デフォルト表紙
市場調査レポート
商品コード
1459346

故障解析の世界市場:2024年~2031年

Global Failure Analysis Market - 2024-2031

出版日: | 発行: DataM Intelligence | ページ情報: 英文 280 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.14円
故障解析の世界市場:2024年~2031年
出版日: 2024年04月03日
発行: DataM Intelligence
ページ情報: 英文 280 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

世界の故障解析の市場規模は、2023年に51億米ドルに達し、2024年~2031年の予測期間中にCAGR8.2%で成長し、2031年には95億米ドルに達すると予測されています。

製品の故障の可能性は、小型化や複雑な設計など、製品の複雑化に伴って高まります。複雑さは、産業、自動車、航空宇宙、エレクトロニクス、ヘルスケア分野に影響を及ぼします。故障の根本原因を突き止め、これらの複雑な構造の信頼性と機能性を確保するためには、故障解析が極めて重要です。製品の適合性、安全性、信頼性を保証するために、業界団体や規制機関によって高い品質基準と安全基準が定められています。材料、部品、システムの欠点や弱点、故障モードを特定することで、故障解析はこれらの要件を満たすために不可欠です。自動車、航空宇宙、医療機器、製薬業界における厳しい規制により、故障解析サービスとソリューションに対する需要が高まっています。

故障解析ソリューションに対する消費者の需要増に対応するため、同市場の主要企業の一部は世界に事業を拡大しています。例えば、2023年9月1日、電子製造サービスプロバイダーであるNEOTechは、製品品質保証の強化レベルを顧客に提供するため、メキシコに故障解析ラボを拡張しました。NEOTechは、最先端設備への投資のコミットメントを示し、クラス最高のサービスの提供を可能にしています。NEOTechの顧客は、このような品質へのこだわりのおかげで、製品の競争力の維持が保証されています。

アジア太平洋は、予測期間中、同地域の主要企業による技術的に先進的な故障解析製品の発売が増加しているため、同市場において支配的な地域となっています。例えば、2021年08月08日、Joel Ltd.は、ショットキー電界放出型電子顕微鏡JSM-IT800の半導体デバイスの観察に最適なセミインレンズバージョン(i)/(is)を発売しました。

セミインレンズは、対物レンズの下に形成される強力な磁場レンズと電子ビームを融合させることにより、極めて高い分解能を実現します。また、試料から放出される低エネルギーの二次電子を効率よく集め、上部レンズ内検出器(UID)で検出します。その結果、半導体デバイスの故障調査に必要な傾斜試料や断面試料の高分解能観察・解析が可能になりました。

力学

厳しい規制基準

食品医薬品局(FDA)、欧州医薬品庁(EMA)、連邦航空局(FAA)、国際標準化機構(ISO)、およびいくつかの業界固有の規制機関を含む規制機関によって、メーカーやサプライヤーに強制的なコンプライアンス要件が課せられています。規制遵守を保証するため、これらの基準には厳格な品質管理方法、製品試験手順、故障解析手順が頻繁に含まれます。コンプライアンスを達成し、維持するために、企業は故障解析サービスとソリューションに投資することをお勧めします。

例えば、中央医薬品標準管理機構(CDSCO)は、様々な医療機器を監督するインドの規制機関です。インドで普及または販売促進を希望するすべての医療機器は、まずCDSCOの認可を受けなければ販売することができません。CDSCOは、医療機器産業に関して適用されるすべての法律、規則、規制に準拠しています。毎年数千人が登録申請を行っています。このため、人々の役に立つ製品だけが販売されることを保証するため、最近は規制が厳しくなっています。CDSCOが発表した登録が必要な非通知医療機器のリストにあるヘルスケア製品のひとつが顕微鏡です。

分析・画像化技術の進歩

透過型電子顕微鏡や走査型電子顕微鏡のような顕微鏡の技術開発により、品質が向上しました。分析者は、材料や部品の微細な特徴や欠陥を見るために、より高解像度のイメージングによって故障のプロセスや根本原因を特定することができます。複雑な3次元構造の解釈は、通常材料の2次元画像を提供する従来のイメージング技術を使用する場合、より困難です。コンピューター断層撮影や共焦点顕微鏡などの高度なイメージング手法によって、材料や部品の3次元イメージングが可能になります。三次元可視化により、根本的な構造や空間的なつながりが明らかになるため、故障解析の精度が向上します。

