり、それぞれがコヒーレンス、スケーラビリティ、エラー訂正に関するユニークな利点を持っているため、様々な用途やユーザーの要求に適しています。

量子コンピューティングは医薬品とヘルスケアの未来だ

量子コンピューティングは、複雑な物流やサプライチェーンのプロセスを最適化することができます。在庫管理、ルート計画、物流に関する最適化問題に対処し、より効率的で費用対効果の高いオペレーションを実現します。量子コンピューティングは、分子間の相互作用を正確にシミュレートする能力で特に注目されています。製薬産業やヘルスケア産業では、量子テクノロジーはモデル生物システムや創薬プロセスを加速し、個別化医療に貢献しています。

公共部門も量子技術に投資しており、予測期間の2024~2031年の市場成長をさらに後押ししています。2022年、米国は18億米ドル、欧州連合は12億米ドルの資金を提供しました。中国は量子技術に153億米ドルの最高額を投資しました。量子技術への投資の増加は、予測期間の2024~2031年の市場成長を後押しします。

安定性とエラー訂正の問題

量子プロセッサの処理能力は、接続性とエラー率を考慮した量子体積で測定されます。安定性とエラー訂正の問題は、量子ボリュームのスケーラビリティを制限する可能性があり、量子チップは、より大規模で複雑な計算を処理するのに苦労する可能性があることを意味します。この制限は、多様で要求の厳しい用途に対応できる拡張性を持つ量子コンピューティングソリューションを求める潜在的なユーザーや投資家を躊躇させる可能性があります。

量子チップの安定性の問題は、信頼性の低い性能につながり、計算結果の精度と一貫性に影響を与える可能性があります。量子計算は、デコヒーレンスや環境要因による誤差の影響を非常に受けやすいです。量子エラー訂正符号やフォールトトレラント量子コンピューティングなどのエラー訂正技術は、これらのエラーを軽減するために不可欠です。しかし、効果的なエラー訂正メカニズムを実装することは、複雑さ、オーバーヘッド、計算リソースを追加し、量子チップの全体的な性能と効率に影響を与えます。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 技術の進歩
      • 量子コンピューティングが医薬品とヘルスケアの未来を変える
    • 抑制要因
      • 安定性とエラー訂正の問題
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 タイプ別

  • 超伝導量子チップ
  • 半導体量子チップ
  • イオントラップ量子チップ
  • その他

第8章 用途別

  • コンピュータ
  • 盗難防止ブラシ
  • その他

第9章 エンドユーザー別

  • 情報技術(IT)・通信
  • 銀行・金融サービス・保険(BFSI)
  • 航空宇宙・防衛
  • 研究・アカデミア
  • その他

第10章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他の欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他の南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他のアジア太平洋
  • 中東・アフリカ

第11章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第12章 企業プロファイル

  • Amazon Web Services, Inc.
  • IBM
  • Microsoft
  • Google
  • Silicon Quantum Computing
  • Ion Q
  • Honeywell
  • Fujitsu
  • Intel
  • Rigetti Computing

第13章 付録

目次
Product Code: ICT8402

Overview

Global Quantum Chip Market reached US$ 168.7 Million in 2023 and is expected to reach US$ 4960.8 Million by 2031, growing with a CAGR of 52.6% during the forecast period 2024-2031.

The market is expanding as a result of advances in quantum computing technology, such as quantum processors. The capabilities and performance of quantum processors are being improved by developments in qubit designs, error correction methods, quantum networking and quantum software, which is increasing their appeal for a variety of applications. Global financing and investments in quantum computing research and development are rising. Significant resources are being allocated by governments, technology corporations, venture capitalists and private investors to support quantum chip inventions, commercialization endeavors and ecosystem development, hence driving market growth.

Growing product launches by the major key players help to boost segment growth over the forecast period. For instance, on November 28, 2023, Amazon launched a new quantum chip to reduce errors. It is a custom-designed chip that is fabricated in-house by their AWS quantum team. The development of the cutting-edge gadget is a significant step towards the goal of error-corrected quantum computers.

North America is the dominating region in the market due to the growing government initiatives for the quantum chip. For instance, on February 22, 2024, the Government of Canada support Xanadu to accelerate quantum computing research and education. The development of PennyLane, cloud-based software framework for quantum machine learning, quantum chemistry and quantum computing, will move forward more quickly due to this financing, which is part of the Regional Quantum Initiative (RQI).