研究者は、in-situ試験および解析手法を使用することで、実環境における材料の挙動や故障メカニズムを見ることができます。in-situ TEMやin-situ分光法などの手法により、熱サイクル、機械的応力、腐食など、さまざまな環境暴露下での試料の動的モニタリングが可能になります。研究者は、in-situ分析を使用して故障解析の予測モデルを作成し、故障プロセスの進化に関する洞察に満ちた情報を提供します。

高い所有コストとメンテナンスコスト

通常、透過型電子顕微鏡(TEM)、集束イオンビーム(FIB)システム、走査型電子顕微鏡(SEM)のような高度な故障解析ツールを購入するには、多額の初期費用が必要です。このような技術の購入に必要な初期費用を維持することは、多くの組織、特に小規模の組織や経営資源の乏しい研究施設にとっては困難かもしれません。

故障解析装置には、初期購入費用以外にも、継続的な保守・メンテナンス費用がかかることが多いです。これには、最適な効率を確保するための定期的なメンテナンスにかかる費用や、老朽化したコンポーネントの交換や修理にかかる費用が含まれます。装置の寿命を通じて、これらのメンテナンス費用は積み重なり、全体的な所有コストを引き上げる可能性があります。高度な故障解析機器の使用と保守には、特定分野の専門知識が必要とされることが多いです。装置の適切な操作と保守を保証するために、組織はトレーニングプログラムへの投資や有能なスタッフの採用を行う必要があります。故障解析手法の経験を持つ資格のあるエンジニアや技術者が不足していると、人件費がさらにかさみ、総所有コストが上昇する可能性があります。

目次

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 厳しい規制基準
      • 分析・画像化技術の進歩
    • 抑制要因
      • 高い所有コストとメンテナンスコスト
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 技術別

  • 走査型電子顕微鏡(SEM)
  • 透過型電子顕微鏡(TEM)
  • 集束イオンビーム(FIB)
  • エネルギー分散型X線分光法(EDS)
  • X線光電子分光(XPS)
  • その他

第8章 装置別

  • 電子顕微鏡
  • 光学顕微鏡
  • X線装置
  • イオンビーム装置
  • 分光装置
  • 熱分析装置
  • その他

第9章 試験別

  • 材料試験
  • 非破壊検査(NDT)
  • 化学分析
  • 物理試験
  • 電気試験
  • 機械試験
  • その他

第10章 エンドユーザー別

  • 半導体・エレクトロニクス
  • 自動車
  • 航空宇宙・防衛
  • 医療機器
  • 材料科学
  • 石油・ガス
  • その他

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第13章 企業プロファイル

  • Keysight Technologies
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • Anritsu Corporation
  • TUV SUD
  • NEC Corporation
  • L3Harris Technologies, Inc.
  • Smith's Interconnect
  • Intertech Group Plc.
  • TEC Materials Testing
  • McDowell Owens Engineering Inc.
  • Panacea Engineers
  • Metallurgical Engineering Services, Inc.

第14章 付録

目次
Product Code: ICT8301

Overview

Global Failure Analysis Market reached US$ 5.1 Billion in 2023 and is expected to reach US$ 9.5 Billion by 2031, growing with a CAGR of 8.2% during the forecast period 2024-2031.

The likelihood of product failures rises with product complexity, including miniaturization and complicated designs. The complexity affects the industrial, automotive, aerospace, electronics and healthcare sectors. To determine the root cause of failures and ensure the dependability and functionality of these complex structures, failure analysis is crucial. High quality and safety standards are enforced by industry associations and regulatory agencies to guarantee product conformity, safety and dependability. By locating shortcomings weaknesses and failure modes in materials, components and systems, failure analysis is essential to fulfilling these requirements. Strict restrictions in the automobile, aerospace, medical device and pharmaceutical industries have increased demand for failure analysis services and solutions.

To fulfill consumers increased demand for failure analysis solutions some of the major key players in the market are expanding their business globally. For instance, on September 01, 2023, NEOTech, an electronic manufacturing service provider expanded its failure analysis laboratory in Mexico to provide customers with enhanced levels of product quality assurance. NEOTech has shown its commitment to investing in cutting-edge equipment, enabling it to provide best-in-class services. Customers of NEOTech are guaranteed to maintain their products' competitive edge because of this dedication to quality.

Asia-Pacific is the dominating region in the market due to the growing technologically advanced failure analysis product launches by major key players in the region over the forecast period. For instance, on August 08, 2021, Joel Ltd. launched semi-in-lens versions (i)/(is) which are optimal for the observation of semiconductor devices of the Schottky Field Emission Electron Microscope JSM-IT800.

By merging electron beams with the powerful magnetic field lens that forms below the objective lens, a semi-in-lens produces extremely high resolution. Additionally, the device effectively gathers the low-energy secondary electrons released from a sample and uses the upper in-lens detector (UID) to detect the electrons. As a result, it makes it possible to see and analyze inclined and cross-sectional specimens at high resolution, which is necessary for semiconductor device failure investigation.

Dynamics

Stringent Regulatory Standards

Mandatory compliance requirements are imposed on manufacturers and suppliers by regulatory bodies, including the Food and Drug Administration (FDA), European Medicines Agency (EMA), Federal Aviation Administration (FAA), International Organization for Standardization (ISO) and several industry-specific regulatory agencies. To guarantee regulatory compliance, these criteria frequently involve strict quality control methods, product testing procedures and failure analysis procedures. To achieve and sustain compliance, businesses are advised to invest in failure analysis services and solutions.

For instance, the Central Drug Standard Control Organization or CDSCO, is the regulatory organization in India that oversees various medical devices. Every medical device that wants to be propagated or promoted in India must first receive authorization from the CDSCO before being allowed to be marketed. The CDSCO conforms with all applicable laws, rules and regulations about the medical device industry. Thousands of people apply for registration each year. Due to this, regulations are becoming more strict these days to guarantee that only products that benefit people are sold. One of the healthcare products on the CDSCO-released list of non-notified medical devices that require registration is a microscope.

Technological Advancements in Analytical and Imaging

Technological developments in microscopy like transmission electron microscopy and scanning electron microscopy, have improved quality. Analysts can determine failure processes and root causes via higher-resolution imaging to see minute features and imperfections in materials and components. Interpreting complex 3-D structures is more challenging when using conventional imaging techniques, which usually offer 2-D images of materials. Three-dimensional imaging of materials and components is made possible by advanced imaging methods such as computed tomography and confocal microscopy, among others. By exposing underlying structures and spatial connections, three-dimensional visualization improves the accuracy of failure analysis.

Researchers can see material behavior and failure mechanisms in real-world settings by using in-situ testing and analysis methods. Methods like in-situ TEM and in-situ spectroscopy allow the dynamic monitoring of samples under different environmental exposures such as heat cycling, mechanical stress, corrosion and others. Researchers create prediction models for failure analysis with the use of in-situ analysis, which offers insightful information about the evolution of failure processes.

High Ownership and Maintenance Cost

It typically requires a substantial initial expenditure of funds to purchase sophisticated failure analysis tools like transmission electron microscopes (TEMs), focused ion beam (FIB) systems and scanning electron microscopes (SEMs). It may be difficult for many organizations, especially smaller ones or research facilities with smaller resources, to uphold the initial cost required for purchasing such technology.

Failure analysis equipment frequently requires continuing maintenance and servicing costs beyond the initial purchase. The covers the expenses of doing regular maintenance to ensure optimal efficiency as well as the price of replacing or repairing aging components. Throughout the equipment's life, these maintenance expenses can add up and raise the overall cost of ownership. Expertise in particular fields is frequently needed to use and maintain sophisticated failure analysis equipment. To guarantee that the equipment is operated and maintained properly organizations would need to make training program investments or recruit competent staff. The lack of qualified engineers or technicians with experience in failure analysis methods might raise labor expenses further and raise the total cost of ownership.

Segment Analysis

The global failure analysis market is segmented based on technology, equipment, test, end-user and region.