Dynamics

Technological Advancements

With the advancement of technology, quantum chips with better performance metrics like longer coherence durations, more qubits, lower error rates and greater quantum volumes were created. The need for quantum processors is being driven by research institutes and enterprises wanting better computing capacity since their enhanced performance allows them to handle more complicated computations and applications. The integration and miniaturization of quantum chips are made possible by improvements in fabrication processes, which lead to smaller form factors and lower power consumption.

The commercial reach and possible uses of miniaturized quantum chips are increased by their increased accessibility for integration into quantum computing systems and sensors. The advancement and variety of quantum chip designs are facilitated by ongoing developments in qubit technologies, including silicon-based qubits, topological qubits, trapped ions and superconducting qubits. Qubits come in several types, each with a unique set of benefits related to coherence, scalability and error correction, rendering them suitable for a range of applications and requirements of users.

Quantum Computing is the Future of Pharmaceuticals and Healthcare

Quantum computing can optimize complex logistics and supply chain processes. It addresses optimization problems related to inventory management, route planning and distribution, leading to more efficient and cost-effective operations. Quantum computing is especially explored for its ability to simulate molecular interactions accurately. In the pharmaceutical and healthcare industries, quantum technology accelerates model biological systems and drug discovery processes and contributes to personalized medicine.

The public sector is also invested in quantum technology which further helps to boost market growth over the forecast period 2024-2031. In 2022, U.S. offered US$ 1.8 billion in funding and the European Union offered US$ 1.2 billion China invested the highest of US$ 15.3 billion in quantum technology. Growing investment in quantum technology help to boost market growth over the forecast period 2024-2031.

Stability and Error Correction Issues

The processing power of quantum processors is measured in terms of quantum volume, which accounts for connectivity and error rates. Stability and error correction issues can limit the scalability of quantum volume, meaning that quantum chips may struggle to handle larger and more complex computations. The limitation can deter potential users and investors who seek quantum computing solutions capable of scaling to address diverse and demanding applications.

Stability issues in quantum chips can lead to unreliable performance, affecting the accuracy and consistency of computational results. Quantum computations are highly sensitive to errors caused by decoherence and environmental factors. Error correction techniques such as quantum error correction codes and fault-tolerant quantum computing are essential for mitigating these errors. However, implementing effective error correction mechanisms adds complexity, overhead and computational resources, impacting the overall performance and efficiency of quantum chips.

Segment Analysis

The global quantum chip market is segmented based on type, application, end-user and region.

Growing Adoption Of Quantum Chips in Computer Applications

Based on the type, the quantum chip market is segmented into computers, anti-theft brushes and others.

The majority of the market's demand for quantum computing applications, for which quantum chips are produced, is represented by these applications. When it comes to addressing complex problems quantum computing provides unparalleled processing capability. The demand for quantum chips in computer applications is driven by the demand for quantum computing solutions for simulations, optimizations and algorithm development in industries such as banking, pharmaceuticals, materials research and cryptography.

Many companies and research institutions are focused on commercializing quantum computing technologies, leading to increased partnerships, investments and product development initiatives in computer applications. Quantum chip technology providers and manufacturers are actively targeting the computer application market by offering quantum computing platforms software tools and application-specific solutions tailored to industry needs. Various industries are adopting quantum computing solutions to gain a competitive edge, accelerate innovation and solve complex problems more efficiently. Applications such as drug discovery, financial modeling, machine learning, supply chain optimization and cryptography benefit from quantum computing capabilities, driving adoption and market growth in the computer application segment.

Geographical Penetration

North America is Dominating the Quantum Chip Market

North America has a robust research and development ecosystem for quantum technologies. Research institutions, leading universities and tech companies in the region invest heavily in quantum computing and quantum sensing research, driving innovation and advancements in quantum chip technologies. Many of the world's leading quantum chip manufacturers, technology providers and startups are based in North America. Companies such as IBM, Intel, Google, Rigetti Computing and IonQ have significant operations and investments in quantum chip development which contributes to the region's dominance in the market.