Growing Adoption of Failure Analysis Software Globally

Based on the Technology, the failure analysis market is segmented into Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Focused Ion Beam (FIB), Energy-dispersive X-ray spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Others. With the use of SEM's high-resolution imaging capabilities, analysts study sample surfaces with resolution down to the nanoscale. The is ideal for identifying the fundamental causes of various materials and component failures as it allows the examination of microstructures and failure locations. SEM has a broad depth of focus in comparison to other microscopy techniques, which enables it to examine materials with uneven or rough surfaces. Due to this, SEM is very useful for analyzing complex structures and identifying small imperfections that could lead to failures.

Through the use of this skill, analysts may determine the chemical makeup of materials and locate impurities or contaminants that cause failures. Several substances, including biological specimens and ceramics, metals and semiconductors, were analyzed employing scanning electron microscopy. Over the projection period, the leading important players' increasing number of product launches contribute to the growth of the market. For instance, on January 29, 2021, Emory University, launched Energy-Dispersive Spectroscopy for elemental analysis. Particular substances and their relative percentages in different sections of a sample can be determined by combining the current scanning electron microscope (SEM) with an EDS system. EDS makes use of the idea that each element's related atomic structure produces a unique peak profile on an X-ray spectrum.

Geographical Penetration

Asia-Pacific is Dominating the Failure Analysis Market

Asia-Pacific is a significant center for manufacturing across several industries, such as consumer products, automobiles and aerospace. Because of the robust manufacturing sector in the region, which requires product quality and conformance to industry standards, failure analysis services are in high demand. Leading semiconductor producers, suppliers of electronic components and technological companies that promote technical innovation and breakthroughs in failure analysis methods and instruments are based in Asia-Pacific. The region's importance in the globally failure analysis market is attributed to its proficiency in electronics and semiconductor production.

The demand for failure analysis services has increased in response to the rapid industrialization and economic expansion of countries like China, Japan, South Korea and Taiwan, which has helped in the creation and manufacturing of cutting-edge goods and technology. Failure analysis is becoming increasingly necessary as the region's businesses modernize and use sophisticated production techniques to identify and mitigate risks.

Competitive Landscape.

The major global players in the market include Keysight Technologies, Anritsu Corporation, TUV SUD, NEC Corporation, L3Harris Technologies, Inc., Smiths Interconnect, Intertech Group Plc., TEC Materials Testing, McDowell Owens Engineering Inc., Panacea Engineers and Metallurgical Engineering Services, Inc.

COVID-19 Impact Analysis

The pandemic produced delays in the delivery of components, tools and supplies needed for failure analysis procedures by upsetting globally supply networks. Travel restrictions and interruptions to business operations led to shortages and logistical problems that impacted the velocity of failure analysis services. The pandemic's impact on consumer spending and financial instability contributed to a reduction in demand for products and services in several industries, including electronics, automotive and aerospace.

Money and resources were diverted from failure analysis programs, especially in areas of the economy that were directly grasped by pandemic response activities. For failure analysis service providers and their clients, the shift to remote labor presented difficulties, especially in sectors where on-site inspections and practical testing are crucial. The use of remote work arrangements has resulted in obstacles to cooperation, communication and physical inspection capabilities, ultimately causing delays and inefficiencies in failure analysis processes.

Russia-Ukraine War Impact Analysis

Significant suppliers of raw materials, parts and technology to a variety of industries, including electronics, semiconductor manufacturing, aerospace and defense, contain Russia and Ukraine. Any disruption in the conflict's supply chain might result in shortages of vital supplies or parts, which would interfere with production plans and cause failure analysis studies to be postponed. The conflict's unpredictability might cause price volatility in the world's commodities markets, which include those for energy resources, metals and minerals. Price fluctuations affect the supplies and equipment required for failure analysis procedures, which result in increased operational costs for market participants.

Global trade relations and regulatory environments are impacted by geopolitical tensions emerging from the conflict. The transfer of products, technology and services across borders is impacted by increased sanctions, trade restrictions or export controls placed on Russia or Ukraine. The restricts access to essential assets or hamper cross-border cooperation in the failure analysis industry. Industries that are directly affected by the conflict, such as electronics, aircraft and defense, could put more money and resources into supply chain vulnerabilities or risk mitigation. The causes changes in the market for failure analysis services, with a greater emphasis on locating and resolving possible weaknesses in vital infrastructure and supply networks.