Growing product launches by major key players help to boost regional market growth over the forecast period. For instance, on March 18, 2024, NVIDIA launched Cloud Quantum-Computer Simulation Microservices. It is available through major cloud providers and helps to Scientists Advance Quantum Computing and Algorithm Research. To speed up scientific research, Quantum Cloud has robust functionality and third-party software integrations such as The Generative Quantum Eigensolver, Classiq's integration with CUDA-Q and QC Ware Promethium.

Competitive Landscape

The major global players in the market include Amazon Web Services, Inc., IBM, Microsoft, Google, Silicon Quantum Computing, Ion Q, Honeywell, Fujitsu, Intel and Rigetti Computing.

COVID-19 Impact Analysis

The pandemic disrupted global supply chains which led to shortages of critical components required for quantum chip manufacturing. Factory closures and logistical challenges disrupted the production and distribution of quantum chips, affecting the industry's supply chain resilience. The pandemic led to a shift in demand for quantum chips and related technologies. While some applications, such as quantum computing for drug discovery or simulating virus behavior, saw increased demand, others, like quantum cryptography for secure communication in physical settings, faced challenges due to reduced economic activity and budget constraints.

Many research institutions and companies working on quantum chip development faced disruptions in their R&D activities. Laboratory closures, reduced funding and limitations on collaborative research hindered progress in advancing quantum chip technology and exploring new applications. The pandemic delayed the deployment and implementation of quantum chip solutions in various sectors. Industries that planned to adopt quantum computing or quantum sensing technologies had to postpone or scale back their implementation timelines due to budget reallocations, operational disruptions and uncertainty about future market conditions.

Russia-Ukraine War Impact Analysis

The conflict disrupts the supply chains for components and materials used in the manufacturing of quantum chips. Ukraine and Russia are significant players in the semiconductor supply chain and any disruptions in raw material availability or transportation logistics could impact quantum chip production globally. Geopolitical tensions resulting from the war led to export controls, trade restrictions or sanctions affecting the quantum chip industry. Organizations that operate in areas where the war is immediately felt have difficulties in international commerce, partnerships and collaborations, which has an effect on the world market for quantum chips.

The unpredictable nature of the conflict and its geopolitical ramifications cause investor caution and market volatility. Variations in commodity prices and exchange rates have an impact on quantum chip businesses' capacity to get finance, their choice of investments and their forecasts for market development. The war's disruptions impact research and development activities in quantum computing and related technologies. Collaborative efforts and international research partnerships could face challenges, potentially slowing down innovation and technological advancements in the quantum chip market.

By Type

  • Superconducting Quantum Chip
  • Semiconductor Quantum Chip
  • Ion Trap Quantum Chip
  • Others

By Application

  • Computer
  • Anti-Theft Brush
  • Other

By End-User

  • Information Technology (IT) & Telecommunications
  • Banking, Financial Services and Insurance (BFSI)
  • Aerospace & Defense
  • Research & Academia
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On June 16, 2023, Intel launched a 12-qubit quantum-dot quantum silicon chip in the market. Instead of attempting to create their quantum computers, Intel wants academic institutions and researchers to utilize its Tunnel Falls chip to test and create gear and software compatible with it.
  • On February 15, 2023, Quantum Machines, a provider of quantum control solutions launched QCage.64, a quantum chip carrier for seamless high-fidelity integration. The chip provides near-perfect line transmission and excellent connectivity by hanging in a microwave cavity, which reduces losses and decoherence.
  • On March 26, 2024 orangeQS, a Dutch quantum technology company accelerated the roadmap to serve industrial quantum chip production and development. The product helps to accelerate the development of quantum chipsets via a more cost-effective method than traditional approaches.

Why Purchase the Report?

  • To visualize the global quantum chip market segmentation based on type, application, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of quantum chip market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global quantum chip market report would provide approximately 62 tables, 55 figures and 181 Pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1.Methodology and Scope

  • 1.1.Research Methodology
  • 1.2.Research Objective and Scope of the Report

2.Definition and Overview

3.Executive Summary

  • 3.1.Snippet by Type
  • 3.2.Snippet by Application
  • 3.3.Snippet by End-User
  • 3.4.Snippet by Region

4.Dynamics

  • 4.1.Impacting Factors
    • 4.1.1.Drivers
      • 4.1.1.1.Technological Advancements
      • 4.1.1.2.Quantum Computing is the Future of Pharmaceuticals and Healthcare
    • 4.1.2.Restraints
      • 4.1.2.1.Stability and Error Correction Issues
    • 4.1.3.Opportunity
    • 4.1.4.Impact Analysis