By Technology

  • Scanning Electron Microscopy (SEM)
  • Transmission Electron Microscopy (TEM)
  • Focused Ion Beam (FIB)
  • Energy-dispersive X-ray spectroscopy (EDS)
  • X-ray Photoelectron Spectroscopy (XPS)
  • Others

By Equipment

  • Electron Microscopes
  • Optical Microscopes
  • X-ray Machines
  • Ion Beam Machines
  • Spectroscopy Equipment
  • Thermal Analyzers
  • Others

By Test

  • Material Testing
  • Non-Destructive Testing (NDT)
  • Chemical Analysis
  • Physical Testing
  • Electrical Testing
  • Mechanical Testing
  • Others

By End-User

  • Semiconductor & Electronics
  • Automotive
  • Aerospace & Defense
  • Medical Devices
  • Material Science
  • Oil & Gas
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On November 08, 2022, TESCAN, launched New TENSOR Scanning Transmission Electron Microscope in the market. TENSOR is designed to meet the demands of semiconductor R&D and failure analysis (FA) engineers, materials scientists and crystallographers, as well as anybody interested in multimodal nano-characterization applications (morphological, chemical and structural).
  • On June 06, 2023, LambdaTest launched an AI-powered Test Failure Analysis feature in its smart test orchestration platform HyperExecute. With just one click, digital organizations will be able to expedite their troubleshooting and repair process for test case failures due to this revolutionary new feature.
  • On May 12, 2020, Sauce Labs launched a new machine learning-based analytics solution to improve test quality. Failure Analysis allows developers, testers and QA managers to quickly tackle the most common issues and promote rapid test quality improvement by providing information on how frequently a certain type of failure occurs across a test suite.

Why Purchase the Report?

  • To visualize the global failure analysis market segmentation based on technology, equipment, test, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of failure analysis market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global failure analysis market report would provide approximately 73 tables, 78 figures and 280 Pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

Table of Contents

1.Methodology and Scope

  • 1.1.Research Methodology
  • 1.2.Research Objective and Scope of the Report

2.Definition and Overview

3.Executive Summary

  • 3.1.Snippet by Technology
  • 3.2.Snippet by Equipment
  • 3.3.Snippet by Test
  • 3.4.Snippet by End-User
  • 3.5.Snippet by Region

4.Dynamics

  • 4.1.Impacting Factors
    • 4.1.1.Drivers
      • 4.1.1.1.Stringent Regulatory Standards
      • 4.1.1.2.Technological Advancements in Analytical and Imaging
    • 4.1.2.Restraints
      • 4.1.2.1.High Ownership and Maintenance Cost
    • 4.1.3.Opportunity
    • 4.1.4.Impact Analysis

5.Industry Analysis

  • 5.1.Porter's Five Force Analysis
  • 5.2.Supply Chain Analysis
  • 5.3.Pricing Analysis
  • 5.4.Regulatory Analysis
  • 5.5.Russia-Ukraine War Impact Analysis
  • 5.6.DMI Opinion

6.COVID-19 Analysis

  • 6.1.Analysis of COVID-19
    • 6.1.1.Scenario Before COVID
    • 6.1.2.Scenario During COVID
    • 6.1.3.Scenario Post COVID
  • 6.2.Pricing Dynamics Amid COVID-19
  • 6.3.Demand-Supply Spectrum
  • 6.4.Government Initiatives Related to the Market During Pandemic
  • 6.5.Manufacturers Strategic Initiatives
  • 6.6.Conclusion

7.By Technology

  • 7.1.Introduction
    • 7.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 7.1.2.Market Attractiveness Index, By Technology
  • 7.2.Scanning Electron Microscopy (SEM)*
    • 7.2.1.Introduction
    • 7.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3.Transmission Electron Microscopy (TEM)
  • 7.4.Focused Ion Beam (FIB)
  • 7.5.Energy-dispersive X-ray spectroscopy (EDS)
  • 7.6.X-ray Photoelectron Spectroscopy (XPS)
  • 7.7.Others