5.Industry Analysis

  • 5.1.Porter's Five Force Analysis
  • 5.2.Supply Chain Analysis
  • 5.3.Pricing Analysis
  • 5.4.Regulatory Analysis
  • 5.5.Russia-Ukraine War Impact Analysis
  • 5.6.DMI Opinion

6.COVID-19 Analysis

  • 6.1.Analysis of COVID-19
    • 6.1.1.Scenario Before COVID-19
    • 6.1.2.Scenario During COVID-19
    • 6.1.3.Scenario Post COVID-19
  • 6.2.Pricing Dynamics Amid COVID-19
  • 6.3.Demand-Supply Spectrum
  • 6.4.Government Initiatives Related to the Market During Pandemic
  • 6.5.Manufacturers Strategic Initiatives
  • 6.6.Conclusion

7.By Type

  • 7.1.Introduction
    • 7.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2.Market Attractiveness Index, By Type
  • 7.2.Superconducting Quantum Chip*
    • 7.2.1.Introduction
    • 7.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3.Semiconductor Quantum Chip
  • 7.4.Ion Trap Quantum Chip
  • 7.5.Others

8.By Application

  • 8.1.Introduction
    • 8.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2.Market Attractiveness Index, By Application
  • 8.2.Computer*
    • 8.2.1.Introduction
    • 8.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3.Anti-Theft Brush
  • 8.4.Other

9.By End-User

  • 9.1.Introduction
    • 9.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.1.2.Market Attractiveness Index, By End-User
  • 9.2.Information Technology (IT) & Telecommunications*
    • 9.2.1.Introduction
    • 9.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3.Banking, Financial Services and Insurance (BFSI)
  • 9.4.Aerospace & Defense
  • 9.5.Research & Academia
  • 9.6.Others

10.By Region

  • 10.1.Introduction
    • 10.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2.Market Attractiveness Index, By Region
  • 10.2.North America
    • 10.2.1.Introduction
    • 10.2.2.Key Region-Specific Dynamics
    • 10.2.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.2.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.2.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1.U.S.
      • 10.2.6.2.Canada
      • 10.2.6.3.Mexico
  • 10.3.Europe
    • 10.3.1.Introduction
    • 10.3.2.Key Region-Specific Dynamics
    • 10.3.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.3.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.3.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1.Germany
      • 10.3.6.2.UK
      • 10.3.6.3.France
      • 10.3.6.4.Italy
      • 10.3.6.5.Spain
      • 10.3.6.6.Rest of Europe
  • 10.4.South America
    • 10.4.1.Introduction
    • 10.4.2.Key Region-Specific Dynamics
    • 10.4.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.4.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.4.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1.Brazil
      • 10.4.6.2.Argentina
      • 10.4.6.3.Rest of South America
  • 10.5.Asia-Pacific
    • 10.5.1.Introduction
    • 10.5.2.Key Region-Specific Dynamics
    • 10.5.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.5.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.5.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1.China
      • 10.5.6.2.India
      • 10.5.6.3.Japan
      • 10.5.6.4.Australia
      • 10.5.6.5.Rest of Asia-Pacific
  • 10.6.Middle East and Africa
    • 10.6.1.Introduction
    • 10.6.2.Key Region-Specific Dynamics
    • 10.6.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.6.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.6.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

11.Competitive Landscape

  • 11.1.Competitive Scenario
  • 11.2.Market Positioning/Share Analysis
  • 11.3.Mergers and Acquisitions Analysis

12.Company Profiles

  • 12.1.Amazon Web Services, Inc.*
    • 12.1.1.Company Overview
    • 12.1.2.Product Portfolio and Description
    • 12.1.3.Financial Overview
    • 12.1.4.Key Developments
  • 12.2.IBM
  • 12.3.Microsoft
  • 12.4.Google
  • 12.5.Silicon Quantum Computing
  • 12.6.Ion Q
  • 12.7.Honeywell
  • 12.8.Fujitsu
  • 12.9.Intel
  • 12.10.Rigetti Computing

LIST NOT EXHAUSTIVE

13.Appendix

  • 13.1.About Us and Services
  • 13.2.Contact Us