8.By Equipment

  • 8.1.Introduction
    • 8.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Equipment
    • 8.1.2.Market Attractiveness Index, By Equipment
  • 8.2.Electron Microscopes*
    • 8.2.1.Introduction
    • 8.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3.Optical Microscopes
  • 8.4.X-ray Machines
  • 8.5.Ion Beam Machines
  • 8.6.Spectroscopy Equipment
  • 8.7.Thermal Analyzers
  • 8.8.Others

9.By Test

  • 9.1.Introduction
    • 9.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Test
    • 9.1.2.Market Attractiveness Index, By Test
  • 9.2.Material Testing*
    • 9.2.1.Introduction
    • 9.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3.Non-Destructive Testing (NDT)
  • 9.4.Chemical Analysis
  • 9.5.Physical Testing
  • 9.6.Electrical Testing
  • 9.7.Mechanical Testing
  • 9.8.Others

10.By End-User

  • 10.1.Introduction
    • 10.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2.Market Attractiveness Index, By End-User
  • 10.2.Semiconductor & Electronics*
    • 10.2.1.Introduction
    • 10.2.2.Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3.Automotive
  • 10.4.Aerospace & Defense
  • 10.5.Medical Devices
  • 10.6.Material Science
  • 10.7.Oil & Gas
  • 10.8.Others

11.By Region

  • 11.1.Introduction
    • 11.1.1.Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2.Market Attractiveness Index, By Region
  • 11.2.North America
    • 11.2.1.Introduction
    • 11.2.2.Key Region-Specific Dynamics
    • 11.2.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.2.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Equipment
    • 11.2.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Test
    • 11.2.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1.U.S.
      • 11.2.7.2.Canada
      • 11.2.7.3.Mexico
  • 11.3.Europe
    • 11.3.1.Introduction
    • 11.3.2.Key Region-Specific Dynamics
    • 11.3.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.3.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Equipment
    • 11.3.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Test
    • 11.3.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1.Germany
      • 11.3.7.2.UK
      • 11.3.7.3.France
      • 11.3.7.4.Italy
      • 11.3.7.5.Spain
      • 11.3.7.6.Rest of Europe
  • 11.4.South America
    • 11.4.1.Introduction
    • 11.4.2.Key Region-Specific Dynamics
    • 11.4.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.4.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Equipment
    • 11.4.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Test
    • 11.4.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1.Brazil
      • 11.4.7.2.Argentina
      • 11.4.7.3.Rest of South America
  • 11.5.Asia-Pacific
    • 11.5.1.Introduction
    • 11.5.2.Key Region-Specific Dynamics
    • 11.5.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.5.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Equipment
    • 11.5.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Test
    • 11.5.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7.Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1.China
      • 11.5.7.2.India
      • 11.5.7.3.Japan
      • 11.5.7.4.Australia
      • 11.5.7.5.Rest of Asia-Pacific
  • 11.6.Middle East and Africa
    • 11.6.1.Introduction
    • 11.6.2.Key Region-Specific Dynamics
    • 11.6.3.Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.6.4.Market Size Analysis and Y-o-Y Growth Analysis (%), By Equipment
    • 11.6.5.Market Size Analysis and Y-o-Y Growth Analysis (%), By Test
    • 11.6.6.Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12.Competitive Landscape

  • 12.1.Competitive Scenario
  • 12.2.Market Positioning/Share Analysis
  • 12.3.Mergers and Acquisitions Analysis

13.Company Profiles

  • 13.1.Keysight Technologies*
    • 13.1.1.Company Overview
    • 13.1.2.Product Portfolio and Description
    • 13.1.3.Financial Overview
    • 13.1.4.Key Developments
  • 13.2.Anritsu Corporation
  • 13.3.TUV SUD
  • 13.4.NEC Corporation
  • 13.5.L3Harris Technologies, Inc.
  • 13.6.Smith's Interconnect
  • 13.7.Intertech Group Plc.
  • 13.8.TEC Materials Testing
  • 13.9.McDowell Owens Engineering Inc.
  • 13.10.Panacea Engineers
  • 13.11.Metallurgical Engineering Services, Inc.

LIST NOT EXHAUSTIVE

14.Appendix

  • 14.1.About Us and Services
  • 14.2.Contact Us